概率论与数理统计复习(完整)
概率论与数理统计总复习

pi
1 1 1 5 5
5 1 5 1 5
1
1 65 EXY xi y j Pij COV ( X , Y ) EXY EX EY 8 8 i j
COV ( X , Y ) 3 20 320 DX DY
6. 设随机变量X ~N (1,3 ), Y ~ N (0, 4 ),已知
X z M z Y z
由于 X 和 Y 相互独立,于是得到 M = max(X,Y) 的分布 函数为: FM(z) =P(X≤z)P(Y≤z)
即有 FM(z)= FX(z)FY(z)
2. N = min(X,Y) 的分布函数 FN(z)=P(N≤z) =1-P(N>z)
=1-P(X>z,Y>z)
例1 设 X 具有概率密度f X ( x ), 求 Y=X2 的概率密度.
解 设Y 和 X 的分布函数分别为 FY ( y)和 FX ( x),
2
注意到Y X 0, 故当y 0时有,FY ( y) P(Y y) 0
当 y>0 时,
2 P ( X y) FY ( y ) P(Y y )
P ( y X y ) FX ( y ) FX ( y )
FY y P Y y
求导可得
1 f X ( y ) f X ( y ) , dFY ( y ) fY ( y ) 2 y dy 0,
y0 y0
若
1 fX ( x) 2
2、解:设 X 表示电子管寿命,
Y 表示5个电子管使用1000小时后损坏的个数。则
Y ~ b(5, p),其中p P( X 1000 ) x 1 e 1000 , x 0 f ( x) 1000 0, 其他
(完整版)概率论与数理统计复习提纲

1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。
概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论与数理统计复习汇总

第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)
概率论与数理统计要点复习.docx

概率论与数理统计要点复习.docx概率论与数理统计复习资料第⼀章随机事件与概率1.事件的关系AuB AuB AB A-B A Q AB =(/>(1)包含:若事件A发⽣,⼀定导致事件B发⽣,那么,称事件B包含事件A ,记作AuB(或Bz)A)?(2)相等:若两事件A与〃相互包含,即AnB且Bn A,那么,称事件A与B相等,记作A = B .(3)和事件:“事件A与事件B中⾄少有⼀个发⽣”这⼀事件称为A与B的和事件,记作AuB;“n个事件观出?…,⼈中⾄少有⼀事件发⽜”这⼀事HI J A件称为鱼…,⼈的和,记作Au⼊5??uA”(简记为* ').(4)积事件:“事件A与事件B同时发⽣”这⼀事件称为A与B的积事件,记作AcB(简记为AB);a n个事件观出,…,⼼同时发⽜”这⼀事件称为nA,⾎.…,⼈的积事件,记作(简记为A4??4或以').(5)互不相容:若事件A和B不能同时发⽣,即⼼?,那么称事件A与B互不相容(或互斥),若n个事件观出?…,⼈中任意两个事件不能同时发⽣,即A"⼴0(iwi(6)对⽴事件:若事件A和B互不相容、且它们中必有⼀事件发⽣,即AB = Q 且AuB⼆Q,那么,称A与B是对⽴的.事件A的对⽴事件(或逆事件)记作⼊(7)差事件:若事件A发⽣且事件B不发⽣,那么,称这个事件为事件A 与B的差事件,记作A-B(或⼈⽤)?2?运算规则(1)交换律:AuB = BuA AB = BA(2)结合律:(AuB)uC = Au(BuC) (AB)C = A(BC)(3)分配律(A u B)C = (AC) u (BC) (AB) uC = (Au C)(B u C)(4)德[摩根(DeMorgan)法则:AuB = AB AB = AuB3.概率P( A)满⾜的三条公理及性质:(1)0 < P(A) < 1 (2) P(Q) = 1(3)对互不相容的事件£,凡,…,有P(|J 4) = JP(A k) (n可以取co) k=[Bl(4)P(0) = O (5) P(A) = 1 - P(A)(6)P(A-B) = P(A)-P(AB),若AuB,则P(B-A) = P(B)-P(A), P(A)< P(B)(7)P(A u B) = P(A) + P(B) - P(AB)(8)P(AufiuC) = P(A) + P(B) + P(C) ⼀P( AB) - P(AC)⼀P(BC) + P(ABC)4.古典概型:基本事件有限且等可能5.