带电粒子在复合场中的运动典型例题汇编
(物理)带电粒子在复合场中的运动练习题含答案及解析

解得: <0.63%
5.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为
d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为 m 、带电量 q 、重力不计的 带电粒子,以初速度 v1 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然
后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中 运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
由题知 vm=kym
若 E=0 时,粒子以初速度 v0 沿 y 轴正向入射,有 qv0B=m v02 R0
在最高处有 v0=kR0
联立解得 vm
E B
(
E B
)2
v02
考点:带电粒子在符合场中的运动;动能定理.
2.在 xOy 平面的第一象限有一匀强电磁,电场的方向平行于 y 轴向下,在 x 轴和第四象限 的射线 OC 之间有一匀强电场,磁感应强度为 B,方向垂直于纸面向里,有一质量为 m,带 有电荷量+q 的质点由电场左侧平行于 x 轴射入电场,质点到达 x 轴上 A 点,速度方向与 x 轴的夹角为 φ,A 点与原点 O 的距离为 d,接着,质点进入磁场,并垂直与 OC 飞离磁场, 不计重力影响,若 OC 与 x 轴的夹角为 φ.求:
(3)由以上分析可得:R = 设 m/为铀 238 离子质量,由于电压在 U±ΔU 之间有微小变化,铀 235 离子在磁场中最大半 径为:Rmax=
铀 238 离子在磁场中最小半径为:Rmin=
这两种离子在磁场中运动的轨迹不发生交叠的条件为:Rmax<Rmin
即:
<
得:
<
< 其中铀 235 离子的质量 m = 235u(u 为原子质量单位),铀 238 离子的质量 m,= 238u 则: <
(物理) 高考物理带电粒子在复合场中的运动专项训练100(附答案)及解析

一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p(t)进入弹性盒后,通过与铰链O相连的“”型轻杆L,驱动杆端头A处的微型霍尔片在磁场中沿x轴方向做微小振动,其位移x与压力p成正比(,0x pαα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d,单位体积内自由电子数为n的N型半导体制成,磁场方向垂直于x轴向上,磁感应强度大小为(1)0B B xββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C方向的电流I,则在侧面上D1、D2两点间产生霍尔电压U0.(1)指出D1、D2两点那点电势高;(2)推导出U0与I、B0之间的关系式(提示:电流I与自由电子定向移动速率v之间关系为I=nevbd,其中e为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd = 得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:010U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=3.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:4.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x 轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a〜3a区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O射入磁场后打到x轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B1;(3)保持磁感应强度B1不变,求每秒打在探测板上的离子数N;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.5.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为、重力不计的d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)6.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。
带电粒子在复合场中的运动习题全集(含答案).

图11-4-1例1.如图11-4-1绝缘直棒上的小球,其质量为m 、带电荷量是+q ,小球可在棒上滑动.将此棒竖直放在互相垂直且在水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒间的动摩擦因数为 ,求小球由静止沿棒下滑的最大加速度和最大速度(小球带电荷量不变)例2.如图11-4-3所示,水平放置的平行金属板,长为l =140cm ,两板之间的距离d =30cm ,板间有图示方向的匀强磁场,磁感应强度的大小为B =1.3×10-3T .两板之间的电压按图所示的规律随时间变化(上板电势高为正).在t =0时,粒子以速度v =4×103m/s 从两板(左端)正中央平行于金属板射入,已知粒子质量m =6.64×10-27kg ,带电量q =3.2×10-19C .试通过分析计算,看粒子能否穿越两块金属板间的空间,如不能穿越,粒子将打在金属板上什么地方?如能穿越,则共花多少时间?【益智演练】1.一个质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷做匀速圆周运动,磁场方向垂直于它的运动平面,作用在负电荷上的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是:( )A .4qBmB .3qBmC .2qBmD .qB m2.