热点6:弦或弦长为定值、最值问题-圆锥曲线高考热点终极破解

合集下载

圆锥曲线的最值问题常见类型及解法

圆锥曲线的最值问题常见类型及解法

解: 设椭圆的左焦点为F’ 则F’的坐标为(-4,0) 由椭圆的定义得: |MF|+|MF’|=10 |MF|+|MA|=10- |MF’|+|MA|
要使|MF|+|MA|最大,即要使|MA|-|MF’|最大, 连AF’,延长交椭圆于M’ 则| |MA|-|MF’| | ≤ |AF’| 当且仅当M,A,F’三点共线时,等号成立。 ∴ |MA|-|MF’|的最大值为 |AF’|,这时M与M’ 重合
△=4-8m=0, m= 1
2
此时,y=1,x=
1 4
∴直线L的方程为:2x-y+ 1=0
2
两直线间的距离 d= 9
25
其他过程同上。
回顾反思与能力提升:
1、此法用了哪种数学思想方法? 2、有没有别的办法? 3、要注意画出草图,根据图形确定何时取最大
值,何时取最小值.
类型五:
基本不等式法
先将所求最值的量用变量表示出来,再利 用基本不等式求这个表达式的最值.
离的最大值和最小值,并求取得最值时椭圆上点的坐标.
解:设椭圆与 y x2 3平行的切线方程为 y ቤተ መጻሕፍቲ ባይዱ xb
y xb



x2 2

y2
1
3x2 4bx2b2 20 (1) (4b)2 43(2b2 2)0
b 3
1)当b
3时,代入(1)得dmin
关键:用好圆锥曲线的定义
例1、已知点F是双曲线 x 2 y 2 1 的左焦点,定点 4 12
A(1,4),P是双曲线右支上动点,则 PF PA
的最小值为
.
yA
思维导图:
P
根据双曲线的定义,建立点A、

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题与圆锥曲线有关的最值、定值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

下面我们探讨与圆锥曲线有关的最值、定值和范围问题的常用方法。

一. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。

例1:如图所示,设点1F ,2F 是22132xy+=的两个焦点,过2F 的直线与椭圆相交于A 、B两点,求△1F AB 的面积的最大值,并求出此时直线的方程。

分析:12112F F B F AB F FAS S S =+ ,设11(,)A x y ,22(,)B x y ,则11212121||||||(1)2F AB F F y y y y c S =⋅-=- =设直线A B 的方程为1x ky =+代入椭圆方程得22(23)440k y ky ++-=12122244,2323k y y y y k k --⇒+==++即122||123y y k - ==+令1t =≥,∴12FA Bt tS +=12t t+(1t ≥)利用均值不等式不能区取“=”∴利用1()2f t t t=+(1t ≥)的单调性易得在1t =时取最小值1F AB S 在1t =即0k =时取最大值为3,此时直线A B 的方程为1x =例2.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA + )O B ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||N P的最小值与最大值.解(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kkk y y x x OB OA OP ++-=++=+=设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y kk x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为 (0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x xx y x NP故当41=x ,||NP 取得最小值,最小值为1;4① ②当16x =-时,||NP 取得最大值,最大值为.621对于()*,有∆=m 2+4b =10-m 2>0,所以m <<。

微专题-圆锥曲线中的最值问题(解析版)

微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。

圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,2x 2-),B (x 0,-20x 2-),OAO B ⋅ =2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x20),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥, 当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x20)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)(【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。

高中数学圆锥曲线压轴题系列 定值问题处理方法 理清思路破解难题

高中数学圆锥曲线压轴题系列 定值问题处理方法 理清思路破解难题

高中数学圆锥曲线压轴题系列定值问题处理方法理清
思路破解难题
定值问题是圆锥曲线中常考的一种类型,要正确解决它们,首先需
要做的就是理清思路,即从问题本质出发去抓住重点:
一、先理解几何意义:
1、仔细阐明:读懂题中的“定值”的英文意思,如“given,constant”等;
2、辨析:抓住题中的特定定值,如:方程的系数、参数、定点;
3、分类:根据题目中特定网点和具体类型讨论具体问题。

二、正确解决定值问题:
1、找出变量:分析问题的特征,确定相关的变量,以判断出解决问题
需要解决的不确定性;
2、确定函数关系:运用给定条件和特定函数关系,建立准确函数模型;
3、求解:解决具体问题,形成最终结果。

三、压轴难题破解之道:
1、以实际情况推导:在实际生活中结合几何图形,引出实际过程;
2、联系函数模型:分析实际过程中所给函数,推出函数类型;
3、找点分段:应用定点和改变的变量找出隐含的关系,用曲线的分段
特性,求解解析式。

