电力新能源英语(1)

合集下载

电力英语单词

电力英语单词

电力英语单词Electricity英语单词包括:1. Electricity2. Power3. Voltage4. Current5. Circuit6. Generator7. Transformer8. Conductor9. Insulator10. SwitchElectricity is the flow of electric power or charge. It is a form of energy that comes from the movement of electrons. When these electrons are in motion, they create an electric current. This current can be harnessed to power various devices and systems.Electricity is measured in units of voltage, current, and resistance. Voltage is the force that pushes the electric charge through a circuit, while current is the rate of flow of electric charge. Resistance is the opposition to the flow of electric charge.A circuit is a closed loop through which an electric current can flow. It consists of a source of electrical energy, such as a battery or generator, and various components such as wires, switches, and resistors.Generators are devices that convert mechanical energy into electrical energy. They work on the principle of electromagnetic induction, where a conductor moving through a magnetic field generates an electric current.Transformers are devices used to change the voltage of an electric current. They are essential for transmitting electricity over long distances and for stepping up or stepping down the voltage as needed.Conductors are materials that allow electric current to flow through them easily, while insulators are materials that do not allow electric current to pass through them.This property of materials is crucial in designingelectrical systems and devices.Switches are devices used to control the flow ofelectric current in a circuit. They can open or close the circuit, thus controlling the flow of electricity tovarious components.电力是电力或电荷的流动。

新能源专业英语(Word最新版)

新能源专业英语(Word最新版)

新能源专业英语通过整理的新能源专业英语相关文档,渴望对大家有所扶植,感谢观看!新能源专业英语1.Put the following phrase into English. Unit 1 1.温室效应the greenhouse effect 2.可再生能源renewable energy 3.太阳能电池solar cell 4.风力发电系统wind turbine system 5.核能nuclear energy 6.海洋能ocean energy Unit 2 1.辐射度irradiance 2.负载load 3.耐候性weather fastness 4.光电效应photoelectric effect 5.光生伏打效应photovoltaic effect Unit 3 1.风电场wind farm 2.装机容量installed capacity 3.涡轮机turbine 4.水泵water pumping 5.风光互补wind and photovoltaic hybrid power 6.混合动力装置hybrid power system 7.电网utility grid 8.电池battery Unit 4 1.热交换器heat exchanger 2.核反应堆nuclear reactor 3.浓缩铀enriched uranium 4.低温冷却水subcooled water 5.千瓦kilowatt 6.沸水反应堆boiling water reactor 7.商用发电站commercial power plant 8.快速中子反应堆 a fast neutron reactor Unit 5 1.生物质biomass 2.植物vegetation 3.肥料manure 4.残留物residue 5.光合作用photosynthesis 6.碳水化合物carbohydrate 7.化石燃料fossil fuels 8.固定碳carbon fixed Unit 6 1.万有引力gravitational pull 2.潮汐tide 3.大陆架continental shelf 4.海岸线coastline 5.农历lunar6.港湾harbor7.月亮角度正交moon quadrature8.局部共振local resonance Unit 7 1.火山爆发volcanic eruption 2.放射性衰变radioactive decay 3.间歇岩geyser 4.注射injection 5.水库reservoir 6.裂纹crack Unit 8 1.利用harness 2.盐度salinity 3.潮汐tide 4.动能kinetic energy 5.水力发电hydro-electric power 6.引力gravitational pull 2.Translate the following sentences. Unit 1 1. Energy is an important material and energy foundation of human survival and development , its plays a vital role in the development of human civilization . New energy usually refers to the new energy technologies based on new development and utilization of energy , including solar , biomass , wind , geothermal , ocean energy and hydrogen etc. 能源是人类生存和发展的重要材料和能量基础,它在人类文明的发展中扮演着至关重要的角色。

电力系统及其自动化专业英语词汇-东南大学

电力系统及其自动化专业英语词汇-东南大学
6
电力系统专业英语词汇(常用基本词汇6)
Harmonic load characteristics load modelling network equation node admittance matrix observability QR transformation method line loss shaft system model salient pole rotor solid round rotor phasor diagram classical model simplified model
10
电力系统专业英语词汇(常用基本词汇)
Power system operating states
normal
restorative
alert
In extremis
emergency
8
电力系统专业英语词汇(常用基本词汇8)
Section switch分段开关 sectional bus分段母线 generator-transformer unit发变组 balance of plant 辅助设备 coal grinding mill磨煤机 ball tube mill钢球磨煤机 feed pump 给水泵 AM/FM/GIS EMS DMS DA
2
电力系统专业英语词汇(常用基本词汇2)
excitation system(励磁系统), field current(励磁电流), prime mover field winding(励磁绕组), rotor(), stator(), resistance(电阻), resistor,capacitance(电容), capacitor reactance(电抗), reactor, conductance(电导), conductor(导体) susceptance(电纳B), impedance(阻抗), admittance(导纳), synchronous condenser(同步调相机), SVC (static var compensator) variable(变量) , function(函数), constrain(约束), equation disturbance(), overload(过载), outage (停电), blackout shifting(切换) , security dispatch(安全调度) generator tripping(切机), load curtailment(削减负荷), load shedding (甩负荷) dynamic performance (动态特性) planning, design, and operation of power system power system operating states