如图11-4-5所示,足够长的光滑三角形绝缘槽,与水平面的夹角分别为α和β(α<β),加垂直于纸面向里的磁场.分别将质量相等、带等量正、负电荷的小球 a 、b 依次从两斜面的顶端由静止释放,关于两球在槽上运动的说法正确的是( ) A .在槽上,a 、b 两球都做匀加速直线运动,且a a >a b B .在槽上,a 、b 两球都做变加速运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移是s a <s bD .a 、b 两球沿槽运动的时间为t a 和t b ,则t a <t b3.一带正电的小球沿光滑水平桌面向右运动,飞离桌面后进入匀强磁场,如图11-4-6所示,若飞行时间t 1后落在地板上,水平射程为s 1,着地速度大小为v 1,撤去磁场,其他条件不变,小球飞行时间t 2,水平射程s 2,着地速度大小为v 2,则( ) A .s 2>s 1 B .t 1>t 2 C .v 1>v 2 D .v 1=v4.用绝缘细线悬挂一个质量为m 、带电量为+q 的小球,让它处于右图11-4-7所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉直,则磁场运动的速度和方向是( )A .v =mg /Bq ,水平向右B .v =mg /Bq ,水平向左C .v =mg tan α/Bq ,竖直向上D .v =mg tan α/Bq ,竖直向下5.如图11-4-8所示,有一电量为q ,质量为m 的小球,从两竖直的带等量 异种电荷的平行板上方高h 处自由下落,两板间有匀强磁场,磁场方向垂直纸面向里,那么带电小球在通过正交电磁场时( )图11-4-6图11-4-5B 图11-4-7t/10s3 54 1.图11-4-3C .可能做匀速直线运动D .可能做匀加速直线运动 6.如图11-4-9所示,带电平行板间匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑轨道上的a 点自由下落,经轨道端点P 进入板间后恰好沿水平方向做直线运动.现使小球从稍低些的b 点开始自由滑下,在经过P 点进入板间后的运动过程中,以下分析中正确的是( )A .其动能将会增大B .其电势能将会增大C .小球所受的洛伦兹力将会逐渐增大D .小球受到的电场力将会增大7.如图11-4-4-10所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2=L ,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从b c 边的中点P 射出,若撤去磁场,则粒子从C点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出8.如图11-4-11所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,已知a 静止,b向右匀速运动,c 向左匀速运动,比较它们的质量应有( )A .a 油滴质量最大B .b 油滴质量最大C .c 油滴质量最大D .a 、b 、c 质量一样9.如图11-4-12中所示虚线所围的区域内,存在电场强度为E 的匀强电场和磁感应强度为B的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E 和B 的方向可能是( ) A .E 和B 都沿水平方向,并与电子运动方向相同 B .E 和B 都沿水平方向,并与电子运动方向相反C .E 竖直向上,B 垂直于纸面向外D .E 竖直向上,B 垂直于纸面向里10.设空间存在竖直向下的匀强电场和垂直纸面向内的匀强磁场,如图11-4-13所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度为零.C 是曲线的最低点,不计重力.以下说法正确的是( )A .离子一定带正电B .A 、B 两点位于同一高度C .离子在C 点速度最大D .离子到达B 点后将沿曲线返回A 点11.如图11-4-14所示,在真空中一个光滑的绝缘的水平面上,有直径相同的两个金属球A 、C .质量m A =0.01 kg ,m C =0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电量q C =1×10-2 C .在磁场外的不带电的A 球以速度v 0=20 m/s 进入磁场中与C 球发生正碰后,C 球对水平面压力恰好为零,则碰后A 球的速度为 ( )A .10 m/sB .5 m/sC .15 m/sD .-20 m/s12.三种粒子(均不计重力):质子、氘核和 粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图11-4-15中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离 A B 图11-4-13图图11-4-8图11-4-12d 图11-4-10v 图11-4-11图11-4-15aD .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均不可以分离13.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O 在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图11-4-16所示,若小球运动到A 点时,由于某种原因,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是( )A .小球仍做逆时针匀速圆周运动,半径不变B .小球仍做逆时针匀速圆周运动,但半径减小C .小球做顺时针匀速圆周运动,半径不变D .小球做顺时针匀速圆周运动,半径减小14.