四、总结:
定值问题在圆锥曲线中是一个常见的题目,要解决它们就要从问题本
质出发,先理解几何意义,理清思路,正确解决定值问题,才能破解难题。

其中,“找点分段”更是最具挑战的地方,也是定值问题的重中之重。

圆锥曲线中的定值问题(解析版)-学霸养成2022高考数学压轴大题必杀技系列之圆锥曲线

圆锥曲线中的定值问题(解析版)-学霸养成2022高考数学压轴大题必杀技系列之圆锥曲线

专题6 圆锥曲线中的定值问题一、考情分析求定值是圆锥曲线中颇有难度的一类问题,也是备受高考关注的一类问题,由于它在解题之前不知道定值的结果,因而更增添了题目的神秘色彩.解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.二、解题秘籍(一) 定值问题解题思路与策略定值问题肯定含有参数, 若要证明一个式子是定值, 则意味着参数是不影响结果的, 也就是说参数在解式子的过程中都可以消掉, 因此解决定值问题的关键是设参数:(1)在解析几何中参数可能是点(注意如果设点是两个参数时, 注意横坐标要满足圆锥曲线方程)(2)可能是角(这里的角常常是将圆锥曲线上的点设为三角函数角的形式),(3)也可能是斜率(这个是最常用的, 但是既然设斜率了, 就要考虑斜率是否存在的情况)常用的参数就是以上三种, 但是注意我们设参数时要遵循一个原则:参数越少越好.因此定值问题的解题思路是:(1)设参数;(2)用参数来表示要求定值的式子;(3)消参数.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例1】(2022届河北省张家口市高三上学期期末)已知双曲线2222:1(0,0)x yC a ba b-=>>的离心率为2,右顶点D(1)求双曲线C的方程;(2)若直线l与双曲线C交于,A B两点,且0,OA OB O⋅=为坐标原点,点O到直线l的距离是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)结合双曲线的离心率,顶点到渐近线的距离求得,a b,由此求得双曲线C的方程.(2)根据直线l 与坐标轴平行或不平行两种情况进行分析,结合根与系数关系以及0OA OB ⋅=列方程,化简后根据点到直线距离公式求得O 点到直线l 的距离. 【解析】(1)由题意,得双曲线C 的渐近线方程为by x a=±, 右顶点为(),0D a .又222+=a b c ,,2ab c e c a====, 所以12a c =,故b = 又2234a a +=,解得21a =, 所以双曲线C 的方程为2213y x -=. (2)设()()1122,,,A x y B x y .当直线l 和轴线平行时,1122,x y x y ==,解得1122x y x y ====, 所以点O 到直线l当直线l 和轴线不平行时, 设直线l 的方程为x my t =+,由221,3y x x my t ⎧-=⎪⎨⎪=+⎩得()222316330m y mty t -++-=, ()()()22222Δ(6)4313312310mt m t m t =---=+->,所以2121222633,3131mt t y y y y m m --+==--. 又1122,x my t x my t =+=+,所以()()()()2212121212121210OA OB x x y y my t my t y y m y y mt y y t ⋅=+=+++=++++=,得()()()2222222133631031m t m t t m m +--+-=-,解得22233t m =+.又点O 到直线l的距离为d ,则222312tdm==+,故d=所以点O到直线l【例2】(2022届上海市松江区高三一模)2222Γ:1(0,0).x ya b y xa b-=>>=已知双曲线的焦距为渐近线方程为(1)求双曲线Γ的方程;(2)若对任意的m R∈,直线y kx m=+与双曲线Γ总有公共点,求实数k的取值范围;(3)若过点()1,0的直线l与双曲线Γ交于M N、两点,问在x轴上是否存在定点P,使得PM PN⋅为常数?若存在,求出点P的坐标及此常数的值,若不存在,请说明理由.【分析】(1)由离心率及渐近线方程求出,a b即可得双曲线方程;(2)联立直线与双曲线方程,消元得方程,分类讨论,当方程为一元一次方程时不符合题意,当方程为一元二次方程时利用判别式求解即可;(3)假设存在P, 计算PM PN⋅,根据韦达定理化简,当满足7202a-=时,PM PN⋅为常数.【解析】(1)由题意可知,bca==因为222c a b=+,所以1a b==,所以双曲线的方程为2212xy-=;(2)联立221,2xyy kx m⎧-=⎪⎨⎪=+⎩得222(12)42(1)0k x kmx m---+=,当2120k-=时,此时易知0m=时,直线与双曲线没有公共点,不符合题意,所以2120-≠k,且0∆≥,即222(4)8(12)(1)0km k m+-+≥,所以2221m k≥-,所以2210k-<,解得k<<所以k<<(3)设1122(,),(,)(,),M x y N x y P a b , 所以1122(,),(,)PM x a y PN x a y =-=-,当斜率不存在时,可知不符合,所以设直线(1)y k x =-, 所以2121212()PM PN x x a x x a y y ⋅=-+++ 22221212(1)()()k x x a k x x a k =+-++++,①联立2212(1)x y y k x ⎧-=⎪⎨⎪=-⎩,得2222(12)42(1)0k x k x k -+-+=, 所以22121222422,2121k k x x x x k k ++==-- ②, 把②代入①化简得:2222227234232221221ak k a PM PN a a a k k --+⋅=+=-++--, 所以当7202a -=时,得74a =,此时1716PM PN ⋅=. (二) 与线段长度有关的定值问题与线段长度有关的定值问题通常是先引入 参数,利用距离公式或弦长公式得到长度解析式,再对解析式化简,得出结果为定值【例3】已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为1A 、2A ,点⎭在椭圆C 上,过椭圆C 的右焦点F 作与x 轴垂直的直线与椭圆相交于D 、E 两点,且四边形12A DA E 的面积为6. (1)求椭圆C 的标准方程;(2)设直线()()22y k x m m =--<<与椭圆C 相交于M 、N 两点,且与x 轴相交于点P ,若22PM PN +的值与m 无关,求斜率k 的值.【分析】(1)根据题干条件可得出关于a 、b 的方程组,解出这两个量的值,即可得出椭圆C 的标准方程; (2)联立直线与椭圆的方程,设点()11,M x y 、()22,N x y ,列出韦达定理,可得出22PM PN +的表达式并化简,结合已知条件可求得k 的值. 【解析】(1)由题意知122A A a =.将x c =代入椭圆C 的方程得2b y a =±,所以22bDE a=, 所以由四边形12A DA E 的面积为6,得2121122622b A A DE a a ⋅=⨯⨯=,所以b =又点⎭在椭圆C 上,所以222312a b +=,所以,2a =. 所以椭圆C 的标准方程为22143x y +=.(2)由()22143y k x m x y ⎧=-⎪⎨+=⎪⎩,消去y 得()222223484120k x k mx k m +-+-=, 则()()()422222226443441248430k m k k m k k m ∆=-+-=+->.设()11,M x y 、()22,N x y ,则2122834k mx x k +=+,2212241234k m x x k -=+, 易知(),0P m ,所以()()()22212221P k x m x N m M P ⎡⎤=+-+-+⎣⎦()()()2221212121222k x x x x m x x m ⎡⎤=++--++⎣⎦()2222222222841281222343434k m k m k m k m m k k k ⎡⎤⎛⎫-=+-⨯-⨯+⎢⎥ ⎪+++⎢⎥⎝⎭⎣⎦()()()2222221643243434k m k k k +⎡⎤=--++⎣⎦+.由上式可知要使22PM PN +的值与m 无关,必有2430k -=,解得k = 所以直线()y k x m =-的斜率k的值为 (三)与面积有关的定值问题【例4】与面积有关的定值问题通常是利用面积公式把面积表示成某些变量的表达式,再利用题中条件化简. 已知O 为坐标原点,椭圆Γ:()222210x y a b a b +=>>的右顶点为A ,动直线l :()11y x m =-与Γ相交于B ,C 两点,点B 关于x 轴的对称点为B ',点B '到Γ的两焦点的距离之和为4. (1)求Γ的标准方程.