圆锥曲线的定点定值问题

合集下载

圆锥曲线中的定值与定点问题

圆锥曲线中的定值与定点问题

研题型 能力养成 随堂内化
x=ty+n, ②设直线 PQ 的方程为 x=ty+n.由x42+y2=1, 得(t2+4)y2+2tny+n2-4=0,所以
y1+y2=-t22+tn4, y1y2=nt22+-44. 由①可知,kAP·kAQ=-112,即x1y+1 2·x2y+2 2=(ty1+n+2y)1y(t2y2+n+2)=-112,化简得 4n2+n21-6n4+16=-112,解得 n=1 或 n=-2(舍去),所以直线 PQ 的方程为 x=ty+1, 因此直线 PQ 经过定点(1,0).
研题型 能力养成 举题说法
若选②:设 A(x1,y1),B(x2,y2).联立x42-y32=1, 得(3-4k2)x2-8kmx-4m2-12= y=kx+m,
0,所以 3-4k2≠0,Δ=(-8km)2-4(3-4k2)(-4m2-12)>0,即 m2+3-4k2>0,x1+ x2=3-8km4k2,x1x2=-34-m24-k212(*). 由 k1k2=1,得yx11- -34·yx22- -34=1,即(kx1+m)(kx2+m()x-1-3[4()k(xx12+-m4))+(kx2+m)]+9=1,整
研题型 能力养成 随堂内化
1.(2023·梅州一模)已知动圆 M 经过定点 F1(- 3,0),且与圆 F2:(x- 3)2+y2=
16 内切. (2) 设轨迹 C 与 x 轴从左到右的交点分别为 A,B,点 P 为轨迹 C 上异于 A,B 的动 点,设 PB 交直线 x=4 于点 T,连接 AT 交轨迹 C 于点 Q,直线 AP,AQ 的斜率分别 为 kAP,kAQ. ①求证:kAP·kAQ 为定值; ②证明直线 PQ 经过 x 轴上的定点,并求出该定点的坐标.

圆锥曲线【定点定值】12 大题型(原卷版)

圆锥曲线【定点定值】12 大题型(原卷版)

