概率论期末总复习2013

合集下载

概率论期末考试复习题与答案

概率论期末考试复习题与答案

第一章1.设P(A)= 13,P(A∪B)=12,且 A 与B 互不相容,则P(B)=____16_______.2. 设P(A)= 13,P(A∪B)=12,且 A 与B 相互独立,则P(B)=______14_____.3.设事件 A 与B 互不相容,P(A )=0.2,P(B)=0.3,则P(A B)=___0.5_____.4.已知P(A)=1/2,P(B)=1/3,且A,B 相互独立,则P(A B )=________1/3________.A 与B 相互独立5.设P(A )=0.5,P(A B )=0.4,则P(B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8 ,P(B)=0.4,P(B|A)=0.25 ,则P(A|B)=____ 0.5 ______.7.一口袋装有 3 只红球,2 只黑球,今从中任意取出 2 只球,则这两只恰为一红一黑的概率是________ 0.6 ________.8.设袋中装有 6 只红球、4 只白球,每次从袋中取一球观其颜色后放回,并再放入 1 只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有 7 个3 个白球,从袋中有放回地取两次球,每次取一个,则第一次取得 红球且第二次取得白球的概率p=___ 0.21_____. 10.设工厂甲、乙、丙三个车间生产产品, 产量依次占全厂产量的 45%,35%,20%, 且各车间的次品为 4%,2%,5%.求:(1)从该厂生产的产取 1 件,它是次 品的概率; 3.5% (2)该件次品是由甲车间生产的概率 . 18 35 第二章 2),则 P{X ≤ 0}=___0.1587____. (附: Φ( 1)=0.8413) 1.设量 X~ N ( 2,2设量 X~N (2,2 2),则 P{X ≤ 0}= ( P{(X-2)/2 ≤ -1}=Φ(-1)=1-Φ(1)=0.1587 2.设连续 F (x) x>0 时, X 的概率密度 f(x)=___2xa e , x 0;则常数a =____1____. 3.X 的分布函数为 F (x )= 0, x 0, 4.设量 X ~N (1,4),已知标则常数 a<___3_________. 5.抛一枚6.X 表示 4次独立重复射击命中目标的次数, 每次命中目标的概率为 0.5,则 X~ _B(4, 0.5)____7.设量 X 服从区间 [0,5]上的均匀分布,则 P X 3 = ____0.6_______.X-1 0 1 2 2,记随机 8.设随X 的分,且 Y=X 1 3 1 7 P881616Y 的分布F Y (y F Y (3)=_____9/16____________. 9.设随X 的分布律为 P{ X=k}= a/N , k=1,2,⋯ , N ,试确定常数 a. 1 10.已知随X 的密度函数为 f(x)=Ae |x|, ∞<x<+∞,求:(1)A 值;(2)P{0< X<1}; (3) F( x ).1 2 1 2 (1-e ) F (x) 1 1 e 2 1xe2x x x 0 011.设随X 分布函数为F (x )=xtA Be , x 0,0,x 0.(0),( 1) 求常数 A ,B ;( 2) 求 P{ X ≤ 2} ,P{ X >3} ; ( 3) 求分布密度 f (x ).A=1B=-1P{ X ≤ 2}=21 eP{X >3}=e3f ( x)xe x 0 0x 012.设随X 的概率密度为x,0 x 1, f (x )=2 x, 1 x 2, 0,. 其他求 X 的分布函数 F (x ).F (x) 1 20 1 22 x 2 x 21x 1 0 1 x x x x 0212 13.设X 2 113P k1/51/61/51/1511/30求(1)X 的分布函数, (2)Y=X2的分布律 .0 x 2 1/52 x 1F (x)11/ 17 / 30 30 1 0x x0 1Y 1 49P k1/57/301/511/3019 / 30 1 x 31x 314.设随机变量 X~U (0,1),试求: (1) Y=eX的分布函数及密度函数;(2) Z= 2lnX 的分布函数及密度函数 .f Y (y) 1 y 0 1 y others e f (z) Z 1 2 e 0z 2 z0 others第三章(x y)e, x 0, y 0; 1.设二维随机变量( X ,Y )的概率密度为f (x, y)0,,其他(1)求边缘概率密度 f X (x) 和 f Y (y),(2)问 X 与 Y 是否相互独立,并说明理由 .f xyex 0 e y 0(x)f (y)X0 Yx 0y因为 f (x, y)f (x) f (y)X,所以 X 与 Y 相互独立Y2.设二维随机变量 22 (X ,Y) ~ N ( ,,,, ) ,且 X 与Y 相互独立,则 =____0______.12123.设 X~N (-1,4),Y~N (1,9)且 X 与 Y 相互独立,则 2X-Y~___ N (-3,25)____.4.设随机变量 X 和 Y 相互独立,它们的分布律分别为X -1 0 1 Y -1 0,,P 13312512P1434则P X Y 1 _____ 516_______.5.设随机变量(X,Y) 服从区域 D 上的均匀分布,其中区域 D 是直线y=x ,x=1 和x 轴所围成的三角形区域,则(X,Y) 的概率密度10 y x 1f x y( ,) 2 .0 others6.设随机变量X 与Y 相互独立,且X,Y 的分布律分别为X 0 1 Y 1 21 P 4 342P 535试求:(1)二维随机变量(X,Y)的分布律;(2)随机变量Z= X Y 的分布律.X0 1Y1 0.1 0.32 0.15 0.45Z 0 1 2P 0.25 0.3 0.457.设二维随机向量(X ,Y )的联合分布列为X0 1 2Y1 0.1 0.2 0.12 a 0.1 0.2求:(1)a 的值;(2)(X,Y)分别关于X 和Y 的边缘分布列;(3)X 与Y 是否独立?为什么?(4)X+Y 的分布列.a=0.3X 0 1 2 Y 1 2P 0.4 0.3 0.3 P 0.4 0.6因为P{ X 0,Y 1}P{ X 0} P{Y 1} ,所以X 与Y 不相互独立。