电力行业专用英语Word版

电力行业专用英语Word版

(1)元件设备三绕组变压器 three-column transformer ThrClnTrans双绕组变压器 double-column transformer DblClmnTrans 电容器 capacitor并联电容器 shunt capacitor电抗器 reactor母线 busbar输电线 transmissionLine发电厂 power plant断路器 breaker刀闸(隔离开关) isolator分接头 tap电动机 motor(2)状态参数有功 active power无功 reactive power电流 current容量capacity电压 voltage档位tap position有功损耗reactive loss无功损耗active loss功率因数power-factor功率power功角power-angle电压等级voltage grade空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current阻抗impedancepositive sequence impedance 负序阻抗negative sequence impedance 零序阻抗zero sequence impedance电阻resistor电抗reactance电导conductance电纳susceptance无功负载reactive load或者QLoad有功负载active load PLoad遥测YC(telemetering)遥信YX励磁电流(转子电流) magnetizing current定子stator功角power-angle上限upper limit下限lower limit并列的apposable高压high voltage低压low voltage中压middle voltage电力系统power systemgenerator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop pointtch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system机端电压控制AVR电抗reactanceresistance功角power angle有功(功率)active power无功(功率)reactive power功率因数power factor无功电流reactive current下降特性droop characteristics 斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization 阻尼dampingng保护断路器circuit breaker 电阻resistance电抗reactance阻抗impedance电导conductance 电纳susceptance 导纳admittance电感inductance电容capacitance。