⼏何概率:如果随机试验的样本空间是⼀个区域(可以是直线上的区间、平⾯或空间⼬的区域),且样本空间⼬每个试验结果的出现具有等可能性,那么规定事件A的概率为= A的长度(或⾯积、体积)(,⼀样本空间的的长度(或⾯积、体积)?6.条件概率(1)定义:若P(B)> 0,则P(A|B)⼆巴也P(B)(2)乘法公式:P(AB) = P(B)P(A | B)若⽿,场,3”为完备事件组,P(BJ>0,贝ij有(3)全概率公式:P(A) =》P(BJP(A | BJ/=!(4)Bayes 公式:P(B* | A) = £(拔)⼙(川伐)£P(BJP(A\BJ/=!(5)贝努⾥概型与⼆项概率设在每次试验中,随机事件A发⽣的概率P(A) = p(0复独⽴试验中?,事件A恰发⽣£次的概率为巳伙)⼆7 //(I —"1,20,1,…⼩k7.事件的独⽴性:A, 3独⽴o P(AB) = P(A)P(B)(注意独⽴性的应⽤)下列四个命题是等价的:(i)事件A与B相互独⽴;(ii)事件A与⽤相互独⽴;(iii)事件広与B相互独⽴;(iv)事件A与B相互独⽴.8、思考题1 . ⼀个⼈在⼝袋⾥放2盒⽕柴,每盒⽄⽀,每次抽烟时从⼝袋⼬随机拿出⼀盒(即每次每盒有同等机会被拿到)并⽤掉⼀⽀,到某次他迟早会发现:取出的那⼀盒已空了?问:“这时另⼀盒中恰好有加⽀⽕柴”的概率是多少?2?设⼀个居民区有〃个⼈,设有⼀个邮局,开c个窗⼝,设每个窗⼝都办理所有业务.c太⼩,经常排长队;c?太⼤⼜不经济.现设在每⼀指定时刻,这〃个⼈中每⼀个是否在邮局是独⽴的,每个⼈在邮局的概率是P?设计要求:“在每⼀时刻每窗⼝排队⼈数(包括正在被服务的那个⼈)不超过加”这个事件的概率要不⼩于Q (例如,Q = 0?&0?9或o.95),问⾄少须设多少窗⼝?3.设机器正常时,⽣产合格品的概率为9 5%,当机器有故障时,⽣产合格品的概率为5 0 %,⽽机器⽆故障的概率为9 5%.某天上班时,⼯⼈⽣产的第⼀件产品是合格品,问能以多⼤的把握判断该机器是正常的?第⼆章随机变量与概率分布1.离散随机变量:取有限或可列个值,P(X =xj = Pi满⾜(1) p,. > 0 , (2)⼯戸=1I(3)对任意DuR, P(X E D)= ^Pii: DJ+oof(x)dx = 1:-oo(2)P(aJu3.⼉个常⽤随机变量标准正态分布的分布函数记作①(X),即CX ] ----①⑴=I ——e 2 dt①(兀) '⼗问t ,当出“no时,①(%)可查表得到;当xvo时,①⑴可由下⾯性质得到①(I兀)=1 ⼀①(X)设X~N(“,k),则有F⑴=①(⼆)P(aer c ?4.分布函数F(x) = P(X(1)F(-oo) = 0, F(+oo) = l; (2)单调⾮降;(3)右连续;(4)P(a a) = l-F(a);特别的P(X = a) = F(a) - F(a -0)(5)对离散随机变量,F(Q =⼯⼙汀/:Xf(6)对连续随机变量,F(x) = f 为连续函数,且在.f(x)连续点上,F (x) = f(x)J—85.正态分布的概率计算以①(x)记标准正态分布2(0,1)的分布函数,则有(1)①(0) = 0.5; (2)①(⼀兀)=1 ⼀①⑴;(3)若X ?N(“Q2),则F(Q⼆①(^^);(7(4)以%记标准正态分布2(0,1)的上侧a分位数,则P(X >%) = a = l—①(⾎) 6.随机变量的函数Y = g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有⼀阶连续导数,则/y(y) = /x (gT (y ))l (gT ()‘))'l ,若不单调,先求分布函数,再求导。
《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计复习一、概率论的基本概念: 1、事件的运算律:交换律:A B B A =,BA AB =;结合律:()()C B A C B A =,()()C B A C B A =; 分配律:()()()BC AC C B A =,()()()C A B A BC A =; 德·摩根法则:B A B A =,B A B A =; 减法运算:AB A B A B A -==-。
2、概率的性质: 性质1 ()0=φP ;性质2 (有限可加性)当n 个事件n A A ,,1 两两互不相容时,()()()n n A P A P A A P ++= 11;性质3 对于任意一个事件A ,()()A P A P -=1; 性质4 当事件B A ,满足B A ⊂时,()()()A P B P A B P -=-,()()B P A P ≤;性质5 对于任意两个随机事件B A ,,()()()AB P B P A B P -=-; 性质6 对于任意一个事件()1≤A P ;性质7 (广义加法法则)对于任意两个事件B A ,,()()()()AB P B P A P B A P -+= 。