圆锥曲线中的定点、定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.常用消参方法:①等式带用消参:找到两个参数之间的等式关系(,)0F k m =,用一个参数表示另外一个参数()k f m =,即可带用其他式子,消去参数k .②分式相除消参:两个含参数的式子相除,消掉分子和分母所含参数,从而得到定值.③因式相减消参:两个含参数的因式相减,把两个因式所含参数消掉.④参数无关消参:当与参数相关的因式为0时,此时与参数的取值没什么关系,比如:2()0y kg x -+=,只要因式()0g x =,就和参数k 没什么关系了,或者说参数k 不起作用.3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m .③参数无关找定点:找到和k 没有关系的点.题型一:面积定值【典例1-1】如图所示,已知椭圆22:14x C y +=,A ,B 是四条直线2x =±,1y =±所围成的矩形的两个顶点.若M ,N 是椭圆C 上的两个动点,且直线OM ,ON 的斜率之积等于直线OA ,OB 的斜率之积,试探求OM N V 的面积是否为定值,并说明理由.【典例1-2】(2024·湖北荆州·三模)从抛物线28y x =上各点向x 轴作垂线段,垂线段中点的轨迹为Γ.(1)求Γ的轨迹方程;(2),,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,①若//AC DF ,求BDBF的值;②证明:三角形ABC 与三角形DEF 的面积之比为定值.【变式1-1】已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1(1,0)F -、2(1,0)F ,M 在椭圆E 上,且12MF F △(1)求椭圆E 的方程;(2)直线:l y kx m =+与椭圆E 相交于P ,Q 两点,且22434k m +=,求证:OPQ △(O 为坐标原点)的面积为定值.【变式1-2】(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ^;(ii )记PMQ V ,HNQ V ,MNQ V 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【变式1-3】(2024·广东广州·模拟预测)已知()1,0A -,()10B ,,平面上有动点P ,且直线AP 的斜率与直线BP 的斜率之积为1.(1)求动点P 的轨迹Ω的方程.(2)过点A 的直线与Ω交于点M (M 在第一象限),过点B 的直线与Ω交于点N (N 在第三象限),记直线AM ,BN 的斜率分别为1k ,2k ,且124k k =.试判断AMN V 与BMN V 的面积之比是否为定值,若为定值,请求出该定值;若不为定值,请说明理由.题型二:向量数量积定值【典例2-1】(2024·高三·江苏盐城·开学考试)已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ l ×+×uuu r uuu r uuu r uuu r为定值?若存在,求出l 的值;若不存在,说明理由.【典例2-2】(2024·上海闵行·二模)已知点12F F 、分别为椭圆22:12x y G +=的左、右焦点,直线:l y kx t =+与椭圆G 有且仅有一个公共点,直线12,F M l F N l ^^,垂足分别为点M N 、.(1)求证:2221t k =+;(2)求证:12F M F N ×uuuu r uuuu r为定值,并求出该定值;【变式2-1】(2024·陕西宝鸡·一模)椭圆()2222:10x y C a b a b +=>>经过点P æççè,且两焦点与短轴的两个端点的连线构成一个正方形.(1)求椭圆C 的方程;(2)设5,04M æöç÷èø,过椭圆C 的右焦点F 作直线l 交C 于A 、B 两点,试问:MA MB ×uuu r uuu r 是否为定值?若是,求出这个定值;若不是,请说明理由.【变式2-2】(2024·高三·河南南阳·期末)P 为平面直角坐标系内一点,过P 作x 轴的垂线,垂足为M ,交直线b y x a =-(0a b >>)于Q ,过P 作y 轴的垂线,垂足为N ,交直线by x a=-于R ,若△OMQ ,V ONR 的面积之和为2ab.(1)求点P 的轨迹C 的方程;(2)若2a =,1b =,()4,0A -,(),0G n ,过点G 的直线l 交C 于D ,E 两点,是否存在常数n ,对任意直线l ,使AD AE ×uuu r uuu r为定值?若存在,求出n 的值及该定值,若不存在,请说明理由.【变式2-3】(2024·高三·天津河北·期末)设椭圆2222:1(0)x y E a b a b +=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B 是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ^,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ×uuuu r uuu r为定值.【变式2-4】已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为,A B ,右焦点为F ,且3AF =uuu r ,以F为圆心,OF 为半径的圆F 经过点B .(1)求C 的方程;(2)过点A 且斜率为()0k k ¹的直线l 交椭圆C 于P ,(ⅰ)设点P 在第一象限,且直线l 与y x =-交于HHAO Ð,求k 的值;(ⅱ)连接PF 交圆F 于点T ,射线AP 上存在一点Q ,且QT BT ×为定值,已知点Q 在定直线上,求Q 所在定直线方程.题型三:斜率和定值【典例3-1】已知椭圆()222:11x M y a a +=>与双曲线222:1y N x a-=的离心率的平方和为234.(1)求a 的值;(2)过点1,02Q æöç÷èø的直线l 与椭圆M 和双曲线N 分别交于点A ,B ,C ,D ,在x 轴上是否存在一点T ,直线TA ,TB ,TC ,TD 的斜率分别为TA k ,TB k ,TC k ,TD k ,使得1111TA TB TC TDk k k k +++为定值?若存在,请求出点T 的坐标;若不存在,请说明理由.【典例3-2】(2024·河南·二模)已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,两个焦点与短轴一个顶点构成等边三角形.(1)求椭圆C 的标准方程;(2)设()3,P t ,过点P 的两条直线1l 和2l 分别交椭圆C 于点,D E 和点,M N (1l 和2l .不重合),直线1l 和2l 的斜率分别为1k 和2k .若PM PN PD PE =,判断12k k +是否为定值,若是,求出该值;若否,说明理由.【变式3-1】椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ¹)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【变式3-2】(2024·宁夏银川·一模)已知1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,左顶点为A ,则上顶点为1B ,且1AB 20y -+=.(1)求椭圆C 的标准方程;(2)若P 是直线3x =上一点,过点P 的两条不同直线分别交C 于点D ,E 和点M ,N ,且PD PMPN PE=,求证:直线DE 的斜率与直线MN 的斜率之和为定值.题型四:斜率积定值【典例4-1】(2024·高三·陕西·开学考试)已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左顶点为E ,虚轴的上端点为P ,且3PF =,PE =(1)求双曲线C 的标准方程;(2)设M N 、是双曲线C 上不同的两点,Q 是线段MN 的中点,O 是原点,直线MN OQ 、的斜率分别为12k k 、,证明:12k k ×为定值.【典例4-2】已知椭圆2222:1(0)x y E a b a b +=>>,过点,A ,B 分别是E 的左顶点和下顶点,F 是E右焦点,π3AFB Ð=.(1)求E 的方程;(2)过点F 的直线与椭圆E 交于点P ,Q ,直线AP ,AQ 分别与直线4x =交于不同的两点M ,N .设直线FM ,FN 的斜率分别为1k ,2k ,求证:12k k 为定值.