英文翻译 电力新能源

英文翻译 电力新能源

Available online at ScienceDirectEnergy Procedia 50 (2014) 306 – 313The International Conference on Technologies and Materials for Renewable Energy, Environmentand Sustainability, TMREES14PHOTOVOLTAIC ASSISTED FUEL CELL POWER SYSTEMSA. Djafour a*, M.S. Aida b,B. Azoui cUniversité Kasdi Merbah Ouargla, Laboratoire LAGE, Faculté des Sciences Appliquées, Ouargla 30000, Algérieb Faculté des Sciences, Université de Constantine, Constantine 25000, Algériec Faculté des Sciences de L’Ingénieur, Laboratoire LEB, Université de Batna, Batna 05000, AlgérieAbstractThe appearance of new concepts of decentralized electricity generation and the development of renewable sources are attracting much interest for techniques of energy storage. Renewable sources are the best candidates, but the intermittent of their production needs to find effective means of storing and protecting the environment. A system coupling a photovoltaic array and an electrolyser is used to store electricity by means of a storage form of gas.This paper presents the results of sizing a system of hydrogen production obtained through an electrolyser, powered by photovoltaic solar modules installed in Ouargla, to meet the needs of hydrogen for a fuel cell of type, PEMFC. Sizing a photovoltaic system for a given site requires knowledge of the solar radiation of the latter, unfortunately, many localities in Algeria do not have such data or the radiations are not sufficiently representative. In this study we developed a calculation program under Matlab for determining the global radiation received by a surface inclined, in a suite we have established a flowchart that helps to size the main components of the installation to produce hydrogen by introducing the necessary technical characteristics of system components and the calculated values of the global radiation for the site of Ouargla, and electric energy needs of the user.© 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license© 2014 The Authors. Published by Elsevier Ltd.(/licenses/by-nc-nd/3.0/).Selection and peer-review under responsibility of the Euro-Mediterranean Institute for Sustainable Development (EUMISD).Selection and peer-review under responsibility of the Euro-Mediterranean Institute for Sustainable Development (EUMISD)Keywords: Solar energy, photovoltaic system, electrolyser, hydrogen, fuel cell, Sizing.*Corresponding author. Tel.: +21329712627; fax: +21329712627.E-mail address: djafour.ah@univ-ouargla.dz1876-6102 © 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicense (/licenses/by-nc-nd/3.0/).Selection and peer-review under responsibility of the Euro-Mediterranean Institute for Sustainable Development(EUMISD) doi:10.1016/j.egypro.2014.06.037A. Djafour et al. / Energy Procedia 50 (2014) 306 – 313 3071. IntroductionAlgeria is well endowed with both conventional (non renewable) and non conventional (renewable) sources of energy. The largest non-renewable energy source found in Algeria is fossil (i.e. oil and gas), which is being actively exploited. Renewable sources of energy are also abundant in Algeria, the most important one being the solar. Indeed, the mean yearly sunshine duration varies from a low of 2650 h on the coastal line to 3500 h in the South, the potentialof daily solar energy is important. It varies from a low average of 4.66 kWh/m2 in the north to a mean value of 7.26 kWh/m2in the south. This means that the yearly energy potential on 80% of the territory is of the order of 2650 kWh/m2. The total daily available energy is of the order of 16.56×1015 Wh [1]. The availability of solar energy is limited only on shiny days. Therefore, it is important to store the solar energy in other form of energy for the usage at night and gloomy weather. Hydrogen has been identified to be an ideal medium for this purpose with an important energy carrier with low harmful emissions, high –efficiency conversions into useful energy forms [2, 3]. The Photovoltaic conversion is one of the most interesting uses of solar energy modes. It provides electricity directly and independently with reliable equipment and duration of relatively high life, allowing reduced maintenance. The combination of this mode of production to the fuel cell through the production of hydrogen to be used by the fuel cellis therefore presented as an ecological mean of energy production. The objective of this work is the study and designof a hybrid photovoltaic system for electrical energy production. Mainly with the production of hydrogen needed to make worked a fuel cell of type, PEMFC, (proton exchange membrane fuel cell). In this work we have developed a mathematical model to design the main elements of the system for producing hydrogen by introducing the technical characteristics necessary as well as climate and solar data of the implantation site of the system.2. System descriptionThe installation is composed of a photovoltaic generator, a proton exchange membrane electrolyser and electronic interfaces between the power sources and the