质量为m ,带正电为q 的小物块放在斜面上,斜面倾角为α,物块与斜面间动摩擦因数为μ,整个斜面处在磁感应强度为B 的匀强磁场中,如图11-4-17所示,物块由静止开始沿斜面下滑,设斜面足够长,物块在斜面上滑动能达到的最大速度为多大?若物块带负电量为q ,则物块在斜面上滑动能达到的最大速度又为多大?15.如图11-4-18所示,套在很长的绝缘直棒上的小圆环,其质量为m ,带电量是+q ,小圆环可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小圆环与棒的动摩擦因数为μ,求小圆环由静止沿棒下落的最大加速度和最大速度.E 图11-4-18图11-4-1716.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R 的圆周运动,绕行方向不变,且此圆周的最低点也是A ,另一滴将如何运动?17.质量为m ,带电量为q 的液滴以速度v 沿与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E 和磁感应强度B 各多大?(2)当液滴运动到某一点A 时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况.18.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B =1T ,匀强电场水平向右,电场强度E =103N/C ,有一带正电的微粒m =2×10-6kg ,电量q =2×10-6C ,在纸面内做匀速直线运动.g 取10m/s 2,问: (1)微粒的运动方向和速率如何?(2)若微粒运动到P 电时突然撤去磁场,经过时间t 后运动到Q 点,P 、Q 连线与电场线平行,那么t 为多少?图11-4-19 P图11-4-2019.如图11-4-22所示,一质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图15-76所示.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积;(2)c 点到b 点的距离s .20.如图11-4-23所示,置于光滑水平面上的绝缘小车A 、B 质量分别为m A =3kg 、m B =0.5kg ,质量为m C =0.1kg 、带电量为q =+1/75 C 、可视为质点的绝缘物体C 位于光滑小车B 的左端.在A 、B 、C 所在的空间有一垂直纸面向里的匀强磁场,磁感强度B =10T ,现小车B 静止,小车A 以速度v 0=10m/s 向右运动和小车B 碰撞,碰后物体C 在A 上滑动.已知碰后小车B 的速度为9m/s ,物体C 与小车A 之间有摩擦,其他摩擦均不计,小车A 足够长,全过程中C 的带电量保持不变,求:(1)物体C 在小车A 上运动的最大速率和小车A 运动的最小速度.(g 取10m/s 2) (2)全过程产生的热量.21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,在磁场中有一长为L 、内壁光滑且绝缘的细筒MN 竖直放置,筒的底部有一质量为m 、带电荷量为+q 的小球,现使细筒MN 沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v 应满足什么条件?(2)当细筒运动速度为v 0(v 0>v )时,试求小球在沿细筒上升高度h 时小球的速度大小.v 图11-4-22图11-4-2322.如图11-4-25所示,一质量为0.4kg 的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg ,电量为0.1C 的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T ,g 取10m/s 2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s 的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少?23.如图11-4-26所示,水平方向的匀强电场的场强为E (场区宽度为L ,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B 和2B .一个质量为m 、电量为q 的带正电粒子(不计重力),从电场的边界MN 上的a 点由静止释放,经电场加速后进入磁场,经过t=qBm6π时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b (虚线为场区的分界面).求: (1)中间磁场的宽度d ;(2)粒子从a 点到b 点共经历的时间t ab ;(3)当粒子第n 次到达电场的边界MN时与出发点a 之间的距离S n .24.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图11-4-27所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行金属极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点,O '与O 点的竖直间距为d ,水平间距可以忽略不计.此时,在P 点和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).(1)求打在荧光屏O 点的电子速度的大小.(2)推导出电子比荷的表达式.2B图11-4-26图11-4-2525.如图11-4-28所示,在直角坐标xoy 的第一象限中分布着指向-y 轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m 、带电+q 的粒子(不计重力)在A 点(0,3)以初速v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x 轴上的P 点(6,0)和Q 点(8,0)各一次,已知该粒子的荷质比为q/m =108C/kg .(1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B 的大小.26.