【变式4-1】已知椭圆22122:1(0)22x y C a b a b +=>>左右焦点12,F F 分别为椭圆22222:1(0)x y C a b a b +=>>的左右顶点,过点1F 且斜率不为零的直线与椭圆1C 相交于,A B 两点,交椭圆2C 于点M ,且2ABF △与12BF F △的周长之差为4-(1)求椭圆1C 与椭圆2C 的方程;(2)若直线2MF 与椭圆1C 相交于,D E 两点,记直线1MF 的斜率为1k ,直线2MF 的斜率为2k ,求证:12k k 为定值.【变式4-2】(2024·湖南长沙·二模)如图,双曲线22122:1(0,0)x y C a b a b -=>>的左、右焦点1F ,2F 分别为双曲线22222:144x y C a b -=的左、右顶点,过点1F 的直线分别交双曲线1C 的左、右两支于,A B 两点,交双曲线2C 的右支于点M (与点2F 不重合),且12BF F △与2ABF △的周长之差为2.(1)求双曲线1C 的方程;(2)若直线2MF 交双曲线1C 的右支于,D E 两点.①记直线AB 的斜率为1k ,直线DE 的斜率为2k ,求12k k 的值;②试探究:DE AB -是否为定值?并说明理由.【变式4-3】已知双曲线C:x 2a 2―y 2b 2=1(a >0,b >0)过点((1)求双曲线C 的标准方程;(2)设过点()2,0P 且斜率不为0的直线l 与双曲线C 的左右两支交于A ,B 两点.问:在x 轴上是否存在定点Q ,使直线QA 的斜率1k 与QB 的斜率2k 的积为定值?若存在,求出该定点坐标;若不存在,请说明理由.题型五:斜率比定值【典例5-1】设抛物线2:2(0)C y px p =>的焦点为F ,点(),0M p ,过点F 且斜率存在的直线交C 于不同的,A B 两点,当直线AM 垂直于x 轴时,3AF =.(1)求C 的方程;(2)设直线,AM BM 与C 的另一个交点分别为,D E ,设直线,AB DE 的斜率分别为12,k k ,证明:(ⅰ)12k k 为定值;(ⅱ)直线DE 恒过定点.【典例5-2】如图所示,已知点()1,0K ,F 是椭圆22195x y+=的左焦点,过F 的直线与椭圆交于,A B 两点,直线,AK BK 分别与椭圆交于,P Q 两点.(1)证明:直线PQ 过定点.(2)证明:直线PQ 和直线AB的斜率之比为定值.【变式5-1】(2024·重庆·模拟预测)如图,DM x ^轴,垂足为D ,点P 在线段DM 上,且||1||2DP DM =.(1)点M 在圆224x y +=上运动时,求点P 的轨迹方程;(2)记(1)中所求点P 的轨迹为,(0,1)A G ,过点10,2æöç÷èø作一条直线与G 相交于,B C 两点,与直线2y =交于点Q .记,,AB AC AQ 的斜率分别为123,,k k k ,证明:123k k k +是定值.【变式5-2】(2024·云南·二模)已知椭圆EO ,焦点在x 轴上,右焦点为F ,A 、B 分别是E 的上、下顶点.E 的短半轴长是圆O 的半径,点M 是圆O 上的动点,且点M 不在y 轴上,延长BM 与E 交于点,N AM AN ×uuuu r uuu r的取值范围为(0,4).(1)求椭圆E 、圆O 的方程;(2)当直线BM 经过点F 时,求AFN V 的面积;(3)记直线AM 、AN 的斜率分别为12k k 、,证明:21k k 为定值.【变式5-3】(2024·河南·三模)已知点())A B ,,动点V 满足直线VA 与直线VB 的斜率之积为13,动点V 的轨迹为曲线C .(1)求曲线C 的方程:(2)直线PQ 与曲线C 交于,P Q 两点,且BP BQ BM PQ ^^,交PQ 于点M ,求定点N 的坐标,使MN 为定值;(3)过(2)中的点N 作直线交曲线C 于,G H 两点,且两点均在y 轴的右侧,直线,AG BH 的斜率分别为12,k k ,求12k k 的值.题型六:斜率差定值【典例6-1】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()122,0,2,0F F -,D 为椭圆C 的右顶点,且124DF DF ×=uuu u r uuuu r.(1)求椭圆C 的方程;(2)设()4,2M -,过点()4,0Q -的直线与椭圆C 交于A ,B 两点(A 点在B 点左侧),直线AM 与直线2x =-交于点N ,设直线NA ,NB 的斜率分别为1k ,2k ,求证:21k k -为定值.【典例6-2】已知双曲线2222;1(0,0)x y C a b a b -=>>经过点æççè,右焦点为(),0F c ,且222,,c a b 成等差数列.(1)求C 的方程;(2)过F 的直线与C 的右支交于,P Q 两点(P 在Q 的上方),PQ 的中点为,M M 在直线:2l x =上的射影为,N O 为坐标原点,设POQ △的面积为S ,直线,PN QN 的斜率分别为12,k k ,试问12k k S-是否为定值,如果是,求出该定值,如果不是,说明理由.【变式6-1】已知椭圆()2222:10x y M a b a b+=>>的离心率为12,A ,B ,C 分别为椭圆的左顶点,上顶点和右顶点,1F 为左焦点,且1ABF V P 是椭圆M 上不与顶点重合的动点,直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N .(1)求椭圆M 的标准方程;(2)求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).【变式6-2】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b-=>>,点()3,1-在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点.(1)求双曲线C 的方程;(2)若()2,0M -,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P -,直线AP 交直线2x =-于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k -为定值.题型七:线段定值【典例7-1】(2024·高三·山西·期末)已知椭圆E :()2221024x y b b +=<<.(1)若椭圆E 22y x =-与椭圆E 交于M ,N 两点,求证:OM ON ^;(2)P 为直线l :4x =上的一个动点,A ,B 为椭圆E 的左、右顶点,PA ,PB 分别与椭圆E 交于C ,D 两点,证明CA PD PC BD××为定值,并求出此定值.【典例7-2】如图,已知圆22:210T x y ++-=,圆心是点T ,点G 是圆T 上的动点,点H 的坐标为),线段CH 的垂直平分线交线段TC 于点R ,记动点R 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点H 作一条直线与曲线E 相交于A ,B 两点,与y 轴相交于点C ,若CA AH l =uuu r uuur ,CB BH m =uuur uuur ,试探究l m +是否为定值?若是,求出该定值;若不是,请说明理由;(3)过点()2,1M 作两条直线MP ,MQ ,分别交曲线E 于P ,Q 两点,使得1MP MQ k k ×=.且MD PQ ^,点D 为垂足,证明:存在定点F ,使得DF 为定值.【变式7-1】已知点N 在曲线22:11612x y C +=上,O 为坐标原点,若点M 满足2ON OM =uuu r uuuu r ,记动点M 的轨迹为G .(1)求G 的方程;(2)设,C D 是上G 的两个动点,且以CD 为直径的圆经过点O ,证明:2211OCOD+为定值.【变式7-2】(2024·湖北·模拟预测)平面直角坐标系xOy 中,动点(,)P x y 满足=,点P 的轨迹为C ,过点(2,0)F 作直线l ,与轨迹C 相交于A ,B 两点.(1)求轨迹C 的方程;(2)求OAB △面积的取值范围;(3)若直线l 与直线1x =交于点M ,过点M 作y 轴的垂线,垂足为N ,直线NA ,NB 分别与x 轴交于点S ,T ,证明:||||SF FT 为定值.【变式7-3】(2024·浙江宁波·模拟预测)已知12(2,0),(2,0),(1,0),(1,0)A B F F --,动点P 满足34PA PB k k ×=-,动点P 的轨迹为曲线1,PF t 交t 于另外一点2,Q PF 交t 于另外一点R .(1)求曲线t 的标准方程;(2)已知1212PF PF QF RF +是定值,求该定值;题型八:坐标定值【典例8-1】(2024·陕西安康·模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,122AF AF AF -=uuur uuuu r uuuu r ,12AF F △(1)求C 的方程;(2)B 是C 上位于第一象限的一点,其横坐标为1,直线l 过点2F 且与C 交于M ,N 两点(均异于点B ),点P 在l 上,设直线BM ,BP ,BN 的斜率分别为1k ,2k ,3k ,若2312k k k -=,问点P 的横坐标是否为定值?