初高中函数总结大全
初高中函数总结大全

函数总汇一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b(k为常数,k≠0)则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
函数知识点归纳

函数知识点归纳函数是数学中一个非常重要的概念,它贯穿了从初中到高中,甚至大学的数学学习。
下面就来给大家详细归纳一下函数的相关知识点。
一、函数的定义函数的定义简单来说,就是对于给定的一个数集 A 中的每一个元素x,按照某种对应法则 f,在另一个数集 B 中都有唯一确定的元素 y 与之对应,那么就称 f 为从集合 A 到集合 B 的一个函数,记作 y = f(x),x ∈ A。
其中,x 叫做自变量,y 叫做因变量。
二、函数的三要素1、定义域定义域是指自变量 x 的取值范围。
确定函数的定义域时,需要考虑以下几个方面:(1)分式的分母不为零。
(2)偶次根式的被开方数非负。
(3)对数中的真数大于零。
(4)零次幂的底数不为零。
2、值域值域是指因变量 y 的取值范围。
求函数的值域需要根据函数的类型和定义域来确定,常见的方法有观察法、配方法、换元法、判别式法等。
3、对应法则对应法则是函数的核心,它决定了自变量和因变量之间的关系。
同一个对应法则,在不同的定义域上可能是不同的函数。
三、函数的表示方法1、解析法用数学式子表示两个变量之间的对应关系,如 y = 2x + 1。
2、列表法列出表格来表示两个变量之间的对应关系,例如在一个表格中列出不同的 x 值及其对应的 y 值。
3、图象法用图象来表示两个变量之间的对应关系,图象能够直观地反映函数的性质。
四、函数的性质1、单调性如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
2、奇偶性设函数 f(x)的定义域为 D,如果对于任意的 x ∈ D,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做奇函数;如果对于任意的 x ∈ D,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做偶函数。
高一函数知识点总结(精品19篇)

高一函数知识点总结(精品19篇)高一函数知识点总结(1)(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数、3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f—1(y);(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域、注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起、②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算、(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。
求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。
如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x ≠kπ,k∈Z)等。
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。
函数初高中总结知识点

函数初高中总结知识点一、初中阶段的函数知识点总结1. 函数的概念函数是一种对应关系,它将每一个自变量的取值都对应唯一的一个因变量的取值。
数学上通常用字母来表示一个函数,比如y=f(x)。
其中y是因变量,x是自变量,f(x)表示函数关系的表达式。
2. 函数的性质(1)定义域和值域函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。
在初中阶段,我们通常研究的是一元函数,也就是函数的自变量只有一个。
(2)奇函数和偶函数当函数f(x)满足f(-x)=-f(x)时,称函数f(x)为奇函数;当函数f(x)满足f(-x)=f(x)时,称函数f(x)为偶函数。
奇函数的图形关于原点对称,偶函数的图形关于y轴对称。
(3)单调性函数的单调性是指函数在定义域上的增减性质。
如果对于定义域上的任意两个不同的自变量值x1和x2,当x1<x2时,有f(x1)<f(x2),则称函数f(x)在定义域上是递增的;如果对于定义域上的任意两个不同的自变量值x1和x2,当x1<x2时,有f(x1)>f(x2),则称函数f(x)在定义域上是递减的。
3. 函数的图像初中阶段,我们接触到的函数的图像,一般是一元一次函数、一元二次函数和一元绝对值函数的图像。
一元一次函数的图像是一条直线;一元二次函数的图像是一个抛物线;一元绝对值函数的图像是一个V形。
以上就是初中阶段的函数知识点总结,接下来我们来看一下高中阶段的函数知识点。
二、高中阶段的函数知识点总结1. 函数的概念在高中阶段,我们将学习更多种类的函数,如多项式函数、指数函数、对数函数、三角函数等。
这些函数都是我们在高中数学中要重点学习的内容。
2. 函数的性质(1)函数的奇偶性除了初中阶段学习的奇函数和偶函数外,高中阶段还要学习更多类型的奇偶函数,如正弦函数、余弦函数等。
这些函数的奇偶性对于函数的图像和性质具有很大的影响。
(2)周期性在高中阶段,我们还要学习到周期函数的性质。
高中各种函数知识点总结

高中各种函数知识点总结函数是数学中一个非常重要的概念,而在高中数学中,函数是一个必须学习的内容。
函数是研究关系的一种特殊的二元关系,它在对每一个自变量取值,都对应着唯一的因变量值。
在高中数学中,学生需要掌握各种函数的性质、图像、求导、积分等知识点。
本文将从基础的函数性质开始,逐步介绍各种函数的知识点,帮助学生更好地理解和掌握函数的相关内容。
一、基础函数概念1. 函数的定义函数是数学中一个非常重要的概念。
通常情况下,我们将自变量x的每一个取值对应一个唯一的因变量y的取值,则称y是x的函数。
记作y=f(x),其中f(x)称为函数的表达式,x称为自变量,y称为因变量。
2. 函数的性质(1)定义域和值域函数的定义域是自变量可能取值的集合,值域是因变量可能取得的值的集合。
(2)奇偶性如果对于函数f(x),当x为任意实数,都有f(-x)=f(x),则称f(x)具有偶函数;如果对于函数f(x),当x为任意实数,都有f(-x)=-f(x),则称f(x)具有奇函数。
(3)单调性如果对于函数f(x),当x1<x2时,有f(x1)<f(x2),则称函数f(x)是递增函数;如果对于函数f(x),当x1<x2时,有f(x1)>f(x2),则称函数f(x)是递减函数。
(4)周期性如果对于函数f(x),存在正数T,对任意的x,都有f(x+T)=f(x),则称函数f(x)具有周期性。
二、常见函数类型1. 一次函数一次函数的一般形式为y=kx+b,其中k为斜率,b为截距。
一次函数的图像是直线,斜率k决定了直线的斜度,截距b决定了直线与y轴的交点。
2. 二次函数二次函数的一般形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是抛物线,开口方向由a的正负决定,a的绝对值决定了抛物线的开口程度,c决定了抛物线与y轴的交点,抛物线的顶点坐标为(-b/2a, c-b^2/4a)。
3. 指数函数指数函数的一般形式为y=a^x,其中a>0且a≠1。
高中基本初等函数总结归纳.doc