electrolyser, it produces hydrogen and oxygen those are stored and subsequently consumed by the fuel cell. Fig. 1 shows the system with the option of storing electrical energy in batteries for the cloudy days.Photovoltaic Load Management ElectricalGenerator & LoadControl UnitElectricityHydrogenBatteriesWaterElectrolyser H2 Storage Tank Fuel CellO2H2OO2 or Air Fig1.The Hybrid system (PV-PEMFC) for energy production2.1. Photovoltaic FieldPhotovoltaic generator (PV) transforms sunlight directly into electricity. It is composed by several photovoltaic modules, which are composed of solar cells. The maximum load current depends on the size and number of series - parallel modules [4].308 A. Djafour et al. / Energy Procedia 50 (2014) 306 – 3132.2. Fuel Cell (PEMFC)A fuel cell is a generator that directly converts the internal energy of a fuel into electrical energy using anelectrochemical controlled process. Proton exchange membrane fuel cell (PEMFC) is composed of an assembly of cells which include a cathode chamber and an anode chamber separated by two electrodes and an intermediate electrolyte (proton conducting polymer) [5]. Molar gas flow consumed by the fuel cell is represented by [6]:Fgas,pac n cυ Iυ1(1) n υ FK FpacWhere Fgas , pac : Gas flow consumed (mol / s),n c : Cells number,I : Current (A)n : Number of moles of electrons exchanged per mole of water (n = 2 for hydrogen, n = 4 for oxygen) F : Faraday constant, (96485 C/mol),K F pac: Faraday efficiency (%)2.3. Electrolyser (PEME)The principle of operation of a Proton Exchange Membrane Electrolyser (PEME) is based on the same concept as a PEM fuel cell. The water electrolysis using polymer electrolyte membrane presents the advantages of highly pure hydrogen at the output with only water and electricity at the input. This process does not require electrolyte recycling or corrosive electrolyte [2]. Molar flow of gas produced by the electrolyser is represented by [6, 7]:F gas,El =n c× I×ȘF El (2) n × FWhere Fgas,El : gas flow consumed (mol / s), K F El: Faraday efficiency (%)2.4. Storage systemEnergy storage in the autonomous photovoltaic systems is usually provided by batteries, components used in the majority of cases, [8]. The technical characteristics of storage systems can result in significant operational constraints and reduce their field of use. The coupling technologies or hybridizing with complementary properties in certain cases is necessary to circumvent the difficulties associated with the use of a single device. In our case we will consider a system with hybrid storage (storage via hydrogen and storage in the batteries).3.SOLAR RADIATION3.1.Site location and measurementTo determine the solar radiation on the surface of the panels, we have used the coordinates of Ouargla site (latitude 31° 52ƍ N, longitude 5° 24ƍ E with an altitude of 141m). Measurement data of insulation are provided from the National Office of Meteorology of Ouargla for a period of ten years of observation (2000-2009), see Table1,[9]. Table 1. Monthly average of insulation hours for Ouargla [9]Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Insulation(h) 249.9 246.5 264.3 283.1 279.8 296.9 335 322.6 257.9 256.8 249.2 202.2A. Djafour et al. / Energy Procedia 50 (2014) 306 – 313 3093.2. Model for calculation of solar radiation on a tilted surfaceUsing the Liu and Jordan model, the monthly average daily global radiation on a tilted surface may be computed from the following equation, [9,10, 11].__ ________(3)HcpH 0 K t R__Where H cp : Monthly average daily global radiation on a tilted surface, (Wh/m 2. day) ___H 0 : Monthly average daily extraterrestrial radiation on a horizontal surface. (Wh/m 2. day)_____R : Ratio of the average beam radiation on tilted surface, K t : Monthly-average clearness index(a)(b)Fig.2 Monthly average daily global radiation in function of the tilt angle (ȕ°), (a) January – June, (b) July - December310 A. Djafour et al. / Energy Procedia 50 (2014) 306 – 313Fig.2 shows the results of calculating of the monthly average daily global radiation incident on a south facing surface in Ouargla with the different tilt angles with respect to the horizontal surface (-15 ° to 90 °) with step of 1°.According to Fig. 2 it is clear that the unique optimal angle for each month of the year is the maximum points of each curve. By using El-Kassaby model [12], we have calculated the seasonal optimal angles and by using Gladius model [13], we have calculated the annual optimal angle and by using our chart we have calculated the corresponding global radiation for a south-facing sensor. See Table 2. With an optimum inclination ȕopt (°) annual of 39.14°, the maximum average daily radiation received in Ouargla is equal to 5.889 kWh/m2.day, which gives an average energy of 2149.6 kWh/m2.year,[9].Table 2. Monthly average daily global radiations at monthly, seasonal and annual optimum tilt anglesMonth Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ȕopt(°)62 61 52 36 17 0 -7 -4 11 29 47 59 Hcp 5271.6 6157.8 6347.8 6092.6 6454.7 