(2)若直线B C '与x 轴交于点M ,OAC ,AMC 的面积分别为1S ,2S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.【分析】(1)用椭圆的定义及性质即可得解;(2)利用“设而不求法”表示出OAC ,AMC 的面积,即可求出12S S . 【解析】(1)由对称性得点B '在椭圆Γ上,根据点B '到Γ的两焦点的距离之和为4及椭圆的定义,得24a =,解得2a =. 因为Γ所以c a =所以c =所以222431b a c =-=-=所以Γ的标准方程为2214x y +=.(2)12S S 是定值,且该定值为1.理由如下:由()221,411,x y y x m ⎧+=⎪⎪⎨⎪=-⎪⎩得()22144my y ++=,即()224230m y my ++-=. 设()11,B x y ,()22,C x y ,则()11,B x y '-,且12224m y y m +=-+,12234y y m =-+. 易得直线B C '的方程为112121y y x x y y x x +-=+-, 令0y =,得211121x x x y x y y -=++ ()1211211my y y my y y -=+++22121112211my y my my my y y y -++=++121221my y y y =++223241424m m m m -⨯+=+=-+. 所以当m 变化时,直线B C '与x 轴交于定点()4,0M . 所以1222114212CCOA OA S S AM AM y y ⨯⨯=⨯=-⨯==, 即12S S 是定值,且定值为1.(四) 与斜率有关的定值问题与斜率有关的定值问题常见类型是斜率之积商或斜率之和差为定值,求解时一般先利用斜率公式写出表达式,再利用题中条件或韦达定理化简.【例5】已知抛物线2:2(0)C y px p =>的焦点为F ,直线21y x =-与抛物线交于M ,N 两点,且||||4MF NF +=. (1)求抛物线C 的方程;(2)若(4P ,)(0)m m >是抛物线C 上一点,过点(1,4)Q -的直线与抛物线C 交于A ,B 两点(均与点P 不重合),设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值.【分析】(1)联立直线和抛物线方程,根据抛物线定义和焦半径公式得到12||||22p pMF NF x x +=+++,根据韦达定理可得到最终结果;(2)代入点P 坐标可得到参数m 的值,设直线AB 的方程为1(4)x t y -=+,联立该直线和抛物线方程,34123434343444161644(4)(4)4()16y y k k x x y y y y y y --=⨯==--+++++,代入韦达定理可得到最终结果.【解析】(1)设点1(M x ,1)y ,点2(N x ,2)y ,联立2221y pxy x ⎧=⎨=-⎩,整理得24(42)10x p x -++=, ∴1242142p px x ++==+, 由抛物线的定义知12||||14222p p pMF NF x x p +=+++=++=, 解得2p =,∴抛物线C 的方程为24y x =.(2)(4P ,)(0)m m >为抛物线C 上一点,4m ∴=,即(4,4)P ,设3(A x ,3)y ,4(B x ,4)y ,直线AB 的方程为1(4)x t y -=+,由21(1)4x t y y x-=+⎧⎨=⎩,消去x 得241640y ty t ---=, 344y y t ∴+=,34164y y t =--,34123434343444161616444(4)(4)4()1616444163y y k k x x y y y y y y t t --=⨯====--+++++--+⨯+, 即12k k 为定值.(五) 与向量有关的定值问题与向量有关的定值问题常见类型是根据向量共线,写出向量系数的表达式,再通过计算得出与向量系数有关的定值结论;或利用向量得数量级运算得出定值.【例6】(2022届广东省广州市高三上学期12月调研)已知椭圆C :()222210x y a b a b +=>>1F,2F 分别为椭圆C 的左,右焦点,M 为椭圆C 上一点,12MF F △的周长为4+(1)求椭圆C 的方程;(2)P 为圆225x y +=上任意一点,过P 作椭圆C 的两条切线,切点分别为A ,B ,判断PA PB ⋅是否为定值?若是,求出定值:若不是,说明理由,【分析】(1)由离心率和焦点三角形周长可求出,a c ,结合关系式得出b ,即可得出椭圆C 的方程; (2)由PB 平行于y 轴特殊情况求出0PA PB ⋅=,即1PA PB k k ⋅=-;当PB 平行于y 轴时,设过P 的直线为()00y k x x y =-+,联立椭圆方程,令0∆=化简得关于k 的二次方程,由韦达定理即可求解. 【解析】(1)由题可知,224c e a c a ==+=+解得2,a c ==又222a b c =+,解得1b =,故椭圆的标准方程为:2214x y +=;(2)如图所示,当PB 平行于y 轴时,PA 恰好平行于x 轴,()()()0,12,0,2,1A B P ,()()2,0,0,1PA PB =-=-,0PA PB ⋅=; 当PB 不平行于y 轴时,设()00,P x y ,设过点P 的直线为()00y k x x y =-+, 联立()220014x y y k x x y ⎧+=⎪⎨⎪=-+⎩得()()()2220000418410k x k y kx x y kx ⎡⎤++-+--=⎣⎦, 令0∆=得()()()2222000064164110k y kx k y kx ⎡⎤∆=--+--=⎣⎦,化简得 ()22200004210x k x y k y --+-=,设12,PA PB k k k k ==,则20122014y k k x -⋅=-,又22005x y +=,故220012220014144y x k k x x --⋅===---,即0PA PB ⋅=. 综上所述,0PA PB ⋅=.【例7】(2022届上海市金山区高三上学期一模)已知()0,1P 为椭圆C :22143x y +=内一定点,Q 为直线l :3y =上一动点,直线PQ 与椭圆C 交于A 、B 两点(点B 位于P 、Q 两点之间),O 为坐标原点.(1)当直线PQ 的倾斜角为4π时,求直线OQ 的斜率; (2)当AOB 的面积为32时,求点Q 的横坐标;(3)设AP PB λ=,AB BQ μ=,试问λμ-是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)先得到直线PQ 的方程为:1y x =+,由13y x y =+⎧⎨=⎩得到Q 的坐标求解;(2)设直线PQ 的方程为1y kx =+,由221431x y y kx ⎧+=⎪⎨⎪=+⎩,结合韦达定理求得12x x -,再由121322AOB S OP x x =⋅-=求解.(3)设直线PQ 的方程为()1x m y =-,由()221431x y x m y ⎧+=⎪⎨⎪=-⎩,得到()()()224318180m y y +-+--=,,有()()1212228811,114343y y y y m m -+-=--⋅-=-++,再根据AP PB λ=,AB BQ μ=,得到12121122221333,11333y y y y y y y y y y λμ---+--====-+----求解.【解析】(1)因为直线PQ 的倾斜角为4π,且()0,1P , 所以直线PQ 的方程为:1y x =+,由13y x y =+⎧⎨=⎩,得()2,3Q , 所以直线OQ 的斜率是32OQ k =;(2)易知直线PQ 的斜率存在,设直线PQ 的方程为1y kx =+,由221431x y y kx ⎧+=⎪⎨⎪=+⎩,得()2234880k x kx ++-=, 设()()1122,,,A x y B x y ,则12122288,3434k x x x x k k +=-⋅=-++,所以12x x -==所以121322AOBSOP x x =⋅-==, 解得214k =,即12k =±, 所以直线PQ 的方程为112y x =+或112y x =-+, 由1123y x y ⎧=+⎪⎨⎪=⎩,得()4,3Q ; 由1123y x y ⎧=-+⎪⎨⎪=⎩,得()4,3Q -; (3)易知直线PQ 的斜率存在,设直线PQ 的方程为()1x m y =-, 由()221431x y x m y ⎧+=⎪⎨⎪=-⎩,得()()()224318180m y y +-+--=,设()()1122,,,A x y B x y ,则()()1212228811,114343y y y y m m -+-=--⋅-=-++, 所以()()12121111y y y y -+-=-⋅-, 因为AP PB λ=,AB BQ μ=, 所以12121122221333,11333y y y y y y y y y y λμ---+--====-+----, 所以112213113y y y y λμ---=++--, ()()()()()()1111222112111113y y y y y y ⎡⎤-+-+--⎣⎦=+=--.