单肺通气与肺保护通气策略共20页文档
肺保护通气PPT课件

治疗过程
详细描述患者接受肺保护通气 治疗的过程,包括通气模式选 择、参数设置、治疗时间等。
治疗效果
患者接受治疗后,生理学指标 、呼吸力学指标的改善情况,
以及患者预后情况。
05
肺保护通气面临的挑战 与解决方案
呼吸机相关性肺损伤
01
机械通气过程中,由于气压伤、 炎症反应等因素,可能导致肺部 组织损伤,引发呼吸机相关性肺 损伤。
长期随访与评估
对接受肺保护通气治疗的患者进行长期随访和评估,了解治疗效果和 生存状况,为进一步优化治疗方案提供依据。
谢谢观看
3
降低呼吸机撤离难度
最佳PEEP水平有助于降低呼吸机撤离难度,缩 短机械通气时间。
允许性高碳酸血症
允许性高碳酸血症是指允许患者 在一定范围内出现高碳酸血症,
以避免呼吸机相关性肺损伤。
允许性高碳酸血症有助于减少肺 泡过度扩张,降低呼吸机相关性
肺损伤的风险。
允许性高碳酸血症有助于改善氧 合和通气/血流比值,提高气体
发展历程
初始阶段
20世纪80年代,人们开始关注机 械通气对肺部的影响,并尝试采 用小潮气量通气等措施来减少肺
部损伤。
进展阶段
20世纪90年代,随着对呼吸生理 学的深入了解,人们进一步优化了 机械通气模式和参数设置,提出了 个体化通气治疗的概念。
成熟阶段
进入21世纪,肺保护通气策略逐渐 成为呼吸治疗的标准操作,并在临 床实践中得到了广泛应用和验证。
呼吸机工作原理
机械通气
通过机械装置产生气流, 模拟正常呼吸过程,推动 空气进入和排出肺部。
参数设置
根据患者的病情和生理需 求,设置呼吸机的参数, 如潮气量、呼吸频率、吸 呼比等。
单肺通气肺损伤机制及保护策略研究进展

单肺通气肺损伤机制及保护策略研究进展单肺通气(one-lung ventilation,OLV)指胸外科手术患者经支气管导管仅利用单侧肺(非术侧肺)进行通气的方法。
其主要目的是隔离患侧肺,防止液性分泌物流入健侧,如支气管扩张、肺脓肿以及肺大泡等。
近年来,随着胸外科手术快速发展及胸腔镜技术的推广,单肺通气技术现已广泛应用于食管、肺叶、全肺、胸腔镜等手术。
但OLV 期间由于无通气侧肺的血液没有得到氧合而造成了静脉血的掺杂,从而引起肺组织缺氧导致肺组织细胞的损伤以及功能的损害。
此外,由于肺的反复萎陷复张以及在通气过程中过度的牵张等都可导致肺的损伤,甚至可引起呼吸机相关性肺损伤(ventilator associatedlung injury,V ALI),导致肺部并发症甚至死亡率增高,对此已引起临床的广泛关注。
本文就有关单肺通气肺损伤机制及保护策略的研究进展作一综述。
1 OLV 肺损伤机制1.1 V ALI V ALI 是一种肺部弥漫性肺泡-毛细血管膜损伤和通透性增加综合征[1]。
包括肺气压伤、肺容量伤、肺萎缩伤及肺生物伤。
这几个方面在本质上可看作是机械力诱导的炎症细胞激活为基础的生物学损伤[2]。
1.2 术中操作损伤术中手术操作对肺组织的牵拉、挤压等均可引起肺损伤,这与手术的范围以及创伤大小有一定相关性。
肺内淋巴管侧支回路众多,术中淋巴管道破坏与输液过多也是发生急性肺损伤(acute lung injury,ALI)的原因[3]。
1.3 缺血缺氧性损伤OLV 时萎陷肺的血流灌注明显下降,对机体生理的影响主要是造成低氧血症与非通气侧肺的缺氧性肺血管收缩(hypoxic pulmonary vasoconstriction,HPV)。
OLV 时术侧肺无通气导致通气/血流(V/Q)比值下降,肺内分流增加。
HPV 是一个重要的自身调节机制,它可减少功能性分流,血管扩张剂、低碳酸血症、异常混合静脉血氧分流可抑制HPV 并加重肺内分流,部分吸入麻醉药也可抑制HPV。
肺保护性通气策略ppt课件

机械通气诱发急性肺损伤
7
临床的需求
围术期的通气治疗
压力控制通气+全程支持自主呼吸 肺保护性通气策略(open lung
&keep lung open)
8
传统麻醉呼吸机
VS
电动电控(活塞)呼吸机
气动电控(风箱)呼吸机
9
风箱/活塞呼吸机的工作原理 容量源呼吸机且无持续气流
气体置换
10
从传统呼吸机向涡轮呼吸机发展
插管后 PEEP = 0 5, 8 cmH2O
Peep=0cmH2O
Peep=5cmH2O
Peep=8cmH2O
20
PEEP调整
Peep=0cmH2O
Peep=5cmH2O
Peep=8cmH2O
21
PERSEUS A500 肺保护性通气策略
潜在肺损伤以及已经有肺损伤患者 肺不张 机械通气使肺泡形变剧烈--- 剪切伤
2
3
全身麻醉后的通气改变
Froese AB, et al Effect of Anesthesia and Paralysis on Diaphragmatics in man. Anesthesiology, 1974, 41:242
4
机械通气时的 V/Q 情况
正压通气对 V/Q 的影响
膈肌活动(被动)引起
mbar
0
extra settings
测得的 VT
PMAX VT
mbar
mL
35 450
Freq.
1/ min
10
TINSP
sec
2.0
TIP:TI
%
10
PEEP
mbar
肺保护性通气策略