若为定值,求出点P 的横坐标;若不为定值,请说明理由.【典例8-2】(2024·全国·模拟预测)一般地,抛物线的三条切线围成的三角形称为抛物线的切线三角形,对应的三个切点形成的三角形称为抛物线的切点三角形.如图,012P PP V ,ABC V 分别为抛物线y 2=2px(p >0)的切线三角形和切点三角形,F 为该抛物线的焦点.当直线AB 的斜率为1-时,AB 中点的纵坐标为2-.(1)求p .(2)若直线AC 过点F ,直线,AB BC 分别与该抛物线的准线交于点,D E ,记点,D E 的纵坐标分别为,D E y y ,证明:D E y y 为定值.(3)若,,A B C 均不与坐标原点重合,证明:012FA FB FC FP FP FP ××=××【变式8-1】(2024·四川凉山·三模)已知平面内动点P 与两定点()11,0A -,()21,0A 连线的斜率之积为3.(1)求动点P 的轨迹E 的方程:(2)过点()2,0的直线与轨迹E 交于A ,B 两点,点A ,B 均在y 轴右侧,且点A 在第一象限,直线2AA 与1BA 交于点M ,证明:点M 横坐标为定值.题型九:角度定值【典例9-1】抛物线C :()20x py p =>的焦点为()0,1F ,直线l 的倾斜角为a 且经过点F ,直线l 与抛物线C 交于两点A ,B .(1)若16AB =,求角a ;(2)分别过A ,B 作抛物线C 的切线1l ,2l ,记直线1l ,2l 的交点为E ,直线EF 的倾斜角为b .试探究a b -是否为定值,并说明理由.【典例9-2】(2024·高三·广东广州·期中)已知椭圆C :()222210+=>>x y a b a b的离心率为12,焦距为2.(1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,过右焦点F 的直线l 与椭圆C 交于B ,D (异于点A )两点,直线AB ,AD 分别与直线4x =交于M ,N 两点,试问MFN Ð是否为定值?若是,求出该定值;若不是,请说明理由.【变式9-1】(2024·辽宁沈阳·模拟预测)在平面直角坐标系xOy 中,利用公式x ax byy cx dy¢=+ìí¢=+î①(其中a ,b ,c ,d 为常数),将点(,)P x y 变换为点(),P x y ¢¢¢的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a ,b ,c ,d 组成的正方形数表a b c d æöç÷èø唯一确定,我们将a b c d æöç÷èø称为二阶矩阵,矩阵通常用大写英文字母A ,B ,…表示.(1)如图,在平面直角坐标系xOy 中,将点(,)P x y 绕原点O 按逆时针旋转a 角得到点(),P x y ¢¢¢(到原点距离不变),求坐标变换公式及对应的二阶矩阵A ;(2)在平面直角坐标系xOy 中,求双曲线1xy =绕原点O 按逆时针旋转π4(到原点距离不变)得到的双曲线方程C ;(3)已知由(2)得到的双曲线C ,上顶点为D ,直线l 与双曲线C 的两支分别交于A ,B 两点(B 在第一象限),与x 轴交于点T ö÷÷ø.设直线DA ,DB 的倾斜角分别为a ,b ,求证:a b +为定值.【变式9-2】已知椭圆()2222:10x y C a b a b +=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程;(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN Ð为定值.题型十:直线过定点【典例10-1】(2024·陕西·模拟预测)已知动圆M 经过定点1(F ,且与圆222:(16F x y +=内切.(1)求动圆圆心M 的轨迹C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B 的动点,设直线PB 交直线4x =于点T ,连接AT 交轨迹C 于点Q ;直线AP ,AQ 的斜率分别为AP k ,AQ k .(i )求证:AP AQ k k ×为定值;(ii )设直线:PQ x ty n =+,证明:直线PQ 过定点.【典例10-2】(2024·广西·模拟预测)已知圆E 恒过定点()1,0,且与直线=1x -相切,记圆心E 的轨迹为G ,直线11:10l x m y --=与G 相交于A ,B 两点,直线22:10l x m y --=与G 相交于C ,D 两点,且121m m =-,M ,N 分别为弦,AB CD 的中点,其中A ,C 均在第一象限,直线AC 与直线BD 的交点为G .(1)求圆心E 的轨迹G 的方程;(2)直线MN 是否恒过定点?若是,求出定点坐标?若不是,请说明理由.【变式10-1】(2024·江西·二模)已知()12,0F -,()22,0F ,M 是圆O :221x y +=上任意一点,1F 关于点M 的对称点为N ,线段1F N 的垂直平分线与直线2F N 相交于点T ,记点T 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(),0E t (0t >)为曲线C 上一点,不与x 轴垂直的直线l 与曲线C 交于G ,H 两点(异于E 点).若直线GE ,HE 的斜率之积为2,求证:直线l 过定点.【变式10-2】在平面直角坐标系xoy 中,已知椭圆C :()222210x y a b a b +=>>,F 是椭圆的右焦点且椭圆C与圆M :()22616x y -+=外切,又与圆N :(223x y +-=外切.(1)求椭圆C 的方程.(2)已知A ,B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,连接AF ,BF 并分别延长交椭圆C 于D ,E 两点,证明:直线DE 过定点.题型十一:动点在定直线上【典例11-1】已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.【典例11-2】已知椭圆2222:1(0)x y C a b a b+=>>经过点31,2H æö-ç÷èø,离心率12e =.(1)求椭圆C 的标准方程;(2)设过点()4,3P 且倾斜角为135o 的直线l 与x 轴,y 轴分别交于点,M N ,点R 为椭圆C 上任意一点,求RMN V 面积的最小值.(3)如图,过点()4,3P 作两条直线,AB CD 分别与椭圆C 相交于点,,,A B C D ,设直线AD 和BC 相交于点Q .证明点Q 在定直线上.【变式11-1】已知A ,B 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右顶点,P 是C 上异于A ,B 的一点,直线PA ,PB 的斜率分别为12,k k ,且12||4k k AB ==.(1)求双曲线C 的方程;(2)已知过点(4,0)的直线:4l x my =+,交C 的左,右两支于D ,E 两点(异于A ,B ).(i )求m 的取值范围;(ii )设直线AD 与直线BE 交于点Q ,求证:点Q 在定直线上.【变式11-2】已知椭圆G :()222210+=>>x y a b a b 的右焦点为F ,过点F 作x 轴的垂线交椭圆G 于点3(1,)2P .过点P 作椭圆G 的切线,交x 轴于点Q .(1)求点Q 的坐标;(2)过点Q 的直线(非x 轴)交椭圆G 于A 、B 两点,过点A 作x 轴的垂线与直线BP 交于点D ,求证:线段AD 的中点在定直线上.【变式11-3】(2024·河北·三模)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.题型十二:圆过定点【典例12-1】已知椭圆2222:1(0)x y C a b a b +=>>A 、B 分点是椭圆C 的左、右顶点,P 是椭圆C 上不同于A 、B 的一点,ABP V 面积的最大值是2.(1)求椭圆C 的标准方程;(2)记直线AP 、BP 的斜率分别为1k 、2k ,且直线AP 、BP 与直线6x =分别交于D 、E 两点.①求D 、E 的纵坐标之积;②试判断以DE 为直径的圆是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.【典例12-2】(2024·西藏拉萨·二模)已知抛物线2:2(0)C x py p =>上的两点,A B 的横坐标分别为4,8,AB -=.