(六) 与代数式有关的定值问题与代数式有关的定值问题.一般是依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值【例8】已知A ,B 是双曲线221:13y C x -=的左、右顶点,P 是双曲线1C 上不同于A ,B 的一点. (1)若线段PB 的垂直平分线分别交PB ,P A 于点(),M M M x y ,(),N N N x y ,求M N x x -;(2)若O 为坐标原点,射线OP 交椭圆222:13y C x +=于点Q ,设直线P A ,PB ,QA ,QB 的斜率分别为1k ,2k ,3k ,4k ,求22221234k k k k +--的值.【分析】(1)由双曲线1C 的方程可得()1,0A -,()10B ,,设()()000,P x y x ≠1,则001,22x y M +⎛⎫⎪⎝⎭,写出直线PB , P A 的方程,联立求解得N x ,即可求解; (2)由斜率公式结合题意求解即可【解析】(1)由双曲线1C 的方程可得()1,0A -,()10B ,,设()()000,P x y x ≠1, 又M 是线段PB 的中点,则001,22x y M +⎛⎫⎪⎝⎭ 直线PB 的斜率为001y x -,直线P A 的斜率为001y x +, 又PB MN ⊥,则直线MN 的方程为00001122y x x y x y -+⎛⎫-=- ⎪⎝⎭, 即2000001122x x y y x y y --=++, 又直线P A 的方程为00(1)1y y x x =++, 联立得()2220000011(1)221x y y x x x x --++=++, 代入()220031y x =-,消去2y ,解得0214x x -=, 即0214N x x -=,则001213244M N x x x x +--=-=. (2)设()11,Q x y ,则0000111112342200110122111111y y x y y y x y k k k k x x x x x x +++=+++=++-+---, 易知220013y x -=,221113y x +=,化简得011234016x x k k k k y y ⎛⎫+++=- ⎪⎝⎭,因为O ,P ,Q 三点共线,所以0101y y x x =, 所以12340k k k k +++=.易知20001220003111y y y k k x x x =⋅==+--,同理可得343k k =-, 由12340k k k k +++=,得22221212343422k k k k k k k k ++=++,所以2222123412k k k k +--=-.(六) 与定值有关的结论1.若点A ,B 是椭圆C :()222210x y a b a b+=>>上关于原点对称的两点,点P 是椭圆C 上与A ,B 不重合的点,则22PA PBb k k a⋅=-;2.若点A ,B 是双曲线C :()222210,0x y a b a b-=>>上关于原点对称的两点,点P 是双曲线C 上与A ,B 不重合的点,则22PA PBb k k a⋅=. 3.设点是椭圆C :上一定点,点A,B 是椭圆C 上不同于P 的两点,若0PA PB k k +=,则直线AB 斜率为定值;4. 设点是双曲线C :一定点,点A,B 是双曲线C 上不同于P 的两点,若0PA PB k k +=,直线AB 斜率为定值; 5. 设点是抛物线C :一定点,点A,B 是抛物线C 上不同于P 的两点,若0PA PB k k +=,直线AB 斜率为定值. 6.设,,A B C 是椭圆上不同3点,B,C 关于x 轴对称,直线AC,BC 与x 轴分别交于点,M N ,则2OM ON a =.7.点A ,B 是椭圆C :()222210x y a b a b +=>>上动点,O 为坐标原点,若OA OB ⊥,则2211OA OB+=2211a b +(即点O 到直线AB 为定值)8. 经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则212||||PA PA b ⋅=.9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x轴于P,则||||2PF eMN =. 10. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:(),P m n ()222210x y a b a b+=>>()220bm n an ≠(),P m n ()222210,0x y a b a b-=>>()220bm n an-≠(),P m n ()220y px p =>()0pn n-≠()222210x y a b a b+=>>122ab S S +=. 【例9】(2022届上海市黄浦区高三一模)设常数0m >且1m ≠,椭圆Γ:2221x y m +=,点P 是Γ上的动点.(1)若点P 的坐标为()2,0,求Γ的焦点坐标;(2)设3m =,若定点A 的坐标为()2,0,求PA 的最大值与最小值; (3)设12m =,若Γ上的另一动点Q 满足OP OQ ⊥(O 为坐标原点),求证:O 到直线PQ 的距离是定值.【分析】(1)由题可得2m =,c =即得;(2)由题可得()222282459x PA x y x =-+=-+,利用二次函数的性质即得; (3)当直线PQ 斜率存在时设其方程为y kx t =+,联立椭圆方程可得()2224210k x ktx t +++-=,利用韦达定理及条件可得2215k t +=,进而可得O 到直线PQ 的距离为定值,当直线PQ 斜率不存在时,可得x =易得O 到直线PQ 的距离为定值,即证.【解析】(1)∵椭圆Γ:2221x y m +=,点P 的坐标为()2,0,∵2m =,c∵Γ的焦点坐标为()),;(2)设(),P x y ,又()2,0A ,由题知2219x y +=,即2219x y =-,∵()()222222288912214599942x x PA x y x x x ⎛⎫=-+=-+-=-+=-+ ⎪⎝⎭,又33x -≤≤,∵当3x =-时,2PA 取得最大值为25;当94x =时,2PA 取得最小值为12;∵PA 的最大值为5,. (3) 当12m =时,椭圆Γ:2241x y +=, 设()()1122,,,P x y Q x y ,当直线PQ 斜率存在时设其方程为y kx t =+,则由2241y kx t x y =+⎧⎨+=⎩,得()2224210k x ktx t +++-=, ∵()()()222212122221,,2441044kt t x x x x kt k t k k--+==∆=-+->++, 由OP OQ ⊥可知0OP OQ ⋅=,即12120x x y y +=,∵()()12120x x kx t kx t +++=,即()()22121210k x x kt x x t ++++=,∵()22222121044t ktk kt t k k--+⋅+⋅+=++,可得2215k t +=,满足0∆>,∵O 到直线PQ 的距离为d ==为定值;当直线PQ 斜率不存在时,OP OQ ⊥,可得直线方程为x =,O 到直线PQ综上,O 到直线PQ 的距离是定值. 三、跟踪检测1.如图,点M 是圆22:(1)16A x y ++=上任意点,点(0,1)B ,线段MB 的垂直平分线交半径AM 于点P ,当点M 在圆A 上运动时,(1)求点P 的轨迹E 的方程;(2)//BQ x 轴,交轨迹E 于Q 点(Q 点在y 轴的右侧),直线:l x my n =+与E 交于,C D (l 不过Q 点)两点,且直线CQ 与直线DQ 关于直线BQ 对称,则直线l 具备以下哪个性质?证明你的结论? ∵直线l 恒过定点;∵m 为定值;∵n 为定值.【分析】(1)根据题意得P 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,进而根据椭圆的定义求解即可; (2)根据题意0CQ DQ k k +=,再设1122()()C x y D x y ,,,,进而直线l 与椭圆联立方程,结合韦达定理得整理得(21)(223)0m m n -+-=,再根据C ,D ,Q 三点不共线得12m =. 【解析】(1)如图,由A 方程,得(0,1)A -,半径4r =,∵P 在BM 的垂直平分线上,∵PM PB =, 所以||||||||||4||2PA PB PA PM AM AB +=+==>=, ∵P 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆, 由24a =,则2a =,1c =,23b =,∵点P 的轨迹E 的方程为22143y x +=.