如图11-4-29所示,oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H ,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (c ,0,b )点(c >0,b >0).若撤去磁场则小球落在xy 平面的P (l ,0,0)点(l >0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E 的大小;(3)求小球落至N 点时的速率v .图11-4-29f图11-4-21.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f 洛,受力分析如图11-4-2所示. 在y 方向 ma =f mg 摩擦力N μ=f ,压力Eq +Bqv =N 解得:m )qE +qvB (μmg =a随着小球速度v 增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时0=v 时,此时加速度最大,mqEμg=a m ; 匀速时,0=a 时,速度最大,m mg (qv B qE)0-m += 所以BE qB μmg=v m . 2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E =U /d =1.56V/0.3m=5.2V/m .粒子进入板间在0~1.0×104s 内受向下的电场力Eq 和向下的磁场力Bqv 作用,由于电场力与磁场力之比1=10×4×10×3.12.5=Bqv qE 33 粒子作匀速直线运动,它的位移34s vt 410110m 0.4m -==创?在接着的1.0×104s ~2.0×10-4s 时间内,电场撤消,α粒子只受磁场力作用,将作匀速圆周运动,轨道半径为273319mv 6.6410410R cm 6.38cm Bq 1.310 3.210---创?===创? 轨道直径d ′=2R =12.76cm<d /2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为2432r 2 3.14 6.3810T s 1.010s v 410--p 创?¢===?´由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间443l 3s 1.430.4t 3T 3210 6.510s v 410----?=+=创+=?´从两板的正中央射离. 【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD 14.qB μ)αcos μα(sin mg ,qB αcos mg . 15.g ;qB μEq μ+mg . 16.(1)ERB,顺时针方向;(2)顺时针方向,R ′=R17.(1)qvmg 2=B ,q /mg =E ;(2)a ,2v R a ==,gvπ2=v R π2=T 18.(1)v =20m/s ,θ=60°;(2)t =23s 19.(1)22202q B 4v m π3;(2)Eqmv 2034 20.(1)7.5m/s 和8.25m/s ;(2)24.84J 21.v >Bq m g;v ′=20v +m )mg B qv (h 2 22.(1)v 0≥10m/s 时,v =10m/s , v 0<10m/s 时,v =0;(2)Q =13.75J 23.d =qmEL B 21,t ab =2qE L m2+qB 3m π2,s n =q 2mEL B n )34( 24.Bb U ,m e =)2/L +L (bL B Ud 1212 25.(1)略;(2)1.2×1010T 26.(1)图11-4-4mgl=E;(3)v=磁场方向为-x方向或-y方向;(2)qH。
带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中的运动(经典题例)

带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
高中物理带电粒子在复合场中的运动题20套(带答案)及解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
高中物理带电粒子在复合场中的运动题20套(带答案)

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
带电粒子在复合场中运动的17个经典例题

经典习题1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q、质量为m的带负电粒子以速度v0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。
不计粒子重力。
试求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
B2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:(1)磁感应强度B和电场强度E的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。
3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离(4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。