(1)求抛物线C 的方程;(2)若过点()0,8Q 的直线l 与抛物线C 交于点,M N ,问:以MN 为直径的圆是否过定点?若过定点,求出这个定点;若不过定点,请说明理由.【变式12-1】已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,离心率为12,点P 是椭圆上异于顶点的任意一点,过点P 作椭圆的切线l ,交y 轴于点A ,直线l ¢过点P 且垂直于l ,交y 轴于点B .(1)求椭圆的方程;(2)试判断以AB 为直径的圆能否过定点?若能,求出定点坐标;若不能,请说明理由.【变式12-2】(2024·山东泰安·模拟预测)已知抛物线2:2(0)E x py p =>,焦点为F ,点(2,1)C 在E 上,直线1l ∶1y kx =+(0)k ¹与E 相交于,A B 两点,过,A B 分别向E 的准线l 作垂线,垂足分别为11,A B .(1)设1111,,FA B FAA FBB V V V 的面积分别为123,,S S S ,求证:21234S S S =×;(2)若直线AC ,BC 分别与l 相交于,M N ,试证明以MN 为直径的圆过定点P ,并求出点P 的坐标.1.(2024·全国·模拟预测)已知复平面上的点Z 对应的复数z 满足2297z z --=,设点Z 的运动轨迹为W .点O 对应的数是0.(1)证明W 是一个双曲线并求其离心率e ;(2)设W 的右焦点为1F ,其长半轴长为L ,点Z 到直线Lx e=的距离为d (点Z 在W 的右支上),证明:1ZF ed =;(3)设W 的两条渐近线分别为12l l ,,过Z 分别作12l l ,的平行线34l l ,分别交21l l ,于点P Q ,,则平行四边形OPZQ 的面积是否是定值?若是,求该定值;若不是,说明理由.2.(2024·湖南常德·三模)已知O 为坐标原点,椭圆C :2221(1)x y a a +=>的上、下顶点为A 、B ,椭圆上的点P 位于第二象限,直线PA 、PB 、PO 的斜率分别为123,,k k k ,且312114k k k =-+.(1)求椭圆C 的标准方程;(2)过原点O 分别作直线PA 、PB 的平行线与椭圆相交,得到四个交点,将这四个交点依次连接构成一个四边形,则此四边形的面积是否为定值?若为定值,请求出该定值;否则,请求出其取值范围.3.已知一张纸上画有半径为4的圆E ,在圆E 内有一个定点F ,且EF =,折叠纸片,使圆上某一点F ¢刚好与F 点重合,这样的每一种折法,都留下一条直线折痕,当F ¢取遍圆上所有点时,所有折痕与EF ¢的交点形成的曲线为C .(1)若曲线C 的焦点在x 轴上,求其标准方程;(2)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与曲线C 恒有两个交点,A B ,且OA OB ^,(O 为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)在(1)的条件下,P 是曲线C 上异于上顶点1A 、下顶点2A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T ,证明:线段OT 的长为定值,并求出定值.4.(2024·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>,短轴长为1F ,2F ,P 是椭圆C 上的一个动点,12PFF V 面积的最大值为2.(1)求椭圆C 的方程;(2)求12PF PF ×uuu r uuu u r的取值范围;(3)过椭圆的左顶点A 作直线l x ^轴,M 为直线l 上的动点,B 为椭圆右顶点,直线BM 交椭圆C 于点Q .试判断数量积AQ OM ×uuu v uuuu v ,OQ OM ×uuu v uuuu v是否为定值,如果为定值,求出定值;如果不是定值,说明理由.5.(2024·重庆沙坪坝·模拟预测)如图, 在平面直角坐标系xOy 中,双曲线()222210,0y x a b a b -=>>的上下焦点分别为()10,F c ,()20,F c -. 已知点(e 和(都在双曲线上, 其中e 为双曲线的离心率.(1)求双曲线的方程;(2)设,A B 是双曲线上位于y 轴右方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i) 若122AF BF -=,求直线1AF 的斜率;(ii) 求证:12PF PF +是定值.6.已知椭圆22142x y +=,设动点P 满足OP OM ON =+uuu r uuuu r uuu r ,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-.问:是否存在两个点1F ,2F ,使得21PF PF +为定值?若存在,求1F ,2F 的坐标;若不存在,请说明理由.7.(2024·黑龙江齐齐哈尔·三模)已知双曲线2222:1(0,0)x y C a b a b -=>>的实轴长为2,设F 为C 的右焦点,T 为C 的左顶点,过F 的直线交C 于A ,B 两点,当直线AB 斜率不存在时,TAB △的面积为9.(1)求C 的方程;(2)当直线AB 斜率存在且不为0时,连接TA ,TB 分别交直线12x =于P ,Q 两点,设M 为线段PQ 的中点,记直线AB ,FM 的斜率分别为12,k k ,证明:12k k 为定值.8.(2024·辽宁葫芦岛·一模)已知抛物线2:2(0)C y px p =>的焦点为F ,(,2)M m 是抛物线C 上一点,且||2MF =.(1)求抛物线C 的方程.(2)若()()004,0P y y >是抛物线C 上一点,过点(1,4)Q -的直线与拋物线C 交于,A B 两点(均与点P 不重合),设直线,PA PB 的斜率分别为12,k k ,试问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.9.(2024·河南新乡·三模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是12,A A ,椭圆C 的焦距是2,P (异于12,A A )是椭圆C 上的动点,直线1A P 与2A P 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)12,F F 分别是椭圆C 的左、右焦点,Q 是12PFF V 内切圆的圆心,试问平面上是否存在定点,M N ,使得QM QN +为定值?若存在,求出该定值;若不存在,请说明理由.10.(2024·江苏盐城·一模)已知抛物线O :2x y =,圆C :()2221x y +-=,O 为坐标原点.(1)若直线l :()0y kx m k =+¹分别与抛物线O 相交于点A ,B (A 在B 的左侧)、与圆C 相交于点S ,T (S 在T 的左侧),且OAT !与OBS V 的面积相等,求出m 的取值范围;(2)已知1A ,2A ,3A 是抛物线O 上的三个点,且任意两点连线斜率都存在.其中12A A ,13A A 均与圆C 相切,请判断此时圆心C 到直线23A A 的距离是否为定值,如果是定值,请求出定值;若不是定值,请说明理由.11.设椭圆()2222:10x y C a b a b +=>>,1F ,2F 分别是C 的左、右焦点,C 上的点到1F 的最小距离为1,P是C 上一点,且12PFF V 的周长为6.(1)求C 的方程;(2)过点2F 且斜率为k 的直线l 与C 交于M ,N 两点,过原点且与l 平行的直线与C 交于A ,B 两点,求证:2ABMN为定值.12.(2024·内蒙古赤峰·三模)已知点P 为圆()22:24C x y -+=上任意一点,()2,0A -,线段PA 的垂直平分线交直线PC 于点M ,设点M 的轨迹为曲线H .(1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H 的两条渐近线交于S ,T 两点,且M 为线段ST 的中点.(i )证明:直线l 与曲线H 有且仅有一个交点;(ii ) 求证:OS OT ×是定值.13.(2024·湖北·模拟预测)已知F 为抛物线G :()20y mx m =>的焦点,A ,B ,C 是G 上三个不同的点,直线AB ,BC ,AC 分别与x 轴交于F ,D ,E ,其中AB 的最小值为4.(1)求G 的标准方程;(2)ABC V 的重心G 位于x 轴上,且D ,G ,E 的横坐标分别为d ,g ,e ,32g d e --是否为定值?若是,请求出该定值;若不是,请说明理由.14.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹G 交于不同于F 的三点C 、D 、G ,求证:CDG V 的重心的横坐标为定值.。