3、条件概率:在已知A 发生的条件下,B 事件的概率为:()()()A P AB P A B P =(()0>A P )。
注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。
4、全概率公式与贝叶斯公式:设n 个事件n A A ,,1 构成样本空间Ω的一个划分,B 是一个事件,当()0>i A P(n i ,,1 =)时, 全概率公式:()()()∑==ni iiA B P A P B P 1;贝叶斯公式:当()0>B P 时,()()()()()∑==nl lli i i A B P A P A B P A P B A P 1, n i ,,1 =。
应用全概率公式和贝叶斯公式计算事件A 的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组n B B B ,,,21 ,使得A 能且仅能与n B B B ,,,21 之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出()i B P 和()i B A P ,n i ,,1 =,并套用全概率公式或贝叶斯公式即可。
若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。
5、随机事件的独立性: 事件独立性的结论: (1)事件A 与B 独立⇔()()()B P A P AB P =;(2)若事件A 与B 独立,则A 与B ,A 与B ,A 与B 中的每一对事件都相互独立; (3)若事件A 与B 独立,且()0>A P ,()0>B P ,则()()A P B A P =,()()B P A B P =;(4)若事件n A A ,,1 相互独立,则()()∏==ni in A P A A P 11 ;(5)若事件n A A ,,1 相互独立,则()∏∑==-=⎪⎭⎫⎝⎛ni i n i i A P A P 111。
注意:(1)事件B A ,相互独立只要求满足()()()B P A P AB P =,而事件B A ,互斥(互不相容)只要求φ=AB ,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件B A ,相互独立,则A 与B 不相关,反之一般不成立。
(3)对于任意n 个随机事件n A A ,,1 ,相互独立则两两独立,反之未必;(4)对于任意n 个相互独立的随机事件n A A ,,1 ,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:21A A +与3A ,21A A -与3A ,21A A 与3A 都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件A 发生的概率为p ()10<<p ,则n 重贝努利试验中,事件A 恰好发生k 次的概率()k P n 为()()kn kk n n p p C k P --=1,n k ,,1 =。
贝努利试验每次试验相互独立,只关心某一次试验中事件A 或A 是否发生,且每次事件A 发生的概率都相同。
二、随机变量及其分布:(一)离散型随机变量及其分布: 1、分布律(概率函数)及其性质:离散型随机变量X 的分布律(概率函数)为:()i i p x X P ==, ,2,1=i 。
分布律也可以写成表格形式,列表法是求解离散型随机变量问题的常用方法。
离散型随机变量X 的分布律(概率函数)的性质: (1)()0≥==i i p x X P , ,2,1=i ; (2)1=∑iip。
注意:确定分布律中的未知常数大多考虑随机变量分布律的性质。
2、离散型随机变量X 的分布律与分布函数和事件概率的关系:如果已知X 的分布律为()i i p x X P ==, ,2,1=i ,则X 的分布函数()()∑≤=≤=xa i i p x X P x F ;而事件{}b X a ≤<的概率为()∑≤<=≤<bx a ii pb X a P 。
3、离散型随机变量函数的分布:如果已知X 的分布律为()i i p x X P ==, ,2,1=i ,则当()X g Y =的所有取值为jy( ,2,1=j )时,随机变量Y 有分布律()()()∑====ji y x g ij x X P y Y P 。
