高中数学教案设计(精选12篇)
高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。
三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。
2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。
教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。
在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。
教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。
(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。
(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。
高中数学教案(精选17篇)

高中数学教案(精选17篇)高中数学教案 1各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。
下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。
一、教材分析(一)教材的地位和作用“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。
同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容本节内容分2课时学习。
本课时通过二次函数的图象探索一元二次不等式的解集。
通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。
本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。
关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。
高二上学期数学教学计划(通用12篇)

高二上学期数学教学方案〔通用12篇〕高二上学期数学教学方案〔通用12篇〕高二上学期数学教学方案篇1一、指导思想:1.获得必要的数学根底知识和根本技能,理解根本的数学概念、数学结论的本质,理解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.进步空间想像、抽象概括、推理论证、运算求解。
3.进步数学地提出、分析^p 和解决问题(包括简单的实际问题)的才能,数学表达和交流的才能,开展独立获取数学知识的才能。
4.开展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学形式进展考虑和作出判断。
5.进步学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二、教学目的:(一)情意目的:(1)通过分析^p 问题的方法的教学,培养学生的学习兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、互相评价,进步学生的合作意识。
(二)才能要求:(1)通过定义、命题的总体构造教学,提醒其本质特点和互相关系,培养对数学本质问题的背景事实及详细数据的记忆。
(2)通过提醒所学内容中的有关概念、公式和图形的对应关系,培养记忆才能。
(3)通过教学,进步学生是运算过程具有明晰性、合理性、简捷性才能。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵敏的运算才能,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,进步学生运算才能。
三、教学内容本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。
立体几何是研究的是物体的形状、大小与位置关系。
通过直观感知、操作确认、思辨论证、等方法认识和探究几何图形及其性质。
通过学习,培养和开展学生的空间想象才能、推理论证才能、运用图形语言进展交流的才能以及几何直观才能。
高中数学教案电子版(通用19篇)

高中数学教案电子版(通用19篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、心得体会、条据文书、合同协议、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, insights, normative documents, contract agreements, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学教案电子版(通用19篇)2024年人教版高中数学电子课本教案是教学活动中对于整个课程内容和过程的安排和设计,它具有指导教师教学行为、促进学生学习的重要作用。
优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)优秀高中数学教案模板篇一教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:求曲线的方程。
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答。
教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。
解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。
而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。
本节课就初步研究曲线方程的求法。
【问题】如何根据已知条件,求出曲线的方程。
【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决。
可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
高中数学教案教学设计10篇

高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。
“二面角”是人教版《数学》第二册(下B)中9.7的内容。
它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。
因此,它起着承上启下的作用。
通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
高中数学教案(11篇)

高中数学教案(11篇)高中数学教案优秀模板篇一一、教学目标:掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:向量的性质及相关知识的综合应用。
三、教学过程:(一)主要知识:1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略四、小结:1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,2、渗透数学建模的思想,切实培养分析和解决问题的能力。
五、作业:略高中数学教案优秀模板篇二[学习目标](1)会用坐标法及距离公式证明Cα+β;(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
[学习重点]两角和与差的正弦、余弦、正切公式[学习难点]余弦和角公式的推导[知识结构]1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。
其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。
我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。
但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。
高中数学教案(15篇)