金属板长L=20cm,两板间距d=103cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中的运动专题八磁流体发电机、能够解决速度选择器、能分析计算带电粒子在复合场中的运动.2.考纲解读 1.质谱仪等磁场的实际应用问题图中某空间存在水平方向的匀强电场( [带电粒子在复合场中的直线运动]1.点运动,所示的直线斜向下由A点沿直线向B未画出),带电小球沿如图1 的匀强磁场,则下列说法正确的是此空间同时存在由A指向B)(1 图A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能增大CD答案由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相解析同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所小球的电性,选项A错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直以选项B D正确.线运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项一带电小球在一正交电带电粒子在复合场中的匀速圆周运动]如图2所示,2.[ 场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面)(向里,则下列说法正确的是2 图A.小球一定带正电B.小球一定带负电C.小球的绕行方向为顺时针.改变小球的速度大小,小球将不做圆周运动DBC答案解析小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的方向可知小球一定带负电,A 错误.正确,弯曲方向结合左手定则可得绕行方向为顺时针方向,CD 考点梳理一、复合场1.复合场的分类叠加场:电场、磁场、重力场共存,或其中某两场共存.(1).组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁(2) 场交替出现.2.三种场的比较项目力的特点功和能的特点名称mg 重力做功与路径无关大小:G=重力场方向:竖直向下重力做功改变物体的重力势能电场力做功与路径无关F=qE大小:方向:a.正电荷受力方向与场强方向相同静电场W=qU电场力做功改变电势能b.负电荷受力方向与场强方向相反不改变带电粒子洛伦兹力不做功,q v B 洛伦兹力F=磁场的动能方向可用左手定则判断二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3.[质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片AA.平板S下方有磁感应强度为21B的匀强磁场.下列表述正确的是()0A.质谱仪是分析同位素的重要工具图3B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小答案ABC解析粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向.正确;粒子打在胶片上的位置到,选项C可知,v=E/B外,选项B正确;由Eq=Bq vv2m越小,则粒子的比荷越大,,可见D狭缝的距离即为其做匀速圆周运动的直径D=Bq D错误.D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A正确,劳伦斯和利文斯设计出回旋加速器,工作.[回旋加速器原理的理解]4 ,两4所示.置于高真空中的D形金属盒半径为R原理示意图如图的盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B U.若A处匀强磁场与盒面垂直,高频交流电频率为f,加速电压为、电荷量为+q,在加速器中被加速,粒子源产生的质子质量为m且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的4 图) (是Rf.质子被加速后的最大速度不可能超过2πA U成正比.质子离开回旋加速器时的最大动能与加速电压B1 形盒间狭缝后轨道半径之比为2.质子第2次和第1次经过两D∶C 和交流电频率f,该回旋加速器的最大动能不变D.不改变磁感应强度B AC答案R2πA正v=2πRf,故D解析粒子被加速后的最大速度受到形盒半径R的制约,因T112222222,与加速电压πm×4πf Rf R=2m确;粒子离开回旋加速器的最大动能E=m v=km22v m1122次经,得质子第2次和第1m=v,2Uq=m v无关,U B错误;根据R=,Uq2Bq212=E,C过两D正确;因回旋加速器的最大动能形盒间狭缝后轨道半径之比为2∶1km222均有关,D错误.与m、m2πRR、f f规律总结带电粒子在复合场中运动的应用实例质谱仪1.5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(1)构造:如图5图12.=m v原理:粒子由静止被加速电场加速,根据动能定理可得关系式(2)qU2B根据牛顿第二定律得关系式q v粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,2v.=m r由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.22UBq221mUqr. ,==r m,=22mBUq2r B.回旋加速器2.形盒的缝隙处D是半圆形金属盒,DD(1)构造:如图6所示,、21接交流电源,D形盒处于匀强磁场中.粒子在圆周(2)原理:交流电的周期和粒子做圆周运动的周期相等,两盒间的电势差一次一D形盒缝隙,运动的过程中一次一次地经过2v m v会被一次一次地加速.由qB=,得,次地反向粒子就r222rqB D形盒图6 E=,可见粒子获得的最大动能由磁感应强度B和km2m半径r决定,与加速电压无关.特别提醒这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动)的原理.3.速度选择器(如图7所示)(1)平行板中电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE=q v B,E即v=. 图7 B4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图8中的B是发电机正极.