概率论期末考试题型、知识点和公式复习

概率论期末考试题型、知识点和公式复习

概率论期末复习知识点第一章(A 卷 20 分, B 卷 22 分) 2. 二维连续型随机向量的联合概率密度、性质1. 事件的表式及其应用2. 事件的关系与运算3. 二维连续型随机向量的分布函数3. 概率性质及其应用4. 均匀分布4. 古典概型5. 二维正态分布5. 条件概率6. 边缘概率密度6. 全概率公式7. 随机变量的独立性7. 贝叶斯公式8. 二维随机向量的相关概率计算:O联合概率密度8. 事件的独立性重点重点:条件概率,全概率公式,贝叶斯公式O边缘概率密度第二章(A 卷 22 分, B 卷 20 分)O随机变量的独立性1. 离散型随机变量的概率分布第四章(A 卷 21 分, B 卷 26 分)2. 两点分布 1. 离散型随机变量的期望3. 二项分布 2. 连续型随机变量的期望4. 泊松分布 3. 随机变量函数的期望5. 概率密度函数及其性质 4. 方差6. 连续型随机变量的分布函数 5. 方差的性质7. 均匀分布 6. 协方差、协方差的性质8. 指数分布7. 相关系数O数学期望(随机变量及函数的数学期望)9. 标准正态分布、正态分布重点:O方差(离散型随机变量的方差)10. 随机变量相关的概率计算11. 离散型随机变量函数的概率分布O协方差和相关系数重点:O正态分布,二项分布第五章(A 卷 14 分, B 卷 12 分)O离散型随机变量及函数的概率分布1. 雪比切夫不等式的应用第三章(A卷23分,B卷20分)1. 离散型随机向量联合概率分布及分布函数2. 棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗 ----- 拉普拉斯中心极限定理概率论期末公式复习对偶律:厂B AB , AB A B ; 概率的性质 1. P (? )=0;2. A,A,…,A n 两两互斥时: RAU AU …U A)= P (A)+…+P (A),3. P(A) 1P(A)( A 是 A 不发生)(D)4. 若 AB 则有:P (A ) w P( B ), P (AB = P (A ),RBA )=RB- RA> , RAU E )= R E ).5.P(A B) P(A) P(B) P(AB)(D), P ( B A )=P ( B )- P (AB )。