6501.6 6953.1 7162.3 6777 6014.2 5994.5 6209.5 (wh/m².day)Season Winter Spring Summer Autumnȕopt(°)57°15.37°-2.2°43.5°Hcp 5255.4 6146.8 6326.8 5800.8 6451.9 6373.3 6889.8 7132.9 6730.3 5881.8 5986.5 6034.2 (wh/m².day)ȕopt(°)39.14° (Annual optimum tilt angle)Hcp 4939 5803.5 6229.5 6087.9 6152.9 5670.5 5705 6013.3 6247.3 5949.4 5953.2 5920.3 (wh/m².day)4.Sizing of the generator4.1.The descriptive parametersThe most important parameters needed to know for the calculation of the necessary size of the photovoltaic generator in our system are the electrolyser consumption Ec (kWh / day) and the average daily global radiation incident on the collector or the surface of the modules Ei (kWh / m². day). To complete the design of our generator we have based on the following assumptions:-The molar flux produced by the electrolyser is the same as the molar flow consumed by the fuel cell.-The demand is constant during the study period (it can change during the day, but the daily average value remains constant).-Efficiencies of system components are constants.4.2.Evaluation of Electric Power needsIn the present work we choose the use of an electrolyser with a power of 1.920kW to produce the hydrogen needs for the work of a fuel cell with power of 0.5 kW for 6.5 hours each night. According to the assumptions listed in the previous section we have calculated the electrolyser operating duration by using the equations (1) and (2), further to the results of the calculation, to produce the needs of hydrogen, the electrolyser may be obliged to operate for four hours each day with a consumption of 7.68 kWh/day which must be provided by the photovoltaic generator, see Table 3, for the specifications of the electrolyser and of the fuel cell.Table 3. Specifications of the PEM electrolyser and the PEMFC Fuel cell [6].Specifications PEM Electrolyser PEMFC cell bsc 500WRated power 48 V 20VRated power 1920 W 500 WA. Djafour et al. / Energy Procedia 50 (2014) 306 – 313 311Maximal power 2000 W 600 WNumber of cells 26 32Operating Pressure 15 barsOperating current 40 A 25 AOperating temperature 70°C 60°CH2 gas production 0.45 m3/hVoltage by cell 1.84VH2 gas pressure 1atmO2 gas pressure 0.2095 atm4.3. Generator peak powerFrom the electric power needs calculated in previous section and the average daily solar radiation, the corresponding peak power of the generator (Pc) in kWc is calculated by the following equation [14].P cE c(4) KEiWhere:Ec: Energy consumed per day (kWh / day)Ei: The average daily global radiation corresponding to optimal modules slops (kWh / m². day)K: Correction coefficient for systems with battery his value is between 0.55 and 0.75 [14]. The value used in our calculations (system with battery) is equal to 0.68.4.4. Generator sizing resultsThe peaks powers of the generator calculated by the equation (4) for each month with an annual optimum tilt panels, 39.14 °, are shown in Fig. 3. To meet the daily energy needs throughout the year, the minimum of peak power needed to be installed is, Pc = 2.1578 kWc. In this work we choose to use the photovoltaic modules TE 1800 Q from Total Energy, see Table 4, for the specifications of these modules.Table 4. Specifications of the PV module [19]Model type TE1800Q from Total EnergyPeak power, P op 180 WcPeak power voltage, V op 26.8VPeak power current, I op 6.8 AOpen circuit voltage, V oc 33 VShort circuit current, I sc 7.3 AThe sizes 1462mm*973mm*35mmTolerance (%) +/-3Warranty 25 year Fig.3 The peak power required for each month with a 39.14° tilt panels312 A. Djafour et al. / Energy Procedia 50 (2014) 306 – 313In order to ensure the system operation over all the year, the required configuration of the photovoltaic generator is calculated as follow, [6]:The number maximal of modulesN TPc= 2159.7 / 180 = 11.99 modules, ( Pc mod ule : Module peak power (Wc)) Pcmod uleThe number of series modules in each branchN s V L= 48 / 26.8 = 1.79 modules, (V L : Load voltage (V) and V op : Module peak power voltage (V)) V opThe number of branchesN p I L= 40 / 6.8 = 5.88 modules, ( I L : Load current (A) and I op : Module peak power current (A)) I opThen we choose to install twelve modules (six branches in parallel with two series modules in each branch), with the total area of 17.07 m² and a peak power of 2160 Wc.5. Estimating of the storage capacityDetermining the Battery Park (storage capacity) is made taking into account a number of days of autonomy to ensure with zero production. The number of days varies depending on the application and geographical situation [15, 16, 17].CsEc υJ Aut(5) R bυ P dυUWhere:C s: Storage capacity (Ah)Ec : Energy consumed per day (kWh / day)J Aut: Autonomy (day)R b: Battery efficiency (%)P d: Depth of discharge (%)U : Working voltage (V)The capacity in C10 what is necessary to store is evaluated by the next formula [18].C10C S(6)F CSF CS: Is the correction factor (factor used to deduct the capacity in C10 by correcting the calculated capacity), [18].F CS= 1.25 for 1 J Aut 4.5.1. Batteries sizing results and the choice