(3)磁流体发电机两极板间的距离为L,等离子体速度为v,磁场的U磁感应强度为B,则由qE=q=q v B得两极板间能达到的最大电势图8L差U=BL v.5.电磁流量计工作原理:如图9所示,圆形导管直径为d,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就图9UU保持稳定,即:q v B=qE=q,所以v=,因此液体流量Q=S v=dBd2πdπdUU·=. 4Bd4B考点一带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1如图10所示,带电平行金属板相距为2R,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线OO从左侧边缘O点以某一速度射入,恰沿直线通过圆形磁场区域,并从112极板边缘飞出,在极板间运动时间为t.若撤去磁场,质子仍从O点以相同速度射入,10t0则经时间打到极板上.2图10(1)求两极板间电压U;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线OO从O点射入,欲使粒子从112两板左侧间飞出,射入的速度应满足什么条件?解析(1)设粒子从左侧O点射入的速度为v,极板长为L,粒子在初速度方向上做匀01速直线运动t0L∶(L-2R)=t∶,解得L=4R02t0粒子在电场中做类平抛运动:L-2R=v·02qEa=m1t02 )a(=R22U在复合场中做匀速运动:q=q v B0R22BRR84联立各式解得v=,U=0tt00,粒子恰好从上极板r(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为2r=α=45°,rR+左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-t1qE02 (),因为R=22mBq v RqE80所以==2mtm02v m,根据牛顿第二定律有q v B=rR1?2?2-v=解得t0R1?2?2-v<所以,粒子在两板左侧间飞出的条件为0<t02R??2-12BR8 (1)(2)0<v<答案tt00技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成.2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合.4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.5.记住三点:(1)受力分析是基础;(2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.所示,空间存在着垂直纸面向外的水平匀强磁场,如图11突破训练1y轴两侧分别有方向相反的匀强电场,电场强磁感应强度为B,在a在电场度均为E,在两个电场的交界处左侧,有一带正电的液滴力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴撞后两液滴合为一当它的运动方向变为水平方向时恰与a相撞,b,11 图x 体,速度减小到原来的一半,并沿轴正方向做匀速直线运动,已b、间的静2b的质量相等,所带电荷量是a所带电荷量的倍,且相撞前aab知液滴与电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;.h的高度a开始下落时距液滴b求液滴(2).2E2E答案(1)(2) 2gBB3解析液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用.(1)设液滴a质量为m、电荷量为q,则液滴b质量为m、电荷量为-2q,液滴a平衡时有qE=mg ①a、b相撞合为一体时,质量为2m,电荷量为-q,速度为v,由题意知处于平衡状态,重力为2mg,方向竖直向下,电场力为qE,方向竖直向上,洛伦兹力方向也竖直向上,因此满足q v B+qE=2mg ②E由①、②两式,可得相撞后速度v=B(2)对b,从开始运动至与a相撞之前,由动能定理有12W+W=ΔE,即(2qE+mg)h=m v③0E k G2v2E0a、b碰撞后速度减半,即v=,则v=2v=02B222v m v2E00再代入③式得h===2gBg63mg+24qE考点二带电粒子在组合场中的运动1.近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2(2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S、S,两极板间电压的变化规律如图乙所示,正反向电压的大小均21为U,周期为T.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S静止释放,100T0粒子在电场力的作用下向右运动,在t=时刻通过S垂直于边界进入右侧磁场区.(不22计粒子重力,不考虑极板外的电场)12图.和极板间距dS时的速度大小v(1)求粒子到达2 (2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.且速度恰好为零,S,3T时刻再次到达(3)若已保证了粒子未与极板相撞,为使粒子在t=20求该过程中粒子在磁场内运动的时间和磁感应强度的大小.1.粒子的运动过程是什么?审题指导,且速度为零,需要满足什么条件?T时使粒子再次到达St2.要在=320的过程,根据动能定理得S至S解析(1)粒子由211 2=qUm v①02qU20②①由式得v =mU0③设粒子的加速度大小为a,由牛顿第二定律得q=madT10 2 ④()由运动学公式得d=a22qU2T00⑤联立③④式得d=m4,由牛顿第二定,粒子在磁场中做匀速圆周运动的半径为R(2)设磁感应强度的大小为B2v⑥律得q v B=m RL⑦要使粒子在磁场中运动时不与极板相撞,需满足2R>2mU420 < 联立②⑥⑦式得B qL t⑧设粒子在两边界之间无场区向左匀速运动的过程所用时间为t,有d=v(3) 1 1T0⑨联立②⑤⑧式得t=14设匀减速运动的时速度恰好为零,粒子回到极板间应做匀减速运动,若粒子再次到达S2v t⑩时间为t,根据运动学公式得d= 2 2 2T0?