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型Last revision on 21 December 2020圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

圆锥曲线中的定点, 定值问题

圆锥曲线中的定点, 定值问题

(2) 当点 P 异于点 B 时,求证:OP OQ 为定值.
2
2
即kx1+m+kx2+m=0. x1-1 x2-1
化简得 2kx1x2+(m-k)(x1+x2)-2m=0,
所以 2k·2m2-2-4kmm-k-2m=0, 2k2+1 2k2+1
整理得 m=-2k.
故直线 MN 的方程为 y=k(x-2),
因此直线 MN 过定点,该定点的坐标为(2,0).
x2 2.如图,椭圆 E: a2

y2 b2
1(a b 0) 的左焦点为 F1 ,右焦点为 F2 ,离心率 e
1 2

过 F1 的直线交椭圆于 A, B 两点,且 △ABF2 的周长为 8.
(Ⅰ)求椭圆 E 的方程.
(Ⅱ)设动直线 l:y=kx+m 与椭圆 E 有且只有一个公共点 P,且与直线 x 4 相交于点 Q.试
解得 n=2k 或 n=2k. 7
当 n=2k 时,直线 MN 的方程为 y=k(x+2),过点 A,与题意不符,舍去;

n=2k
பைடு நூலகம்
时,n2-4k2-3<0,直线
MN
的方程为 y=k
x+2 7
,显然过点
Q
-2,0 7
.
7
综上,直线 MN 一定经过 x 轴上一定点 Q
-2,0 7
.
例 2.
已知椭圆 C:ax22+by22=1(a>b>0)的离心率 e=
其中 c= a2-b2,
椭圆 C 的左、右焦点分别为 F1(-c,0),F2(c,0).
又∵点 F2 在线段 PF1 的中垂线上, ∴|F1F2|=|PF2|,∴(2c)2=( 3)2+(2-c)2, 解得 c=1,∴a2=2,b2=1. ∴椭圆的方程为x2+y2=1.