(2)解:∵直线l 与轨迹E 交于C ,D 两点,设1122()()C x y D x y ,,,,如图22143x my n y x=+⎧⎪⎨+=⎪⎩,消x ,得22()143y my n ++=, 整理,得222(34)84120m y mny n +++-=,122834mn y y m +=-+,212241234n y y m -=+,因为CQ 与DQ 关于BQ 对称,//BQ x 轴, 所以0CQ DQ k k +=,312Q ⎛⎫⎪⎝⎭,,132x ≠,232x ≠, 12121103322y y x x --+=--,即122133(1)(1)022y x y x ⎛⎫⎛⎫--+--= ⎪ ⎪⎝⎭⎝⎭, ∵11x my n =+,22x my n =+,∵整理:121232()2302my y n m y y n ⎛⎫+--+-+= ⎪⎝⎭,22241238223034234n mn m n m n m m -⎛⎫⎛⎫+----+= ⎪⎪++⎝⎭⎝⎭, 即24(48)230m n m n +--+=, 即(21)(223)0m m n -+-=,若2230m n +-=,点312Q ⎛⎫ ⎪⎝⎭,满足:l x my n =+,即C ,D ,Q 三点共线,不合题意, ∵210m -=,即12m =, ∵直线l 中m 为定值12.2.(20022届广西“智桂杯”高三上学期大联考)如图,已知抛物线:2:C x y =,()0,1M ,()0,1N -,过点M 垂直于y 轴的垂线与抛物线C 交于B ,C ,点D ,E 满足CE CN λ=,()01ND NB λλ=<<.(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点为Q ,记BCQ △与DEN 的面积分别为1S ,2S ,求12S S 的值. 【解析】(1)易知()()1,1,1,1B C -,设(),D x y ,由ND NB λ=,可得()(),11,2x y λ+=, 故有(),21D λλ-,同理()1,12E λλ--,于是直线DE 的方程是()()()2142y x λλλ--=--,即()()24221y x λλ=---∵与抛物线方程联立,即()()224221y x x y λλ⎧=---⎪⎨=⎪⎩得到()()2210x λ--=,此方程有两个相等的根:)1(2x λ=-代入∵,得()221y λ=-, 故直线DE 与抛物线有且仅有一个公共点()()2,2121Q λλ--(2)()()()()2211112*********BCQ Q S S BC h y λλλ==⋅=⨯⨯-=⨯⨯--=-△ 设直线DE 与y 轴交于G ,则()()20,21G λ--, 于是()()()()()222112122211DEN D E S S NG x x λλλλλ==⋅-=⋅---=⋅--+△ 故有122S S =.3.(2022届云南省红河州高三检测)在平面直角坐标系Oxy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为()0b a b >>的圆与线段OM 交于点N ,作MD x ⊥轴于点D ,作NQ MD ⊥于点Q .(1)令MOD α∠=,若4a =,1b =,3πα=,求点Q 的坐标; (2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点1B ,2B ,若点E 、F 分别满足3AE OE =-,243AF OB =,设直线1B E 和2B F 的交点为K ,设直线l :2ax c=及点(),0H c ,(其中c ,证明:点K 到点H 的距离与点K 到直线l 的距离之比为定值ca.【解析】(1)设(),Q x y ,则由题知4cos 23sin 3x y ππ⎧==⎪⎪⎨⎪==⎪⎩,因此Q ⎛ ⎝⎭(2)(2)设MOD α∠=及(),Q x y ,则由题知cos sin x a y b αα=⎧⎨=⎩,则点Q 的轨迹C 为椭圆,方程为:()222210x y a b a b +=>>. (3)设(),K x y ,由题知,()10,B b ,,04a E ⎛⎫ ⎪⎝⎭,()20,B b -,3,4F a b ⎛⎫- ⎪⎝⎭,1B E l :14x ya b +=,即4bx ay ab +=,2B F l :34y b xa b b +=-+,即44bx ay ab -=,联列上述直线方程,解得8171517x a y b ⎧=⎪⎪⎨⎪=-⎪⎩.KH =817a c =-令点K 到直线l 的距离为PM ,则2881717c c a PM a a c a a c ⎛⎫⋅=⋅-=- ⎪⎝⎭.因此有KH cPMa=.4.(2022届衡水金卷高三测试)已知抛物线2:4C y x =的准线为l ,直线1x my =+交C 于A ,B 两点,过点A ,B 分别作l 上的垂线,垂足分别为A ',B '.(1)若梯形ABB A ''的面积为求实数m 的值;(2)是否存在常数λ,使得2A B AF BF λ''=⋅成立?若存在,求出λ的值,若不存在,请说明理由? 【解析】(1)由题得准线:1l x =-,直线1x my =+过焦点(1,0)F . 设()11,A x y ,()22,B x y ,则()11,A y '-,()21,B y '-,联立21,4x my y x=+⎧⎨=⎩得2440y my --=,所以124y y m +=,124y y =-,所以()21212242x x m y y m +=++=+,221212116y y x x ==,12y y -===而梯形ABB A ''的面积()()1212111122S AA BB A B x x y y '''=+'=+++- (2244m =+=解得m .(2)()()12||||11AF BF AF BF x x ⋅=-⋅=-++()()()2212121142141x x x x m m =-+++=-+++=-+,又()222212161A B A B y y m ''''==-=+,所以24A B AF BFλ''==-⋅为常数.5.已知抛物线()2:20C y px p =>的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l x ⊥轴时,2AB =.(1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .∵是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由.∵求证:QAF QBF S S ⋅△△为定值.【解析】(1)当l x ⊥轴时,易得2AB p =, 所以22p =,解得1p =,所以抛物线C 的方程为22y x =;(2)∵解:易知直线l 的斜率存在且不为0,设直线l 的方程为()102x my m =+≠, 代入抛物线C 的方程22y x =,并整理得2210y my --=,设()11,A x y ,()22,B x y ,由根与系数的关系得12=2y y m +,121y y =-.所以21212121222x x my my m ++++==,所以线段AB 的中点N 的坐标为221,2m m ⎛⎫+ ⎪⎝⎭,连接QM ,若四边形AQBM 为平行四边形,则N 是QM 的中点, 易知10,2D m ⎛⎫- ⎪⎝⎭,因此211,82P mm ⎛⎫- ⎪⎝⎭, 设直线PQ 的方程为12x ty =+,代入抛物线C 的方程22y x =,整理得2210y ty --=,所以112P Q Q y y y m=-⋅=-, 故2Q y m =,因此()22,2Q m m ,故可得22212212M m x m +=⨯-=,220M y m m =-=,故点M 的坐标为()1,0M ,因此存在定点()1,0M ,使得四边形AQBM 为平行四边形;∵证明:点()22,2Q m m 到直线1:2l x my =+的距离d =由()11,A x y ,1,02F ⎛⎫⎪⎝⎭,可得1AF =,因此11124QAF S AF d y =⋅=△, 同理可得214QBFS y =, 所以12111616QAF QBFSSy y ⋅==,为定值.6.已知过点()0,1A -且斜率大于零的直线1l 与抛物线()2:20C x py p =>及圆22670x y x +-+=都相切.(1)求p 的值;(2)过点()0,2B 的动直线2l 与抛物线C 交于点P ,Q ,以BP 为直径的圆与直线0y y =交于点M ,N ,若MN 为定值,求0y 的值.【解析】(1)解法一:由22x py =,得22x y p=,x y p '=. 设直线1l 与抛物线C 切于点2,2t t p ⎛⎫⎪⎝⎭,易知0t >,则1l 的斜率212t t p k p t+==,得t =k ∵直线1l的方程为1y =-. 