注意:(1)若X 和()X g Y =均为无限可列的离散型随机变量,需要注意函数关系的转化求分布律,如:已知()4~P X ,要求23-=X Y 的分布律,则()()⎪⎭⎫ ⎝⎛+===-==3223k X P k X P k Y P ;(2)求离散型随机变量函数()X g Y =分布时,要注意对应不同的i x 时,j y 的值有没有重复,若j y 的值有重复,则()()∑===ji y x g ij p y Y P 。
(二)连续型随机变量及其概率密度:1、连续型随机变量的概率密度函数()x f 的性质: (1)()0≥x f ; (2)()1=⎰+∞∞-dx x f ;(3)()0==a X P 。
2、连续性随机变量的概率密度与分布函数和事件概率之间的关系: (1)若X 的概率密度为()x f ,则X 的分布函数为()()⎰∞-=xdt t f x F ,当()x f 为分段函数时其分布函数()x F 要做分段讨论;(2)()b X a P <<=()b X a P <≤=()b X a P ≤<=()b X a P ≤≤ =()()()⎰=-badx x f a F b F ;(3)若X 的分布函数为()x F ,则在连续点处有()()x F x f '=。
3、连续性随机变量函数的分布:方法一:设随机变量X 的概率密度函数为()x f X ()+∞<<∞-x ,那么()X g Y =的分布函数为()()()()()()⎰≤=≤=≤=yx g XY dx x f y X g P y Y P y F ,其概率密度函数为()()y F y f Y Y '=。
方法二:设随机变量X 的概率密度函数为()x f X ()+∞<<∞-x ,那么()X g Y =的概率密度为()()[]()⎪⎩⎪⎨⎧<<=其余,0,'βαy y h y h f y f X Y 其中()y h 是()x g 的反函数,()(){}∞+∞-=g g ,min α,()(){}∞+∞-=g g ,max β。
三、多维随机变量及其分布: (一)二维离散型随机变量: 1、联合分布律(概率函数):二维离散型随机变量()Y X ,的联合分布律为:()ij i i p y Y x X P ===,, ,2,1,=j i ;联合概率函数可以计算概率:对于平面上任意一个集合D ,()()()()()()()∑∑∑∑∈∈====∈j i Db a ijj i Db a jij i ji pb Y a X P D Y X P ,,,,,,。
2、边缘分布律:二维离散型随机变量()Y X ,关于X 和Y 的边缘分布律分别为:()∑∞=⋅===1j i ij i x X P p p , ,2,1=i ;()∑∞=⋅===1i j ij j y Y P p p , ,2,1=j 。
注意:(1)求离散型随机变量的边缘分布函数,常先求出其边缘分布律,将其化为求一元离散型随机变量的分布函数;(2)列表法是解决联合分布和边缘分布问题常用的方法。
3、条件分布律:()Y X ,是二维离散型随机变量,在{}j y Y =条件下随机变量X 的条件分布律为:()jij j i p p y Y x X p ⋅===, 0>⋅j p , ,2,1=i ;在{}i x X =条件下随机变量Y 的条件分布律为:()⋅===i ij i j p p x X y Y p ,0>⋅i p , ,2,1=j 。
4、随机变量的独立性:离散型随机变量相互独立的条件是j i ij p p p ⋅⋅=, ,2,1,=j i 。
5、随机变量函数的分布律:已知离散型随机变量()Y X ,的分布律()ij j i p y Y x X P ===,,则()Y X g Z ,=的分布为:()()()()∑=====kj i z y x g ijk k p z Y X g P z Z P ,,。
(二)二维连续型随机变量: 1、联合概率密度:若()y x f ,为()Y X ,的联合概率密度,则分布函数为()()⎰⎰∞-∞-=x xdudv v u f y x F ,,;联合概率函数可以计算概率:对于xOy 平面上任意一个区域G ,()()()⎰⎰=∈Gdxdy y x f G Y X P ,,。
2、边缘概率密度:二维连续型随机变量()Y X ,关于X 和Y 的边缘概率密度分别为:()()⎰+∞∞-=dy y x f x f X , 和 ()()⎰+∞∞-=dx y x f y f Y ,。
3、条件概率密度:()Y X ,是二维连续型随机变量,在{}y Y =条件下随机变量X 的条件概率密度为:()()()y f y x f y x f Y Y X ,=, ()0>y f Y ;在{}x X =条件下随机变量Y 的条件概率密度为:()()()x f y x f x y f X X Y ,=, ()0>x f X ; 4、随机变量的独立性:连续型随机变量相互独立的充要条件是()()()y f x f y x f Y X =,。