圆锥曲线中的定点、定值问题(教师)

圆锥曲线中的定点、定值问题(教师)

圆锥曲线中的定点、定值问题【方法归纳】定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.如:定点问题①探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.②根据条件化为恒等式,求出定点.【典例分析】【定点问题】【例1】(2012.福建卷)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.【解析】(Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2 ∵e=,∴c=1 ∴b2=a2-c2=3 ∴椭圆E的方程为.法一:法二:取k=0,m=,此时P(0,),Q(4,),y kx m=+,k m22221(b0)x yaa b+=>>12以PQ为直径的圆为(x-2)2+(y-)2=4,交x轴于点M1(1,0)或M2(3,0)取k=,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x-)2+(y-)2=,交x轴于点M3(1,0)或M4(4,0)故若满足条件的点M存在,只能是M(1,0),证明如下∵∴故以PQ为直径的圆恒过x轴上的定点M(1,0)解法3:(导数求切线斜率)【定直线问题】【例2】(2013.安徽卷)设椭圆的焦点在轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.解: (Ⅰ).(Ⅱ) .由.12-32523445162222:11x yEa a+=-xE E12,F F P E2F P y Q11F P F Q⊥a p13858851,12,122222222=+=⇒+-==->xxacaacaa,椭圆方程为:),(),,),,0(),,(),0,(),0,(2221mcQFycxPFmQyxPcFcF-=-=-(则设)1,0(),1,0()1,0(12∈∈⇒∈⇒>-yxaa⎩⎨⎧=++=-⊥=+=)()(,//).,(),,(112211mycxcycxcmQFPFQFPFmcQFycxPF得:由所以动点P 过定直线.【定曲线问题】【例3】(2014·福建卷) 已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图1­6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8, 所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2, 此时双曲线E 的方程为x 24-y216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝ ⎛⎭⎪⎫-mk,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k .由S △OAB =12|OC |·|y 1-y 2|,得 12⎪⎪⎪⎪⎪⎪-m k ·⎪⎪⎪⎪⎪⎪2m2-k -2m 2+k =8,解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c x y x y x y x y x y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 01=-+y x即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x 得y 1=2t 1-2m , 同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k2,又因为△OAB 的面积为8,所以12 |OA |·|OB |· sin∠AOB =8,又易知sin∠AOB =45,所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4.所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2-y 24a 2=1,由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0, 即(k 2-4)(a 2-4)=0,所以a 2=4, 所以双曲线E 的方程为x 24-y 216=1.当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.【定量问题】【例4】(2014·江西卷) 如图1­7所示,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝ ⎛⎭⎪⎫c2,-c 2a .又直线OA 的方程为y =1ax ,则A ⎝ ⎛⎭⎪⎫c ,c a ,所以k AB =c a -⎝ ⎛⎭⎪⎫-c 2a c -c 2=3a .又因为AB ⊥OB ,所以3a ·⎝ ⎛⎭⎪⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0). 因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝ ⎛⎭⎪⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0,则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝ ⎛⎭⎪⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.【例5】(2013.江西卷)如图,椭圆经过点离心率,直线的方程为. (1) 求椭圆的方程;(2) 是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.解:(1)由在椭圆上得, ①依题设知,则 ②②代入①解得.故椭圆的方程为.(2)方法一:由题意可设的斜率为, 则直线的方程为 ③代入椭圆方程并整理,得,设,则有④在方程③中令得,的坐标为.从而. 注意到共线,则有,即有.2222+=1(>>0)x y C a b a b :3(1,),2P 1=2e l =4x C AB F P AB l M ,,PA PB PM 123,,.k k k λ123+=.k k k λλ3(1,)2P 221914a b +=2a c =223bc =2221,4,3c a b ===C 22143x y +=AB k AB (1)y k x =-223412x y +=2222(43)84(3)0k x k x k +-+-=1122(,),(,)A x yB x y 2212122284(3),4343k k x x x x k k -+==++4x =M (4,3)k 121231233331222,,11412y y k k k k k x x ---====----,,A F B AFBF k k k ==121211y ykx x ==--所以⑤④代入⑤得, 又,所以.故存在常数符合题意. 方法二:设,则直线的方程为:,令,求得, 从而直线的斜率为,联立 ,得,则直线的斜率为:,直线的斜率为:,所以,故存在常数符合题意.【突破提高】1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------1212122322()1x x k x x x x +-=-⋅-++22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++312k k =-1232k k k +=2λ=000(,)(1)B x y x ≠FB 00(1)1y y x x =--4x =003(4,)1y M x -PM 0030212(1)y x k x -+=-0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩0000583(,)2525x y A x x ---PA 00102252(1)y x k x -+=-PB 020232(1)y k x -=-00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---2λ=1.若AB 是过椭圆中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,,分别表示直线AM ,BM 的斜率,则=( )A. B. C. D.【解析】本题可用特殊值法.不妨设弦AB 为椭圆的短轴.M 为椭圆的右顶点,则A (0,b ),B (0,-b ),M (a ,0).所以.故选B .2.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足1·2=0,则e 21+e 22e 1e 22的值为________. 解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,|F 1F 2|=2c , 由题意得|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2, ∴|PF 1|2+|PF 2|2=2a 21+2a 22. 又∵1·2=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2,即2a 21+2a 22=4c 2.∴⎝ ⎛⎭⎪⎫a 1c 2+⎝ ⎛⎭⎪⎫a 2c 2=2,即1e 21+1e 22=2,即e 21+e 22e 1e 22=2.3.过抛物线:(>0)的焦点作直线交抛物线于两点,若线段与的长分别为,则的值必等于( ).A .B .C .D .解法1:(特殊值法) 令直线与轴垂直,则有:,所以有解法2:(参数法) 如图1,设,且,分别垂直于准线于.,抛物线(>0)的焦点,准线.∴ :又由,消去得, ∴,22221(b 0)x y a a b +=>>PFPF PF PF m 2y ax =a F l ,P Q PF FQ ,p q 11p q --+2a 12a 4a 4a l x l 14y a =12p q a ⇒==114p q a --+=11(,)P x y 22(,)Q x y PM QN ,M N 114p PM y a ==+214q QN y a ==+2y ax =a 1(0,)4F a 14y a =-l 14y kx a =+l m x 222168(12)10a y a k y -++=212122121,216k y y y y a a ++==∴∴.4.已知点P 是双曲线 (a >0,b >0)右支上一点,F 1,F 2分别为双曲线的左、右焦点,H 为△PF 1F 2的内心。