of a regulatorThe number of branches of the batteries can be, Nb (C10/C10batterie), so for our case with an autonomy of one day we found With batteries of 6V and 160 Ah, the number of branches, Nb 2 branches, and for set the voltage of the storage system with the working voltage, we find the number of batteries in series, Ns = 8 batteries. See Table 5, for the specifications of batteries.For the choice of the regulator, the first parameter to consider is the power of regulator, or the maximum current that can be controlled for a given voltage. For the voltage, the regulator will be able to supporter about the double of its rated voltage, value near the open voltage, Voc, of the panel at a low temperature, [8]. For the characteristics of the chosen regulator, see Table 6, for the regulator specifications.A. Djafour et al. / Energy Procedia 50 (2014) 306 – 313 313Table 5. Datasheet of batteries [6] Table 6. Datasheet of the regulator [6]Capacity in C10 160 Ah Maximal current of the generator 45 AEfficiency (Șb)80% Maximal power of the generator 2160 W Overcharge level 6.3 V Maximal operating current 60 AExcessive level of discharge 5.7 V Maximal operating power 2880 W Maximal depth of discharge (PD) 60% Efficiency (Șr) 85%6. ConclusionSolar hydrogen system as an Energy supply is a good solution to solve fuel logistic problem for remote, desert areas in Algeria that can at least be capable of providing necessary light and energy. In this study we have showed an example of sizing of a solar generator that can make a stand-alone hybrid power generation system, mainly with the production of hydrogen needed to run a PEMFC fuel cell, for the purpose of proper management of the electrical energy produced by the PV system, we can say that the results of this design are perfectly theoretical (in the absenceof an experiment). The supposition of some assumptions makes these results approximate.As a perspective, a design based on technical criteria for a realistic case can lead to an acceptable result on the one hand the sizing of the PV array, the storage tank of gas, the storage batteries, and on the other hand, the global efficiency of the system.References[1]R. Boudries, R. Dizene. Potentialities of hydrogen production in Algeria. Int J Hydrogen Energy 2008; 33 (17): 4476 - 4487[2]F. Barbir. PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy 78, pp.661-669, 2005.[3]R.E. Clarke, S Giddey, F.T. Ciachi, S.P.S. Badwal, B. Paul, J. Andrews. Direct coupling of an electrolyser to a solar PV system for generatinghydrogen. International Journal of Hydrogen Energy 34, pp. 2531-2542, 2009.[4]B. Omar, A. Guen-Bouazza, B. Bouazza, T. Boussoukaia, N. E Chabane-Sa ri. Conception et dimensionnement d’une installation solaireautonome alimentant un poste radio téléphonique mobile de type Emetteur/Récepteur (E/R). 6ème séminaire international sur la physique énergétique, Bechar, 21- 23 Octobre, 2002.[5]P. Stevens, F. Novel-Cattin, A. Hammou, C. Lamy M. Cassir. Pile à combustible. Technique de l’ingénieur, Doc. D3340, 10 Août 2000.[6]H. Abdi, N. Ait Messaoudene, M. Omari, Y. Bekhta. Etude et dimensionnement d’une installation solaire de production d’hydrogène. 2èmeWIH2 Ghardaïa, 2007.[7]Q. Ulleberg. Modeling of advanced alkaline electrolysers a system simulation approach. Int J Hydrogen Energy 28, 2003, pp. 21 - 33.[8]A. Labouret, M. Villoz. Energie solaire photovoltaïque, Manuel du professionnel. Dunod, Paris, 2003.[9]A. Djaf our. Etude d’un système de production d’hydrogène solaire. Thèse de Doctorat, Université d’Ouargla 2013.[10]Beckman W.A, Duffie J.A. Solar engineering of thermal processes. A wiley- interscience, publication, New York. 1980.[11]K. Messaitfa. Evaluation de l’apport quantitatif des inclinaisons optimales d’un système de pompage photovoltaïque. Enersole 01, Adrar,Algérie, 30-31 Octobre 2001, pp255-272.[12]M.M. Kassaby. Monthly and daily optimum tilt angle for south facing solar collectors, theoretical model, experimental and empiricalcorrelations. Solar and Wind Technology, Vol. 5, N°6, pp. 589 –596, 1988.[13]G. Lewis. Optimum sizing on a Collector for a Domestic Water Heating System. Solar and Wind Technology, Vol. 4, N°3, pp. 411 - 414, 1987.[14]L. Chancelier et E. L aurent. L’Electricité Photovoltaïque. Editeur Gret, France, 1996.[15]M. Benbitour, A. Gamma, M. belhamel. Logiciel de dimensionnement des systèmes PV. Bulletin des énergies renouvelables N°10, Décembre2006.[16]J. Royer et al. Le Pompage Photovoltaïque. Manuel de cours, Institut de l’Énergie des Pays ayant en commun l’usage du Français, Québec,Canada, 1998.[17]H. Belmili, M. Ayad, E. M. Berkouk, M. Haddadi. Optimisation de dimensionnement des installations photovoltaïques autonomes - Exemplesd’applications, éclairage et pompage au fil du soleil. Revue des Energies Renouvelables CICME’08 Sousse, 2008, pp. 27 – 39.[18]O. Kebour . Etude et Analyse d’un Habitat Solaire Photovoltaïque. Mémoire de Magister, (Blida) 2004.[19]Web site, http://www.kelvin-solartechnik.de/te.htm. (Site visited in Mai 2006).。