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料

f
(x)
b
1
a
,
0,
a≤x≤b
其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
xa, ba
x<a, a≤x≤b
x
F (x) f (x)dx
1,
x>b。
当 a≤x1<x2≤b 时,X 落在区间(x1, x2 )内的概率为
P( x1
X
x2 )
x2 b
x1 a
(2)
pk
1。
k 1
(2)连续 设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意
型随机 实数x ,有
变量的 分布密 度
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。
密度函数具有下面 4 个性质:
设随机变量 X 的分布律为
P( X k) k e , 0 ,k 0,1,2,
k!
则称随机变量 X 服从参数为 的泊松分布,记为
X ~ () 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
P( X
k)
CMk

C
nk N M
,
k
0,1,2, l
C
n N
l min(M , n)
A=B。
(6) A、B 中至少有一个发生的事件:A B,或者 A+B。
事件的 属于 A 而不属于 B 的部分所构成的事件,称为 A 与B的差,记为A-B,
关系与 也可表示为A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 运算 A、B 同时发生:A B,或者AB。A B=Ø,则表示 A 与B不可能同时

2013概率论与数理统计复习题 (1)

2013概率论与数理统计复习题 (1)

一、选择题1.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为 【 】 (A )518; (B )13; (C )12; (D )以上都不对; 2.设A 、B 、C 为三个事件,则A 、B 、C 恰好有一个发生是 。

【 】(A) ABC ; (B) C B A ⋃⋃; (C) C AB C B A BC A ⋃⋃ ; (D) C B A C B A C B A ⋃⋃;3.“A 、B 、C 三个事件同时不发生”,这一事件可表示为 。

【 】A. C B AB. C B A C B A C B AC. ABCD. C B A 4. 设X 与Y 相互独立,方差D(2X-Y)= 。

【 】 A. 2D(X)+D(Y) B. 2D(X)-D(Y) C. 4D(X)+D(Y) D. 4D(X)-D(Y)5.设随机变量X 与Y 相互独立,其概率分布分别为 【 】010.40.6XP010.40.6Y P则有(A)()0.P X Y == (B )()0.5.P X Y == (C )()0.52.P X Y == (D )() 1.P X Y ==6.设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 则随机变量()Y X Z ,max =的分布律为 。

【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ; (D) ()()411,430====z P z P 。

7.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==. (C )11,66αβ== (D )51,1818αβ==. ( )8.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )9. 设总体),(~2σμN X ,其中μ已知,2σ未知。