圆22670x y x +-+=的标准方程为()2232x y -+=,∵圆心为()3,0,其到直线1l的距离d ==得2p =.解法二:由题设直线1l 的方程为()10y kx k =->, 由直线1l 与圆22670x y x +-+=即圆()2232x y -+=相切,=得1k =,故直线1l 的方程为1y x =-,将其代入()220x py p =>,得2220x px p -+=.∵直线1l 与抛物线()2:20C x py p =>相切,∵2480p p ∆=-=,∵2p =.(2)设()11,P x y ,则2114x y =,以BP 为直径的圆的圆心11,122x y E ⎛⎫+ ⎪⎝⎭,()2222221111112444BP x y y x y y =+-=+-+=+.连接EM ,过E 作直线0y y =的垂线,垂足为G ,则10,2x G y ⎛⎫⎪⎝⎭,MN ====当01y =时,2MN =,为定值,故01y =.7.已知1F ,2F 分别是双曲线C :22221x ya b-=(0a >,0b >)的左、右焦点,126F F =,P 是C 上一点,112PF F F ⊥,且12PF PF +=(1)求双曲线C 的标准方程;(2)经过点2F 的直线l 与双曲线C 交于A ,B 两点,过点A 作直线2x =的垂线,垂足为D ,过点O 作OM BD ⊥(O 为坐标原点),垂足为M .则在x 轴上是否存在定点N ,使得MN 为定值?若存在,求出点N 的坐标;若不存在,请说明理由.【解析】(1)由题意得212PF PF a -=, ∵112PF F F ⊥,1226F F c ==, ∵222136PF PF -=,又12PF PF +=236a ⋅=,解得a = ∵26a =,2293b a =-=,∵双曲线C 的标准方程为22163x y -=.(2)由(1)得()23,0F ,设()11,A x y ,()22,B x y ,则()12,D y , 易知直线l 的斜率不为0,设直线l 的方程为3x ty =+,t ≠,联立直线l 与双曲线C 的方程,消去x 得()222630t y ty -++=,∵()22410t ∆=+>,∵12262t y y t +=--,12232y y t =-. ∵直线BD 的斜率21212221y y y y k x ty --==-+, ∵直线BD 的方程为()211221y y y y x ty --=-+, 设BD 交x 轴于E 点,如图,∵OM ∵BD ,∵若在x 轴上存在定点N ,使得MN 为定值,则E 为定点,N 为OE 中点,12MN OE =,即直线BD 过x 轴上的定点E .在直线BD 的方程()211221y y y y x ty --=-+中,令0y =,得()12112121121222ty y y ty y y x y y y y y ++=-=--+-1122121233152222263222222t ty y t t t t y y t t ++--=-=-=+=⎛⎫---+ ⎪--⎝⎭, ∵直线BD 过定点5,02E ⎛⎫⎪⎝⎭.∵5,04N ⎛⎫⎪⎝⎭,则1524MN OE ==.综上,在x 轴上存在定点5,04N ⎛⎫⎪⎝⎭,使得MN 为定值54.8.(2022届四川省南充市高三一诊)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122B B =,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1k =时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值. 【解析】(1)因为122B B =,所以22b =,即1b =,,所以c a 设c m =,则a =,0m >,又222c a b =-,即2222m m b =-,解得1m =或1-(舍去),所以a =1b =,1c =,所以椭圆的标准方程为2212x y += (2)由22122x y y x ⎧+=⎪⎨⎪=+⎩得()222220x x ++-=23860x x ++=,284360∆=-⨯⨯<所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2y kx =+,设()11,M x y ,()22,N x y ,则22212y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2221860k x kx +++=,则()()22122122Δ846120821621k k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩, 因为直线和椭圆有两个交点,所以()()22824210∆=-+>k k ,则232k >, 设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313y kx n k m x x x +++===+, 因为2B ,T ,N 在同一条直线上,则222221111y kx n k m x x x -+-===+, 由于()21212283311213440621k x x n n k k k m m x x k ⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+,所以12n =,则交点T 恒在一条直线12y =上,故交点T 的纵坐标为定值12. 9.(2022届】河北省邯郸市高三上学期训练)在平面直角坐标系xOy 中,动点P 到点30,2T ⎛⎫⎪⎝⎭的距离比它到直线:1l y =-的距离大12. (1)求动点P 的轨迹C 的方程;(2)过点T 的直线l 与动点P 的轨迹C 交于,A B 两点,问11AT BT+是否为定值?若是求出定值,不是说明理由.【解析】(1)方法一:设动点(),P x y ,()112y ++*.若1y ≥-,则()*32y =+,两边平方并化简可得:26x y =;若1y <-,则()*12y =--,两边平方并化简可得:242x y =-,显然不成立.∴动点P 的轨迹C 的方程为26x y =.方法二:由动点P 到点30,2T ⎛⎫ ⎪⎝⎭的距离比它到直线:1l y =-的距离大12,知动点P 到点30,2T ⎛⎫⎪⎝⎭的距离与它到直线3:2l y =-的距离相等,满足抛物线定义;由抛物线的定义知:动点P 的轨迹C 的方程为:26x y =.(2)易知直线l 斜率存在,设直线l 的方程为:32y kx =+,由2326y kx x y⎧=+⎪⎨⎪=⎩得:2690x kx --=,则236360k ∆=+>, 设()11,A x y ,()22,B x y ,则126x x k +=,129x x =-,21263y y k ∴+=+,1294y y =. 抛物线26x y =焦点为T ,由抛物线定义知:132AT y =+,232BT y =+, ()121212121212331111333933222422y y y y AT BT y y y y y y y y ++++∴+=+==⎛⎫⎛⎫+++++++ ⎪⎪⎝⎭⎝⎭()22226666293999363424k k k k ++===++⨯++, ∴11AT BT +为定值23. 10.(2022届云南省昆明市高三摸底)已知点0(,2)M x 在抛物线2:2(0)C y px p =>上,C 的焦点为F ,2MF =.(1)求抛物线C 的方程及0x ;(2)经过点(2,2)-的直线l 与C 交于A ,B 两点,且A ,B 异于点M ,若直线MA 与MB 的斜率存在且不为零,证明:直线MA 与MB 的斜率之积为定值.【解析】(1)由题知:000422122px p px x =⎧=⎧⎪⇒⎨⎨=+=⎩⎪⎩. 所以抛物线C 的方程:24y x =.(2)当直线l 的斜率不存在时,直线l 为2x =,联立224x y x =⎧⎨=⎩,得(2,A,(2,B -.2MA k ==,2MB k ==-,则()()224MA MB k k ⋅=-=-.当直线l 的斜率存在时,设直线l 为2(2)+=-y k x ,设11(,)A x y ,22(,)B x y , 则:1121MA y k x -=-,2221MB y k x -=-. 联立22(2)4y k x y x+=-⎧⎨=⎩得:22204ky y k ---=因为2112()022k ∆=++>,所以124y y k+=,1288y y k =--.所以121222121212121222(2)(2)161611(2)(2)2()4(1)(1)44y y y y y y x x y y y y y y ----⋅===--+++++--,所以121222164881184y yx xk k--⋅==-----++,所以直线MA与MB的斜率之积为定值4-.。