第二章基本初等函数(I)£2.13指数函数【2.1.1】指数与指数幂的运算(1)根式的概念① 如果,n./?e N + ,那么x 叫做的n 次方根.当n 是奇数时,《的次方根用符号&表示;当是偶数时,正数的正的n 次方根用符号 表示,负的n 次方根用符号-表示;0的n 次方根是0;负数6T 没有n 次方根.② 式子叫做根式,这里n 叫做根指数,6?叫做被开方数.当/2为奇数时,为任 意实数;当/?为偶数吋,tz>0.③ 根式的性质:(‘)当n 为奇数时,= a ;当/?.为偶数时,(2)分数指数幂的概念① 正数的正分数桁数幂的意义是0的正分 数指数幂等于0.- 2 1 - / 1② 正数的负分数指数幂的意义是:“"=(一广=彳(一广0/〉0,爪,託乂,且 a V aZ2>1). 0的负分数指数¥没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质① W = a r+s (a>0,r,sE R)(§)(</)、-a rs {a >0, r,5G R)③(ab)r= a r b r(a 〉0,b 〉0,re R)【2.1.2】指数函数及其性质指数函数y z y = a xy = a xyJ = 1J = 1(04)(0,1)0 X 0Xy/a" =| a \=a —a (^/>0) (tz<0)K2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①苦¥ = ;7(6/〉0,且《矣1),则叫做以tz为底7V的对数,id作x = log u/V,其屮0叫做底数,2V叫做真数.②负数和零没有对数.③对数式与指数式的互化:x二log, N^a x => 0,6/1, > 0).(2)几个重要的对数恒等式log w 1 = 0, log w 6Z = 1, \og a a h = b .(3)常用对数与自然对数常用对数:IgN,即log m7V;自然对数:\nN,即log^yV (其中£> = 2.71828…).(4)对数的运算性质如果〉0,7V〉0,那么M①加法:log w M + log^ N = log rt{MN)②减法:log n M - log^ N = \og a—n⑤ log h M n=-\og a M(b^^nER)⑥ 换庖公式(l blog; TV lQgz? N (b〉0,且/?弇1)1 log/, “【2.2.2】对数函数及其性质(5)对数函数(6)设函数y = /(幻的定义域为A,值域为C,从式子y = /(x)中解出X,得式子义二炉(>,)•如果对于y在C屮的任何一个位,通过式子x = x在A屮都科唯一确定的值和它对应,那么式子x = ^(y)表示x是y的函数,函数x = 叫做函数j = ,(x)的反函数,记作又二/—1。
初高中数学函数归纳总结

初高中数学函数归纳总结在初高中数学学习中,函数是一个非常重要的概念。
函数作为数学中最基础的概念之一,它不仅在数学中有广泛的应用,而且在现实生活中也有着丰富的实际意义。
本文将对初高中阶段学习的数学函数进行归纳总结,帮助学生更好地掌握和理解该概念。
一、函数的定义与表示1. 定义:函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素上。
通常用f(x)表示函数,其中x为自变量,f(x)为函数值或因变量。
2. 函数的表示方法:函数可以用不同的表达方式进行表示,包括函数表达式、函数图像和函数关系式等。
其中,函数表达式指用代数表达式表示函数关系;函数图像指用平面直角坐标系将函数关系表示出来;函数关系式指用符号关系式表示函数关系。
二、基本函数的性质与图像1. 一次函数:一次函数是函数的一种常见形式,其表达式为f(x) =ax + b,其中a和b为常数,a称为斜率,b称为截距。
2. 二次函数:二次函数是函数的另一种常见形式,其表达式为f(x)= ax^2 + bx + c,其中a、b和c为常数,a不为零。
二次函数的图像一般为抛物线。
3. 反比例函数:反比例函数是一种特殊的函数形式,其表达式为f(x) = k/x,其中k为常数且不等于零。
反比例函数的图像为开口朝下或朝上的双曲线。
4. 平方函数:平方函数是一种特殊的函数形式,其表达式为f(x) =x^2,平方函数的图像为开口朝上的抛物线。
三、函数的性质与变换1. 奇偶性:函数的奇偶性是指函数关于y轴对称还是关于原点对称。
如果对于定义域内的每个x值,函数关系f(x) = f(-x),则该函数为偶函数;如果对于定义域内的每个x值,函数关系f(x) = -f(-x),则该函数为奇函数。
2. 单调性:函数的单调性描述了函数在定义域上的增减情况。
若函数对于任意的x1、x2(x1 < x2),有f(x1) < f(x2),则函数为增函数;若函数对于任意的x1、x2(x1 < x2),有f(x1) > f(x2),则函数为减函数。
高中数学函数知识点总结

高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数总汇一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b(k为常数,k≠0)则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线] 注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x =-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a ,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥-b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥-b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x ₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇数。