电力词汇1-动力工程

电力词汇1-动力工程

电力行业词汇动力工程潮汐能Ti da l po w e r地热能Geothermal energy地下热能Subterranean heat energy电力需求Power demand电能Electric energy动力需求Power demand二次能源Secondary energy source发电能源构成Compositiono fen ergyfo rel ectricityg eneration发电能源在一次能源消费中的比重Shaero fen ergyfo rel ectircityg enerationin to talpr imary energy废热Waste heat风力能源Wind energy风能Wind energy工业余热Industiralex hausthe at海洋能Marine energy海洋热能Marine thermo energy海洋温差能Marine thermo energy核能Nuclear energy节能Energy savingEn erg y c on se rv atio n节约能源Energy saving聚变能Fusion energy可再生能源Renewable energy source能量平衡Energy balance能量损失Energy loss能源Energy source能源构成Energy source composition能源管理Energy management能源规划Energy source planning能源基地Base of energy source能源开发Energy source development能源强度Energy intensity能源弹性系数Energy elasticity能源消耗Energy consumption能源消费结构Energy consumption structure能源需求Energy demand能源政策Energy policy清洁能源Clean energy resource燃料动力基地Fuelan dp owerba se燃料消耗Fuel consumption燃料消耗率Specific fuel consumption燃料需求Fuel demand生物能Biologicalen ergy生物能源Biological energy水电基地Hydropower base水利能源Hydraulic energy水能Hydropower, Hy dr oen er gy , W a te rp ow er太阳能Solar energy无污染能源Pollution-freee nergy resource新能源New energy resource余热Residualh eat, Af te r-h e at ( rea ct or )原子能Atomic energy再生能源Renewable energy source分布能源Distributed Energy Resource (DER )能源储存、消耗和转换超导储能Superconducting energy storage超导能量储存Superconductive energy storage抽水蓄能Pumped storage线能量转移Linear energy transfer地热能转换Geothermalen ergyc onversion地下储存Underground storage地下气化Underground gasification地下蓄气库Underground compressed air storage reservoir电力系统储能Energy storage for electric power system电容能量储存装置Capacitive energy storage equipment飞轮储能Flywheelen ergys torage由飞轮、变频器、发电电动机和磁悬浮轴承等组成飞轮储能装置。

电能的英语单词

电能的英语单词

电能的英语单词1. 定义与释义- 单词:electric energy- 1.1词性:名词- 1.2释义:电荷定向移动所具有的能量,是一种清洁、便捷的能源形式,可用于驱动各种电器设备和提供动力等。

- 1.3英文释义:The energy that is generated by the movement of electric charges and can be used to power various electrical devices and provide kinetic energy.- 1.4相关词汇:electric power(电力),electrical energy(电能,与electric energy常可互换),electric current(电流),voltage (电压)2. 起源与背景- 2.1词源:“electric”一词源于古希腊语“elektron”,意为琥珀。

古希腊人发现用毛皮摩擦琥珀后,琥珀能吸引轻小物体,这是人类对电现象的早期认识。

后来随着科学技术的发展,人们对电的本质和电能的利用有了更深入的了解,从而有了“electric energy”这个词汇来描述电所具有的能量。

- 2.2趣闻:1831年,英国物理学家法拉第发现了电磁感应现象,这一发现为电能的大规模产生和应用奠定了基础。

在早期,电能的应用非常有限,主要用于一些简单的实验和少数特殊场合。

据说,当时有人用电能来电击治疗一些疾病,虽然现在看来这种方法缺乏科学依据,但也反映了人们对电能神奇力量的探索和好奇。

3. 常用搭配与短语- 3.1短语:generate electric energy(产生电能)- 例句:Power plants use various methods to generate electric energy.- 翻译:发电厂使用各种方法来产生电能。

- 3.2短语:store electric energy(储存电能)- 例句:Batteries are devices that can store electric energy.- 翻译:电池是可以储存电能的装置。

不同形式的能源英语

不同形式的能源英语

不同形式的能源英语能源是现代社会必不可少的资源,它不仅是人们日常生活的基础,同时也是推动经济发展和技术进步的关键因素。

不同形式的能源拥有各自的特点和应用领域,在不同的场合中所涉及的英语也不尽相同。

本文将围绕不同形式的能源英语进行阐述。

第一步:化石能源英语化石能源是指天然产生的矿物质资源,如煤炭、石油和天然气。

这些能源在人类生产生活中占据着非常重要的地位。

当涉及到化石能源的英语时,常常会出现以下几种词汇:1. Coal:煤炭2. Oil:石油3. Natural gas:天然气4. Fossil fuel:化石燃料5. Hydrocarbon:碳氢化合物6. Petroleum refinery:炼油厂7. Oil well:油井8. Coal mine:煤矿第二步:可再生能源英语随着环保意识逐渐加强,可再生能源越来越受到人们的重视。

可再生能源指的是人类一直在使用的能源,如风能、太阳能、水能、地热能等。

在涉及可再生能源的英语表达时,常常会出现以下几种词汇:1. Renewable energy:可再生能源2. Solar energy:太阳能3. Wind energy:风能4. Hydro power:水能5. Geothermal energy:地热能6. Biomass energy:生物质能源7. Solar panel:太阳能电池板8. Wind turbine:风力发电机第三步:核能源英语核能源是指通过核反应释放出来的能量,它的发展受到极大的争议。