式得t=联立⑧⑨⑩22 设粒子在磁场中运动的时间为tT0t--t-t=3T?0 1 2 2T70???式得t=联立⑨4m2π=,由⑥式结合运动学公式得T设粒子在匀强磁场中做匀速圆周运动的周期为T qB??t T由题意可知=m8π.式得B=???联立qT702qU42mU2qUT0000答案(1) (2)B< m4mLq8πmT70(3) 47qT0方法点拨解决带电粒子在组合场中运动问题的思路方法如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向突破训练2E和;区域Ⅱ上和水平向右的匀强电场,电场强度分别为E 2 B.一质量为内有垂直向外的水平匀强磁场,磁感应强度为从左边界O点正带电荷量为q的带负电粒子(不计重力)m、OP上v 上方的M点以速度水平射入电场,经水平分界线013 图的A点与OP成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径;间的距离;(2)O、M CD(3)粒子从M边界所经历的时间.点出发到第二次通过2v?m?8+2m v3m v3mπ000+(2)(3)答案(1)qB3qB2qEqE粒子的运动过程是怎样的?审题指导1. .尝试画出粒子的运动轨迹.2 .注意进入磁场时的速度的大小与方向.3的匀强电场中做类平抛运动,设粒子过(1)粒子的运动轨迹如图所示,其在区域Ⅰ解析v0,由类平抛运动规律知v=A点时速度为v cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得2vv2m0R=v=m,所以Bq qBR即at,,=ma v tan 60°=则有加速度为的电场中运动时间为(2)设粒子在区域Ⅰt,a.qE1013m v0t=1qE2v m3102at==两点间的距离为、OML2qE21t设粒子在Ⅱ区域磁场中运动时间为(3)2mπT1t==则由几何关系知2qB63Eq2qE′==设粒子在Ⅲ区域电场中运动时间为t,a3mm2vv8m2002×=则t=3qE′a点出发到第二次通过CD边界所用时间为粒子从M v?m?8+3v83m v mmmππ000+++t==+t=t+t312qE3qEqE3qBqB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析2v m)分B=(2粒子在磁场中运动时解析(1)q v RR2π)=(1分T v m2π3)(1分=解得T=4×10 s -qB3s t=20×10时粒子在坐标系内做了两个(2)粒子的运动轨迹如图所示,-2)分m (1圆周运动和三段类平抛运动,水平位移x=3v T=9.6×10-012 )竖直位移y(1分)(3=aT2) (1分ma Eq=2 m=解得y3.6×10-3×=故t2010时粒子的位置坐标为:s-22) 分(1 (9.6×10 m,-3.6×10 m) --33时相同,设与水平方向夹角s t=20×(3)t=24×1010 s时粒子的速度大小、方向与--为) 分(1α22(1分)+v则v=v y0v=3aT(1分) y v y tan α=(1分)v0解得v=10 m/s (1分)3与x轴正向夹角α为37°(或arctan )斜向右下方(1分)4322---轴正向夹角(3)10 m/s×10方向与m,-3.6×10x m)答案(1)4×10s(2)(9.63arctan 或α为37°( )4突破训练3如图15甲所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上的场强2 N/C的匀强电场(上、下及左侧无界).一个质量为m=大小为E=2.5×100.5 kg、电荷2-v的水平初速度t=02.0×量为q=10时刻以大小为C的可视为质点的带正电小球,在0向右通过电场中的一点P,当t=t时刻在电场所在空间中加上一如图乙所示随时间周期1性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为L,D到竖直面MN的距离DQ为L/π.设磁感应强度垂直纸面向里为正.(g=2)10 m/s图15(1)如果磁感应强度B为已知量,使得小球能竖直向下通过D点,求磁场每一次作用时0间t的最小值(用题中所给物理量的符号表示);0(2)如果磁感应强度B为已知量,试推出满足条件的时刻t的表达式(用题中所给物理量10的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B及运动的最大周期T的大小(用题中所给物理量的符号表示).02πm v3πmLLm60答案(1)(2)+(3)vv qLqBqB20000解析(1)当小球仅有电场作用时:mg=Eq,小球将做匀速直线运t内将做匀速圆周运动,圆周动.在t时刻加入磁场,小球在时间01D点,由图甲分析可知:运动周期为T,若竖直向下通过0mπ3T30=t=0qB420甲R-(2)PFPD=,即:v=LRt-102v=B v qmR/000.v mmL0+t=t-L=,所以v110v qBqB000也增加,小球在电变大时,T(3)小球运动的速率始终不变,当R0T T增加,在小球不飞出电磁场的情况下,当磁场中的运动的周期最大时有:v2mL0==DQ=2RπqB0v2πmR2πL0乙,T==B=00vv qL00由图分析可知小球在电磁场中运动的最大周期:LT630=,小球运动轨迹如图乙所示.T=8×v40高考题组的圆表示一柱形区域的横截面如图16,一半径为R1.(2012·课标全国·25)).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、(纸面bq的粒子沿图中直线从圆上的a点射入柱形区域,从圆上的电荷量为3点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为 5 图16 R.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样b点离开该区域.