圆锥曲线中的定点与定值问题

圆锥曲线中的定点与定值问题
解得
1
2
+ 2 = 1,
2
4

2
2
2 = 3,
ቊ 2
故椭圆 E 的方程为 + =1.
3
4
= 4,
法二:设椭圆 E 的方程为 mx 2+ ny 2=1( m >0, n >0且 m ≠ n ).由题意可
1
4 = 1,
= ,
2
2
4
得൝9
解得൞
故椭圆 E 的方程为 + =1.
1
3
4
若直线 MN 与 x 轴不垂直,
设直线 MN 的方程为 y = kx + m ,代入
得(1+2 k 2 ) x 2 +4 kmx +2 m 2 -6=0.
于是 x 1 + x 2 =-
4
1+2 2
, x 1 x 2=
2 2 −6
1+2 2
2
6

2
3
=1,
.①
由 AM ⊥ AN ,得 · =0,
M ( x 1, y 1), N ( x 2, y 2).
+ 2 = ( − 1),
联立ቐ 2 2
得(3 k 2+4) x 2-6 k (2+ k ) x +3 k ( k +4)=0,
+ = 1,
3
4
6(2+)
3(+4)
−8(2+)
则 x1+ x 2= 2 , x 1 x 2= 2 , y 1+ y 2= 2 , y 1 y 2=
,由 = ,
− 6 + 3 − 1 = − (− 6 + 3),
= −
2 6

3
则 H −2 6 +

第8章 命题探秘2 第1课时 圆锥曲线中的定点、定值问题 课件(共39张PPT)

第8章 命题探秘2 第1课时 圆锥曲线中的定点、定值问题   课件(共39张PPT)

第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
法二:设T(x,y),Mx3,14x23,Nx4,14x24.
由xx2324= =44yy34, 得(x3+x4)(x3-x4)=4(y3-y4),
所以x3+4 x4=xy33--xy44. 设Q(x,y5),则直线MN的斜率k=yx5--12,
所以直线AB过定点0,21. (2)略.
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
02
典型考题·技法突破
技法一 技法二 技法三 技法四
直接推理解决直线过定点问题 直接推理解决曲线过定点问题 定直线的方程问题 直接推理解决定值问题
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
点评:动直线l过定点问题的基本思路 设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t= mk,得y=k(x+m),故动直线过定点(-m,0).
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
[思维流程]
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
[解] (1)设A(x1,y1),B(x2,y2). 因为F0,p2,所以过F且斜率为1的直线的方程为y=x+p2. 由y=x+p2, 消去y并整理,得x2-2px-p2=0,易知Δ>0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的定点定值问题
(最新版)
目录
一、圆锥曲线的定点定值问题概述
1.定点问题的定义与求解方法
2.定值问题的定义与求解方法
3.圆锥曲线中定点定值问题的重要性
二、定点问题的求解方法
1.引进参数法
2.直接解法
三、定值问题的求解方法
1.函数与方程思想
2.转化与化归思想
3.数形结合思想
四、圆锥曲线中定点定值问题的典型例题分析
1.椭圆中的定点定值问题
2.双曲线中的定点定值问题
3.抛物线中的定点定值问题
五、总结与展望
1.圆锥曲线中定点定值问题的解题技巧与方法
2.对学生逻辑思维能力与计算能力的培养
正文
一、圆锥曲线的定点定值问题概述
圆锥曲线是解析几何中的重要内容,也是高考数学中的热点问题。

圆锥曲线中的定点定值问题,主要包括定点问题和定值问题。

定点问题是指在运动变化过程中,直线或曲线恒过平面内的某个或某几个定点,而定值问题则是指几何量在运动变化中保持不变。

这类问题对学生的逻辑思维能力和计算能力有较高的要求,是高考数学中的难点之一。

二、定点问题的求解方法
1.引进参数法
在解决定点问题时,我们可以引入适当的参数,将问题转化为关于参数的方程或不等式,然后求解参数的取值范围,进而得到定点的坐标。

2.直接解法
对于一些简单的定点问题,我们可以直接通过解析几何中的公式和定理求解。

例如,当直线与圆相交时,直线上的定点可以通过求解直线与圆的交点得到。

三、定值问题的求解方法
1.函数与方程思想
在解决定值问题时,我们通常可以将问题转化为函数与方程的问题。

通过寻找合适的函数关系,我们可以得到定值的表达式,进而求解问题。

2.转化与化归思想
在解决定值问题时,我们可以通过转化与化归的思想,将问题转化为更容易解决的形式。

例如,在解决椭圆中的定值问题时,我们可以将椭圆转化为圆,从而简化问题。

3.数形结合思想
在解决定值问题时,我们可以利用数形结合的思想,通过几何图形的性质和公式,得到定值的表达式。

例如,在解决抛物线中的定值问题时,
我们可以通过抛物线的几何性质,得到定值的表达式。

四、圆锥曲线中定点定值问题的典型例题分析
1.椭圆中的定点定值问题
在椭圆中,定点定值问题通常涉及到椭圆的离心率、焦点坐标等概念。

通过利用椭圆的性质和公式,我们可以求解这类问题。

2.双曲线中的定点定值问题
在双曲线中,定点定值问题通常涉及到双曲线的离心率、焦点坐标等概念。

通过利用双曲线的性质和公式,我们可以求解这类问题。

3.抛物线中的定点定值问题
在抛物线中,定点定值问题通常涉及到抛物线的焦点坐标、准线方程等概念。

通过利用抛物线的几何性质和公式,我们可以求解这类问题。

五、总结与展望
在解决圆锥曲线中的定点定值问题时,我们需要灵活运用解析几何中的公式和定理,结合函数与方程、转化与化归、数形结合等数学思想,才能提高解题效率。

相关文档
最新文档