【高中数学】圆锥曲线中的定值与最值问题

【高中数学】圆锥曲线中的定值与最值问题

圆锥曲线中的定值与最值问题一.圆锥曲线中的定点、定值、定直线问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点.解决这个难点的基本思想是函数思想,可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求的定值.具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值.在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该变量具有定值特征.解答此类问题的基本策略有以下两种:1、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关.2、把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关.例1:过抛物线m :2y ax =(a >0)的焦点F 作直线l 交抛物线于,P Q 两点,若线段PF 与FQ 的长分别为,p q ,则11p q --+的值必等于( ). A.2a B.12aC.4aD.4a解法1:(特殊值法)令直线l 与x 轴垂直,则有l :14y a=12p q a ⇒==,所以有114p q a --+=解法2:(参数法)如图1,设11(,)P x y ,22(,)Q x y 且PM ,QN 分别垂直于准线于,M N .114p PM y a ==+,214q QN y a ==+抛物线2y ax =(a >0)的焦点1(0,)4F a,准线14y a =-. ∴ l :14y kx a =+又由m l ⋂,消去x 得222168(12)10a y a k y -++=∴212122121,216k y y y y a a ++==, ∴221212221111,()4164k k p q pq y y y y a a a a +++==+++=∴114p q a --+=. 例2:过抛物线22y px =(p >0)上一定点000(,)(P x y y >0),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y ,求证:PA 与PB 的斜率存在且倾斜角互补时,直线AB 的斜率为非零常数.【解析】设直线PA 的斜率为PA K ,直线PB 的斜率为PB K .由2112y px = 2002y px =相减得,101010()()2()y y y y p x x -+=- 故1010102PAy y p K x x y y -==-+ 10()x x ≠同理可得,2020202PB y y p K x x y y -==-+ 20()x x ≠由,PA PB 倾斜角互补知:PA PB K K =-∴102022p p y y y y =-++∴ 1202y y y +=-由2222y px = 2112y px =相减得,212121()()2()y y y y p x x -+=-∴ 21211200222AB y y p p p K x x y y y y -====--+-∴直线AB 的斜率为非零常数. 例3:已知定点0,0()M x y 在抛物线m :22y px =(p >0)上,动点,A B m ∈且0=•MB MA .求证:弦AB 必过一定点.【解析】设AB 所在直线方程为:x my n =+.与抛物线方程22y px =联立,消去x 得2220y pmy pn --=.设11(,)A x y ,22(,)B x y 则122y y pm +=① 122y y pn =-②由已知0=•MB MA 得,1MA MB K K =-.即102010201y y y y x x x x --=---g ③∵221010101011()()()22x x y y y y y y p p -=-=-+ 222020202011()()()22x x y y y y y y p p-=-=-+∴③式可化为1020221p py y y y =-++g ,即221201204[()]p y y y y y y =-+++.将①②代入得,002n p my x =++.直线AB 方程化为:00002()2x my p x my m y y x p =+++=+++.∴直线AB 恒过点00(2,)x p y +-.【例4】(2012·湖南)在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.[审题视点] (1)直接根据曲线与方程的概念求解,或者转化为根据抛物线的定义求解均可;(2)首先建立圆的两条切线的斜率与点的坐标之间的关系,其次把圆的切线方程与抛物线方程联立消元,根据根与系数的关系得出纵坐标之和和纵坐标之积,最后从整体上消去参数(圆的切线斜率)即可得证.(1)解 法一 设M 的坐标为(x ,y ),由已知得|x +2|=x -52+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以x -52+y 2=x +5.化简得曲线C 1的方程为y 2=20x .法二 由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明 当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x 得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20y 0+4k 1k 1.④同理可得y 3y 4=20y 0+4k 2k 2.⑤于是由②,④,⑤三式得y 1y 2y 3y 4=400y 0+4k 1y 0+4k 2k 1k 2=400[y 20+4k 1+k 2y 0+16k 1k 2]k 1k 2=400y 20-y 20+16k 1k 2k 1k 2=6 400.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400. 【例5】已知椭圆C 的离心率3e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。

高考数学圆锥曲线中的最值与定值问题例题分析(老师用)

高考数学圆锥曲线中的最值与定值问题例题分析(老师用)

8.设椭圆方程为 x 2 y 2 1,过点 M( 0,1)的直线 l 交椭圆于点 A、 B, O 是坐标原点,点 P 满足 4
1
11
OP ( OA OB ) ,点 N的坐标为 ( , ) ,当 l 绕点 M旋转时, 求( 1)动点 P的轨迹方程;( 2)| NP |
2
22
的最小值与最大值 .
【 专家解答 】( 1)法 1:直线 l 过点 M( 0, 1)设其斜率为 k,则 l 的方程为 y=kx+1.
F2 |
| y1
y2 |
| y1
y2 |
(c
1)
设 直 线 AB 的 方 程 为 x
k1 y代 入 椭 圆 方 程 得
2
2
(2 k 3) y 4ky 4 0
4k
y1
y2
2k2
, y1y2 3
即 | y1
4 3(k 2 1)
y2 |
2k2 3
43
2 k2 1
1 k2 1
4 2k 2 3
令t
k 2 1 1,∴ S F1AB
最小值,最小值为 10 | BC | 10 2 10 .
(数形结合思想、椭圆定义、最值问题的结合)
5. 已知 P 点在圆 x2+( y-2) 2=1 上移动, Q点在椭圆 x 2 y2 1 上移动 , 试求 |PQ| 的最大值。 9
解:故先让 Q点在椭圆上固定,显然当 PQ通过圆心 O1 时 | PQ|最大,因此要求 | PQ| 的最大值,只要求
当 x1
x2 时,有 x1
x2
1 ( y1
4
y2 ) y1 x1
y2 x2
0.

x x1 x2 , 2

高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc

高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc

专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。

设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。

解得。

∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN 的长为15. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4-【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值.【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+--()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k x k x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x k k x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=- ()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ;(2)求证: OA OB ⋅u u u v u u u v是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =- ()()1122,,,OA x y OB x y ==u u u v u u u v, ∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++u u u v u u u v,()212121222144143k y y k y y y y k k =++++=-++-=-, ∴OA OB ⋅u u u v u u u v是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的离心率为6,右焦点为(2,0).(1)求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 3【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA ⊥OB 知x 1x 2+y 1y 2=x 1x 2+(k x 1+m ) (k x 2+m )=(1+k 2) x 1x 2+k m (x 1+x 2)=0 代入,得4 m 2=3 k 2+3原点到直线AB 的距离231m d k ==+ , 当AB 的斜率不存在时, 11x y = ,可得, 13x d == 依然成立.所以点O 到直线的距离为定值32. 点睛: 本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x y b a a b-=>>渐近线方程为3y x =, O 为坐标原点,点(3,3M 在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q 为双曲线上不同两点,点O 在以PQ 为直径的圆上,求2211OPOQ+的值.【答案】(Ⅰ)22126x y -=;(Ⅱ) 221113OP OQ+=. 【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M 的坐标求得参数即可;(2)由条件可得OP OQ ⊥,可设出直线,OP OQ 的方程,代入双曲线方程求得点,P Q 的坐标可求得221113OPOQ+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线高考考查热点分析
热点六:弦或弦长为定值、最值问题
1、已知△OFQ 的面积为26,OF FQ m ⋅=
(1646m ≤≤,求OFQ ∠正切值的取值范围;
(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),26
||,(1)OF c m c ==- 当 ||OQ 取得最小值时,求此双曲线的方程。