若磁感应强度大小为B,不计速度沿直线从a点射入柱形区域,也从重力,求电场强度的大小.2qRB14 答案m5,由牛顿第二定律粒子在磁场中做圆周运动.设圆周的半径为r解析2v①和洛伦兹力公式得q v B=m r a点的速度.式中v为粒子在由几何关系d点.点和O点作直线的垂线,分别与直线交于c点和过b)围成一正方形.因此a、b两点的圆弧轨迹的两条半径知,线段(ac、未画出bc和过②=ac bc=r4③设=cdx,由几何关系得x ac=R+5322Rbc=x+R④-57 ⑤r=R 式得联立②③④ 5 E,粒子在电场中做类平抛运动.设再考虑粒子在电场中的运动.设电场强度的大小为a,由牛顿第二定律和带电粒子在电场中的受力公式得其加速度大小为⑥=qEma1 2 atr=⑦r粒子在电场方向和直线方向运动的距离均为,由运动学公式得 2 ⑧t v=r式中t是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2qRB14E=.m5d的长如图17所示,两块水平放置、相距为2.(2012·浙江理综·24) 金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表17 图面,从喷口连续不断喷出质量均为m、水平速度均为v、带相等电荷0U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入量的墨滴.调节电源电压至M点.电场、磁场共存区域后,最终垂直打在下板的(1)判断墨滴所带电荷的种类,并求其电荷量;的值;(2)求磁感应强度BM 为了使墨滴仍能到达下板(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.′的大小为多少?B′,则B点,应将磁感应强度调至v U v U4mgd00 (3)(2)答案(1)负电荷22gd5Ugd墨滴在电场区域做匀速直线运动,有解析(1)U①q=mg dmgd②=由①式得:q U由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有2v0③v B=mq0R考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径④R=d v U0=式得B由②③④2gd,有R′(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为2v0⑤B′=mq v0′R由图可得:d 2 22 )⑥(R′R′-=d+25 ⑦=R⑥由式得:′d 4 式可得:联立②⑤⑦U v40.B′=2gd5有人设计了一种带电颗粒的速率·(2012·.3 重庆理综24) 所示,两带电金属板间有18分选装置,其原理如图矩形区域内匀强电场,方向竖直向上,其中PQNM电荷还有方向垂直纸面向外的匀强磁场.一束比荷(1 的带正电颗粒,以不同的速率)均为量与质量之比k18图沿着磁场区域的水平中心线O′O进入两金属板之间,重力加点处离开磁场,然后做匀速直线运动到达收集板,其中速率为v的颗粒刚好从Q0l,不计颗粒间的相互作用.求:的距离为NQ=2d,收集板与NQ速度为g,PQ=3d,E的大小;(1)电场强度B的大小;(2)磁感应强度O点的距离.速率为λv(λ>1)的颗粒打在收集板上的位置到(3)0答案见解析点离开磁场后做匀速直线运,质量为m.由于粒子从Q解析(1)设带电颗粒的电荷量为q mg动,则有Eq=1q代入,得将=km.kgE=(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的2v0B=m①向心力,则有q v0R而由几何知识有2 22 R②-d)R=(3d)+( ①②解得联立v k0③B=. d5,v(3)设速度为λ的颗粒在磁场区域运动时竖直方向的位移为y10离开磁场后做匀速直线,偏转角为θ,如图所示,有运动时竖直方向的位移为y22?v?λ0v qλ④B=m0R11q式,得将=及③式代入④km R=5dλ1d3=tan θ22)(3d?R122)R?(3d-y=R111=l tan θy2O点的距离为的颗粒打在收集板上的位置到则速率为λv(λ>1)0y+y=y213l2.-9)(5解得y=dλ+-25λ2925λ-模拟题组5、所示,19如图4. N/C10×4=E坐标平面第Ⅰ象限内存在大小为方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向m10-xN/C的带正电粒子从4×10里的匀强磁场.质荷比为=q7垂直x轴射入电场,OA v轴上的A点以初速度=2×10=m/s019 图0.2 m,不计重力.求:的距离;粒子经过y轴时的位置到原点O(1) (的取值范围不考虑粒子第二次进入(2)若要求粒子不能进入第三象限,求磁感应强度B)电场后的运动情况.2-TB≥10(22+2)×答案(1)0.4 m(2) y的距离为,(1)设粒子在电场中运动的时间为t,粒子经过y轴时的位置与原点O解析12at则:s=OA2F a=mF E=q v ty=082150.4 m ×10=s a联立解得=1.0×10m/s y t=2.0-轴时在电场方向的分速度为:(2)粒子经过y7v m/sat=210×=x粒子经过y轴时的速度大小为:722vv=m/s 1022×+v=0x v x 45°arctan==与y轴正方向的夹角为θ,θv0要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周运动的轨道半径为R,则:2+y RR≤22v mq v B=R2 T.2)×B10≥(22+联立解得-平面内,存在着范围足够大的电场和磁场,为坐标原点的xOy如图20甲所示,在以O5.)射入该空方向(水平向右的初速度从时刻以v=3gtO点沿+x0一个带正电小球在t=00时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强间,在t0mπmg=,已知小球的质量为,磁场垂直于=xOy平面向外,磁感应强度大小BE大小00qtq0g,空气阻力不计.试求:,当地重力加速度为,带电荷量为mq,时间单位为t0。