概率论期末考试题及答案

概率论期末考试题及答案

概率论期末考试题及答案一、选择题(每题4分,共40分)1. 随机变量X服从标准正态分布,则P(-1 < X < 1)的值是()。

A. 0.6827B. 0.9545C. 0.9772D. 0.5000答案:B2. 设随机变量X服从参数为λ的泊松分布,那么E(X)等于()。

A. λB. λ^2C. 1/λD. 1答案:A3. 两个相互独立的随机事件A和B,P(A)=0.3,P(B)=0.5,则P(A∪B)等于()。

A. 0.2B. 0.5C. 0.8D. 0.6答案:D4. 设随机变量X服从二项分布B(n,p),则X的方差Var(X)等于()。

A. npB. np(1-p)C. n(1-p)D. p(1-p)答案:B5. 随机变量X服从均匀分布U(a,b),则其概率密度函数f(x)为()。

A. 1/(b-a), a≤x≤bB. 1/(b-a), x≤a 或x≥bC. 1/(b-a), x<a 或 x>bD. 1/(b-a), x<b答案:A6. 设随机变量X服从正态分布N(μ,σ^2),则X的期望E(X)等于()。

A. σB. μC. 0D. 1答案:B7. 设随机变量X服从正态分布N(μ,σ^2),则X的均值μ和方差σ^2的关系是()。

A. μ = σ^2B. μ^2 = σ^2C. μ = 0D. μ ≠ σ^2答案:D8. 随机变量X服从二项分布B(n,p),当n趋于无穷大时,X的分布趋近于()。

A. 泊松分布B. 正态分布C. 均匀分布D. 指数分布答案:B9. 设随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx) (x≥0),则其均值E(X)等于()。

A. λB. 1/λC. 0D. 1答案:B10. 随机变量X和Y相互独立,且X和Y都服从标准正态分布N(0,1),则Z=X+Y服从()。

A. N(0,2)B. N(0,1)C. N(2,1)D. N(1,2)答案:A二、填空题(每题4分,共20分)1. 设随机变量X服从二项分布B(10,0.5),则P(X=5) = _______。

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。

两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。

2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。

概率论期末考试复习题及答案

概率论期末考试复习题及答案

概率论期末考试复习题及答案第⼀章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独⽴,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____.4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独⽴,则P (A B )=________1/3________. A 与B 相互独⽴5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.⼀⼝袋装有3只红球,2只⿊球,今从中任意取出2只球,则这两只恰为⼀红⼀⿊的概率是________ 0.6________.8.设袋中装有6只红球、4只⽩球,每次从袋中取⼀球观其颜⾊后放回,并再放⼊1只同颜⾊的球,若连取两次,则第⼀次取得红球且第⼆次取得⽩球的概率等于____12/55____.9.⼀袋中有7个红球和3个⽩球,从袋中有放回地取两次球,每次取⼀个,则第⼀次取得红球且第⼆次取得⽩球的概率p=___0.21_____.10.设⼯⼚甲、⼄、丙三个车间⽣产同⼀种产品,产量依次占全⼚产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该⼚⽣产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间⽣产的概率. 35 18第⼆章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413)设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe 33-_____.3.设随机变量X 的分布函数为F (x )=?≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X5.抛⼀枚均匀硬币5次,记正⾯向上的次数为X ,则P{X ≥1}=_____3231_______.6.X 表⽰4次独⽴重复射击命中⽬标的次数,每次命中⽬标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]上的均匀分布,则P {}3≤X = ____0.6_______.8.设随机变量X 的分布律为Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_____9/16____________.9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞求:(1)A 值;(2)P {021 21(1-e -1)≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=??<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).≥≤<-+-≤<≤=21211221102100)(22x x x x x x x x F13.设随机变量X 的分布律为求(1)X 的分布函数,(2)Y =X 2的分布律.≥<≤<≤<≤--<≤--<=313130/191030/170130/11125/120)(x x x x x x x F 14.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数;(2) Z =-2ln X 的分布函数及密度函数. <<=others e y y y f Y 011)(>=-othersz ez f zZ 0021)(2第三章1.设⼆维随机变量(X ,Y )的概率密度为 >>=+-,,0;0,0,),()(其他y x ey x f y x(1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独⽴,并说明理由.≤>=-00)(x x e x f xX ≤>=-00)(y y e y f yY因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独⽴2.设⼆维随机变量221212(,)~(,, ,,)X Y N µµσσρ,且X 与Y 相互独⽴,则ρ=____0______.3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独⽴,则2X-Y~___ N (-3,25)____.4.设随机变量X 和Y 相互独⽴,它们的分布律分别为,则{}==+1Y X P _____516_______. 5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三⾓形区域,则(X,Y)的概率密度101()2y x f x y others≤<≤=,.6,Y(2)随机变量Z=XY 的分布律.7求:Y 的边缘分布列;(3)X 与Y 是否独⽴?为什么?(4)X+Y 的分布列.因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独⽴。

概率论和数理统计期末考试复习资料全

概率论和数理统计期末考试复习资料全
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) ……P( An | A1A2 … An 1) 。 ①两个事件的独立性
设事件 A 、B 满足P(AB) P(A)P(B) ,则称事件 A 、B 是相互独立的。
2 / 23
.

若事件 A 、B 相互独立,且P(A) 0 ,则有
表示n 重伯努利试验中 A 出现k(0 k n) 次的概率,
C Pn(k)
k pk qnk , k 0,1,2,, n 。
n
第二章 随机变量及其分布
3 / 23
.
〔1 离散 设离散型随机变量 X 的可能取值为 Xk<k=1,2,…>且取各个值 型随机 的概率,即事件<X=Xk>的概率为
变量的
不可能事件〔Ø 的概率为零,而概率为零的事件不一定是不可能事件;
同理,必然事件〔Ω的概率为 1,而概率为 1 的事件也不一定是必然事
件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,〔A 发生必有事件 B
发生: A B 〔6 事 如果同时有 A B, B A ,则称事件 A 与事件 B 等价,或称 A 等于 B: 件的 A=B。 关系 A、B 中至少有一个发生的事件:A B,或者 A+B。 与运 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也 算 可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
分布函数F(x) 表示随机变量落入区间〔–∞,x]内的概率。
分布函数具有如下性质:
1°0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论期末总复习(2013.12)
一、填空题(每题2分)
1.设A.B.为二个事件,“A.B至少有一个发生”可表示为( A或B )。