解析:(1)设OFQ θ∠=
||||cos()1
||||sin 6
2
OF FQ m
OF FQ πθθ⎧⋅-=⎪
⎨⋅⋅=⎪⎩46tan θ⇒= 646m ≤≤
4tan 1θ-≤≤-
(2)设所求的双曲线方程为22
1111221(0,0),(,),(,)x y a b Q x y FQ x c y a b
-= >> =-则
∴11||||262OFQ S OF y ∆=
⋅=146
y = 又∵OF FQ m ⋅=,∴21116
(,0)(,)()(
1OF FQ c x c y x c c c ⋅=⋅-=-⋅= ) 222
11126963,||12.8
c x OQ x y c ∴= ∴=+=+≥
当且仅当4c =时,||OQ 最小,此时Q 的坐标是(6,6)或(6,6)
2222
2266
141216
a a
b b a b ⎧⎧-==⎪⎪
∴ ⇒⎨⎨=⎪⎩⎪+=⎩
,所求方程为22 1.412x y -= 2、已知椭圆14
22
2=+y x 两焦点分别为F 1、F 2,P 是椭圆在第一象限弧上一点,并满足121=⋅PF PF ,过P 作
倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点.(Ⅰ)求P 点坐标;(Ⅱ)求证直线AB 的斜率为定值;(Ⅲ)求△PAB 面积的最大值.
解:(Ⅰ)由题可得)2,0(1F ,)20(2-F ,设)0,0(),(00000>>y x y x P 则)2,(001y x PF --=,
)2,(001y x PF ---=,
∴1)2(20
2
21=--=⋅y x PF PF ,∵点),(00y x P 在曲线上,则1422020=+y x ,∴2
42
02
0y x -=,从而1)2(2
4202
0=---y y ,得20=y .则点P 的坐标为)2,1(. (Ⅱ)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为)0(>k k ,则BP 的直线方程为:)1(2--x k y .由⎪⎩⎪
⎨⎧=+
-=-14
2)1(222y x x k y 得x k k x k )2(2)2(22-++ 04)2(2=--+k ,设),(B B y x B ,则
2222222212)2(2,2)2(21k k k k k k x k k k x B B +--=-+-=+-=+,同理可得2
22)222k k k x A +-+=,则2
224k k
x x B A +=-,228)1()1(k k
x k x k y y B A B A +=----=-.所以:AB 的斜率2=--=B A B A AB
x x y y k 为定值. (Ⅲ)设AB 的直线方程:m x y +=2.由⎪⎩⎪
⎨⎧=+
+=14
2222y x m
x y ,得0422422=-++m mx x ,
由0)4(16)22(22>--=∆m m ,得2222<<-m P 到AB 的距离为3
|
|m d =
, 则3
||3)214(21||212m m d AB S PAB

⋅-=⋅=∆2)28(81)8(812222
2=+-≤+-=m m m m 。

当且仅当()
22,222-∈±=m 取等号∴三角形PAB 面积的最大值为2。

3、已知椭圆2
212
x y +=的左焦点为F ,O 为坐标原点。

(I )求过点O 、F ,并且与椭圆的左准线l 相切
的圆的方程;(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交
于点G ,求点G 横坐标的取值范围。

解:(I )
222,1,1,(1,0),: 2.a b c F l x ==∴=-=-
圆过点O 、F , ∴圆心M 在直线1
2
x =-
上。

设1
(,),2
M t -则圆半径
13
()(2).22
r =---= 由,OM r =
所求圆的方程为2
2
19
()(.2
4
x y ++=
(II )设直线AB 的方程为(1)(0),y k x k =+≠代入2
21,2
x y +=直线AB 过椭圆的左焦点F ,∴方程有两个不等实根。

记1122(,),(,),A x y B x y AB 中点00(,),N x y
则2
1224,21
k x x k +=-+
AB ∴的垂直平分线NG 的方程为001
().y y x x k
-=--
令0,y =得
222002222211
.
2121212421
0,0,
2
G G k k k x x ky k k k k k x =+=-+=-=-+++++≠∴-<<∴点G 横坐标的取值范围为
1(,0).2
- 4、已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12
-
.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间)
,试求ODE ∆与ODF ∆面积之比的取值范围(O 为坐标原点). 解:(1)设点M 的坐标为(,)x y ,∵12AM BM
k k ⋅=-, 整理,0x ≠), (2)如图,由题意知直线l 的斜率存在,设l 的方程为2x sy =+(2)s ≠±将①代入12
22
=+y x ,
整理,得22(2)420s y sy +++=,由0∆>,解得2
2s >.
设()11,E x y ,()22,F x y ,则12212
24,2
2.2s y y s y y s ⎧+=-⎪⎪+⎨⎪=⎪+⎩
令112
21212OBE OBF OB y S y S y OB y λ∆∆⋅===⋅,且01λ<<.
=+21221)(y y y y ()2
22
182s s λλ+=+.∵22s >且2
4s ≠,316)8,4(2
822≠∈+=u s s u 且,
解得33λ-<<+且1
3λ≠
. 01λ<<,1223<<-∴λ且1
3
λ≠.
故△OBE 与△OBF
面积之比的取值范围是113,133⎛⎫⎛⎫
- ⎪
⎪⎝⎭⎝⎭
. 5、已知椭圆1C :22
221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.
(I )求椭圆
1C 的方程;
(II )设点P 在抛物线2C :
2
()y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点,M N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.
解析:(I )由题意得21
2,,1
21b a b b a =⎧=⎧⎪∴⎨⎨=⋅=⎩⎪⎩所求的椭圆方程为2214y
x +=,
(II )不妨设
21122(,),(,),(,),
M x y N x y P t t h +则抛物线
2
C 在点P 处的切线斜率为
2x t
y t
='
=,直线MN
的方程为2
2y tx t h =-+,将上式代入椭圆1C
的方程中,得2
2
2
4(2)40x tx t h +-+-=,即
()22222414()()40
t x t t h x t h +--+--=,因为直线MN 与椭圆
1
C 有两个不同的交点,所以有
422
1162(2)40
t h t h ⎡⎤∆=-++-+>⎣⎦,
设线段MN 的中点的横坐标是3x ,则21232
()22(1)x x t t h x t +-==+, 设线段PA 的中点的横坐标是4x ,则41
2t x +=
,由题意得34x x =,即有2
(1)10t h t +++=,其中的22(1)40,1h h ∆=+-≥∴≥或3h ≤-;
当3h ≤-时有220,40h h +<-<,因此不等式
4221162(2)40t h t h ⎡⎤∆=-++-+>⎣⎦不成立;因此1h ≥,当1h =时代入方程2
(1)10t h t +++=得1t =-,将1,1h t ==-代入不等式422
1162(2)40
t h t h ⎡⎤∆=-++-+>⎣⎦成立,因此h 的最小值为1.。

相关文档
最新文档