《高中数学教案》第一篇:集合与函数一、教学目标1. 理解集合的概念,掌握集合的基本运算。
2. 理解函数的概念,掌握函数的基本性质。
3. 培养学生分析问题和解决问题的能力。
二、教学内容1. 集合的概念、表示方法及基本运算。
2. 函数的概念、表示方法及基本性质。
3. 函数与集合的关系。
三、教学重点与难点1. 重点:集合的概念、基本运算及函数的概念、基本性质。
2. 难点:集合与函数的关系,函数的性质。
四、教学过程1. 导入新课:通过生活中的实例,引导学生理解集合和函数的概念。
2. 讲解新课:详细讲解集合和函数的概念、表示方法及基本运算。
3. 课堂练习:通过实例分析,让学生掌握集合和函数的基本性质。
五、教学反思1. 通过本节课的学习,学生对集合和函数的概念有了初步的认识。
2. 学生在解决实际问题时,能够运用集合和函数的知识。
3. 在教学过程中,发现部分学生对集合与函数的关系理解不够深刻,需要加强引导和练习。
第二篇:不等式一、教学目标1. 理解不等式的概念,掌握不等式的解法。
2. 培养学生分析问题和解决问题的能力。
二、教学内容1. 不等式的概念及基本性质。
2. 一元一次不等式的解法。
3. 一元二次不等式的解法。
三、教学重点与难点1. 重点:不等式的概念、基本性质及一元一次不等式的解法。
2. 难点:一元二次不等式的解法。
四、教学过程1. 导入新课:通过生活中的实例,引导学生理解不等式的概念。
2. 讲解新课:详细讲解不等式的概念、基本性质及一元一次不等式的解法。
3. 课堂练习:通过实例分析,让学生掌握一元二次不等式的解法。
五、教学反思1. 通过本节课的学习,学生对不等式的概念有了初步的认识。
2. 学生在解决实际问题时,能够运用不等式的知识。
3. 在教学过程中,发现部分学生对一元二次不等式的解法掌握不够,需要加强引导和练习。
第三篇:数列一、教学目标1. 理解数列的概念,掌握数列的通项公式。
2. 培养学生分析问题和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
五、教学重点和难点1.教学重点理解并掌握诱导公式。
2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式。
六、教法学法以及预期效果分析高中数学优秀教案高中数学教学设计与教学反思“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。
下面我从教法、学法、预期效果等三个方面做如下分析。
1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
2.学法“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。
如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。
让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3.预期效果本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
七、教学流程设计(一)创设情景1.复习锐角300,450,600的三角函数值;2.复习任意角的三角函数定义;3.问题:由,你能否知道sin2100的值吗?引如新课。
设计意图高中数学优秀教案高中数学教学设计与教学反思自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。
(二)新知探究1. 让学生发现300角的'终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;3.Sin2100与sin300之间有什么关系。
设计意图由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。
(三)问题一般化探究一1.探究发现任意角的终边与的终边关于原点对称;2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;3.探究发现任意角与的三角函数值的关系。
设计意图首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。
同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进(四)练习利用诱导公式(二),口答下列三角函数值。
(1). ;(2). ;(3). .喜悦之后让我们重新启航,接受新的挑战,引入新的问题。
(五)问题变形由sin3000= -sin600 出发,用三角的定义引导学生求出sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值。
学生自主探究高中数学教学设计篇二教学目标(1)理解四种命题的概念;(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;(3)理解一个命题的真假与其他三个命题真假间的关系;(4)初步掌握反证法的概念及反证法证题的基本步骤;(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力、教学重点和难点重点:四种命题之间的关系;难点:反证法的运用、教学过程设计第一课时:四种命题一、导入新课【练习】1、把下列命题改写成“若p则q”的形式:(l)同位角相等,两直线平行;(2)正方形的四条边相等、2、什么叫互逆命题?上述命题的逆命题是什么?将命题写成“若p则q”的形式,关键是找到命题的'条件p与q结论、如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题、上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”、值得指出的是原命题和逆命题是相对的、我们也可以把逆命题当成原命题,去求它的逆命题、3、原命题真,逆命题一定真吗?“同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、学生活动:口答:(1)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等、设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础、二、新课【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题、【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?学生活动:口答:若一个四边形不是正方形,则它的四条边不相等、教师活动:【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题、把其中一个命题叫做原命题,另一个命题叫做原命题的否命题、若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定、【板书】原命题:若p则q;否命题:若┐p则q┐、【提问】原命题真,否命题一定真吗?举例说明?学生活动:讲论后回答:原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真、原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真、由此可以得原命题真,它的否命题不一定真、设计意图:通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性、教师活动:【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?学生活动:讨论后回答【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题、教师活动:【提问】原命题“正方形的四条边相等”的逆否命题是什么?学生活动:口答:若一个四边形的四条边不相等,则不是正方形、教师活动:【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题、把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题、原命题是“若p则q”,则逆否命题为“若┐q则┐p、【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?学生活动:讨论后回答这两个逆否命题都真、原命题真,逆否命题也真、教师活动:【提问】原命题的真假与其他三种命题的真假有什么关系?举例加以说明?【总结】1、原命题为真,它的逆命题不一定为真、2、原命题为真,它的否命题不一定为真、3、原命题为真,它的逆否命题一定为真、设计意图:通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性、教师活动:三、课堂练习1、若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?学生活动:笔答教师活动:2、根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?学生活动:讨论后回答设计意图:通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系、教师活动:略。
高中数学教学设计案例篇三提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。