2.已知 P(A)=1/4, P(B)=1/3,P(AB)=1/6 则P(AUB)=( 5/12 )。

3.独立抛硬币3次,则3次均出现正面的概率为( 1/8 )。

4.设A.B.为二个随机事件,且A⊃B,P(A)=0.4, P(B)=0.3.则P(A B)=( 0.1)
5.设随机变量X~U[1,5],则X
).
6.设随机变量X的分布律为:
则常数a=( 0.2 )
7、若随机变量X与Y相互独立,则二维随机变量(X,Y)的协方差COV(X,Y)=( ) =E(XY)-E(X)*E(Y)
8、设随机变量X∼B(9,1/3),Y服从参数为3的泊松分布,则E(X)+D(Y)=( 6 )
EX=9*1/3=3
Y服从参数为3的泊松分布,则E(Y)=3;
E(Y^2)=3^2+3=12
二、选择题(每题3分)
1、设随机事件A与B互不相容,P(A)=0.4,P(B)=0.2,则P(AUB)=( D)
(A)0 (B)0.2 (C)0.4 (D)0.6
2、掷一枚骰子,事件A表示掷出偶数点,B表示掷出2点,P(AB)=( A )
(A)1/6 (B)1/3 (C)1/2 (D)1
3、从一批产品中随机抽两次,每次抽一件,以A表示事件“两次都抽得正品”,
B表示事件“至少抽得一件次品”,则下列关系式正确的是( C )
(A)A⊂B (B)A=B (C)A=B(D)B⊂A
4、设随机变量X∼U[2,4],则P(X≥3)=( C )
(A)1/6 (B)1/3 (C)1/2 (D)1/4
5、设随机变量X的概率密度为f(X)= X/8 0<X<4
0 其它则P(0≤X≤1)=( A )
(A)1/16 (B)1/3 (C)1/2 (D)1/4
6、设随机变量X~N(0,1),Φ(X)为其分布函数,已知P(X<-1)=0.1578,
则Φ(1)=( A)
(A)1 (B)0.8422 (C)0.1587 (D)0.5
7.下列关于随机变量X,Y期望和方差的等式,不正确的是( C )
(A)E(X+Y)= E(X)+E(Y) (B)E(2X)=2E(X)
(C) D(2X)=2D(X)4D(X) (D)当X,Y相互独立时E(XY)=E(X)E(Y)
8、已知D(X)=25,D(Y)=36,ρXY=0.4,则COV(X,Y)=( A )
(A)12 (B)10 (C)1 (D)0
p(x,y)=Cov(x,y) / √D(x) √D(y)
2/5 = Cov(x,y) / 5*6
三、解答题(每题10分)
1、一企业的一台设备由甲乙两大部件构成,当设备超负荷时,甲乙两部件各自
出故障停运的概率分别为0.92与0.88,它们同时出故障停运的概率为
0.83,求超负荷时这台设备出故障停运的概率。

答:设甲出故障为P(A),乙为P(B),
P(A或B)=P(A)+P(B)-P(AB)=0.92+0.88-0.83=0.97
2、一批零件有两台机床加工,第一台机床加工的零件比第二台多一倍,第一台
机床出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06.求从这批零件中任取一个零件是合格品的概率。

答:设第一台加工2a零件,则,第二台加工a个零件,
所以
P=(2a*0.03+a*0.06)/3a=0.04
四、计算题(每题10分)
1、已知随机变量X的分布律为
试求:(1)X分布函数F(X);(2)E(X+1)2
2、设连续性随机变量X的概率密度为f(x)=8X 0<X<1/2
0 其它
求(1)E(X);(2)P(X<1/4)
五、计算题(12分)
设二维随机变量(X,Y )的分布律为:
(1)在右表适当位置填入(X,Y )关于
X 和关于Y 的边缘分布律;
(2)问X 与Y 是否相互独立;
(3)求P(X+Y <2) 六、应用题(8分)
仔细阅读下面定理,然后解答下面问题,
定理(切比雪夫不等式):若随机变量X 的E(X),D(X)存在,则对于任意正数ε,有P {︱X-E(X)︱<ε}≥1-D(X)/ ε2
已知随机变量X 的概率分布为 (1) 求E(X),D(X) (2) 利用切比雪夫不等式估计
事件{︱X-E(X)︱<1}的概率。

相关文档
最新文档