当涉及到核能源的英语表达时,常常会出现以下几种词汇:1. Nuclear energy:核能2. Nuclear power plant:核电站3. Nuclear reactor:核反应堆4. Nuclear waste:核废料5. Radiation:辐射6. Uranium:铀7. Plutonium:钚8. Nuclear fusion:核聚变总之,不同形式的能源在英语中所涉及的词汇也各不相同,因此在学习英语的过程中,我们需要根据能源类型来适当地学习相关的词汇和知识,以便更好地理解和表达与能源有关的话题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力新能源英语
Unit 1
replenish 再填装满
biomass (单位面积或体积内)生物的数量,生物质photovoltaic 光电的
megawatt(MW)百万瓦特(电学)
geothermal 地热的
geysers 间歇泉
rated 额定的
ethanol 乙醇
sugar cane 甘蔗
intermittment 间歇的,断断续续的
unsightly 难看的
couple with 外加,加上
legislation 立法
incentive 刺激,动机
commercialization 商品化,商业化
equilibrium 平衡,均衡
hydrosphere 水界,水圈
latitude 纬度
dissipate 消散
precipitation 降水,降水量
biofuel 生物燃料
hydrogen 氢
inexhaustible 无穷无尽的,永不枯竭的
trough 水槽
fossil fuels 矿物燃料
alleviation 缓和
Unit 2
cycle 周期
biogas 生物气,沼气
trail 跟踪,追踪
geothermal power plant 地热发电站
extract 榨取
tidal power station 潮汐发电站
ebb 退潮
reversible 可翻转的
silicon cell 硅电池
irrigation 灌溉
atomic reactor原子反应堆
medium
Ocean thermal energy conversion 海洋热能转换系统
conventional 常规的
Magneto-hydrodynamic power generator 磁流体发电机
conducting fluid 导电流体
magnetic field 磁场
storage power plant 蓄能电站
pure daily-regulated pumped storage power plant 日调节纯抽水蓄能电站water conveyance system 输水系统
powerhouse complex 厂房
generator motor 发电电动机
Unit 3
elevation 海拔,高度
head 水头
earthwork 土方工程
draw off 排出
spillway 泄洪道
flood-discharge gate 泄洪闸
silt-discharge gate 冲沙闸
catchment 集水
crest 顶,鸡冠
penstock 水渠
shaft 竖井
bucket 涡轮叶片
impulse turbine 冲击式水轮机
reaction turbine 反击式水轮机
peak hours 高峰时间
off-peak hours 低谷时间
drainage 排水
runoff 流走之物
tidal plants 潮汐发电站
ebb 退潮
barrage 拦河坝,堰
estuary 河口,江口
Unit 4
organism 生物体
incandescent 白热的
hydrogen nuclei 氢核
helium nuclei 氦核
payback 偿还
displace 取代
untapped 未使用的,未开发的
chip 基片,芯片
photon 光子
photovoltaic(PV)effect 光电效应sparse 稀少的
cost-effective 成本效益比
collector 聚集器
ash disposal 灰渣处理
stack emission 咽气(尾气)排放thermal pollution热污染
aquaic 水的
perturbation 紊乱
Unit 5
pump water 用泵抽水
grind grain 碾碎谷物
mill lumber 碾磨木材
spinning rotor 旋转转子
nacelle 连接舱
aerodynamics 空气动力学
prolong 延长
blade 叶轮
backup 支持
auxiliary 辅助的
offline 脱机的,离线的maintenance 维护
longevity 寿命
propeller 螺旋桨
horizontal-shaft 水平轴
address 演说,演讲
swishing sound 嗖嗖的声音
mask 掩盖
shrub 灌木,灌木丛
Unit 6
bioenergy 生物能
bioethanol 生物乙醇
biodiesel 生物柴油
rapeseed 油菜籽
landfill 垃圾
Arundo donax 芦竹(Spanish cane)pyrolysis 高温分解
deplete 耗尽,使衰竭
nitrogen oxide 氯氧化物
coconut oil 椰子油
caster oil 蓖麻油
sugar beet 糖用甜菜
maize 玉米
carbon monoxide 一氧化碳
additive 添加剂
MTBE 甲基叔丁基醚
gasohol 酒精—汽油混合燃料
petroleum spirit 汽油,石精油
anaerobic 厌氧的
slurry 泥浆
dung 粪便
toxic chemical 有毒化学物质
Unit 7
nucleus 原子核
fission 裂变
fusion 聚变
protons 质子
neutrons 中子
electron 电子
strontium 锶
iodine 碘
xenon 氙
trigger 引发,触发
self-sustaining 自激的
plasma 等离子
ionize 电离,使电子化
availability 有效性
boron 硼
control rod 控制棒
criticality 临界点
graphite moderated reactors 石墨反应堆heavy water moderated reactor 重水反应堆coolant 冷却液
fissile 裂变的
shield 掩体,护罩
lead 铅
dilute 稀释
disperse 分散
uranium 铀。

相关文档
最新文档