肺保护性通气策略适当地应用呼吸支持和机械通气治疗,可挽救许多危重病人的生命。
但由于机械通气本身是非生理性的,常规应用可能引起病人肺损伤或使原有的肺损伤加重,导致所谓的“呼吸机所致肺损伤” (ventilatorinduced lung injury, VILI),并已为大量的动物实验和临床研究所证实。
另有研究表明,严重的败血症和多器官功能障碍综合征与机械通气的应用不当有关。
在机械通气病人的肺中有细菌移位发生;不适当的机械通气可引起细胞因子的释放,它转移至血中可导致多脏器功能障碍综合征。
为此,近年来提出了“肺保护性通气策略”的概念,其内容包括:①限制潮气量和气道压即用小潮气量进行机械通气。
②在吸气时加用足够的压力使萎陷的肺泡复张,呼气时用适当的PEEP保持肺泡开放,即“肺开放”策略。
一、小潮气量通气应用小潮气量同时限制吸气压进行机械通气的目的是为了避免大潮气量或高气道压通气引起肺泡过度扩张,从而导致的VILI。
对于用小潮气量通气时选择的潮气量的大小,以及与常规机械通气在减少病人ICU停留时间,改善病人预后等方面有无差别等关键问题,文献报道中各作者的结论不一,争议颇大。
直至在1999年的全美胸科年会上,美国心肺血液研究所公布了关于小潮气量通气的多中心前瞻性随机对照研究结果:ARDS病人随机分为2组,小潮气量组V T为6.2ml/ kg,限制平台压小于30cmH2O,常规通气组V T为11.8ml/ kg,限制平台压小于50cm H2O,在841例中发现小潮气量组的死亡率为31%,显著低于常规通气组的39.8%,同时,小潮气量组的住院时间也较常规通气组明显缩短,为小潮气量通气在临床危重病人中的推广应用提供了强有力的科学依据。
小潮气量通气将引起PaCO2的增高,造成高碳酸血症。
高碳酸血症可引起肺动脉压的升高,影响心肌收缩性,发生心律失常及颅内压升高等诸多不良影响,但如果PaCO2的上升速度较缓慢,许多病人可以耐受100mmHg以内的PaCO2,必须避免引起PaCO2的突然升高或降低,这对病人都是极为有害的。
肺保护性通气策略---精品管理资料

ICU肺保护性通气策略(lung protective ventilation strategy, LPVS)一、概述由于发病原因及发病机制比较复杂,又缺乏特效的治疗手段,急性呼吸窘迫综合征(ARDS)死亡率高达32%~50%。
ARDS患者病理基础是肺泡毛细血管急性损伤,通透性增加,大量肺泡萎陷,造成通气/血流比例失调,分流量增加,临床表现为顽固性低氧血症。
机械通气(Mechanical Ventilation)是对ARDS进行呼吸支持的有效手段,可以显著改善患者的气体交换和氧合功能,降低呼吸功耗。
其目的是增加气体交换量,恢复和稳定已关闭但仍有潜在功能的肺泡,使其重新参与氧交换,增加氧释放以满足机体代谢的需要。
因此要求维持足够的潮气量(VT)以摄入O2排出CO2来维护PaO2和PaCO2于正常水平,而此时患者仅有20%~30%肺泡可以通气,采用常规潮气量(10~15ml/kg)可致这些通气肺泡过度扩张而致肺泡泄漏、肺间质气肿和气体栓塞等并发症,造成肺泡上皮和血管内皮过度牵拉伤、高通透性肺泡水肿以及肺气压伤,统称为“与通气机有关的肺损伤”(ventilator—associated lung injury, VALI),包括肺气压伤,如气道压过高导致的张力性气胸,肺间质、纵隔和皮下气肿,心包和腹膜后积气,气腹,系统性气体栓塞(统称为肺泡外气体).因此,近年来肺保护性通气策略(lung protective ventilation strategy, LPVS)逐渐被大家接受,主要内容包括小潮气量(VT):5~7mL/Kg、低平台压:25~30 cmH2O、适度的呼吸末正压(PEEP):12~15cmH2O,以及允许性高碳酸血症。
二、病理机制(一)VALI发病机制肺泡和周围血管间隙的压力梯度增大,导致肺泡破裂,形成肺间质气肿,气体再沿支气管血管鞘进入纵隔,并沿其周边间隙进入皮下组织、心包、腹膜后和腹腔。
单肺通气与肺保护通气策略护理课件

常见并发症及处理
诊断
患者血氧饱和度下降,可能出现呼吸 困难、发绀等症状。
处理
通过提高吸氧浓度、延长吸氧时间, 或使用无创呼吸机辅助通气等措施纠 正低氧血症。
常见并发症及处理
诊断
患者可能出现胸闷、气短、咳嗽等症状,胸部X线检查可见肺 部萎陷。
处理
鼓励患者咳嗽、深呼吸,使用支气管扩张剂以改善肺通气, 严重时可考虑纤维支气管镜治疗。
THANKS
感谢您的观看
Part
06
总结与展望
单肺通气与肺保护通气策略的总结
肺保护通气策略
通过采用适当的机械通气 方式,减少呼吸机相关肺 损伤,保护肺组织。
单肺通气
在某些手术中,为了暴露 手术视野,采用单侧肺通 气,使手术侧肺萎陷。
护理措施
在实施单肺通气与肺保护 通气策略时,采取相应的 护理措施,确保患者的安 全和舒适。
Part
05
临床案例分享
成功案例分享
成功经验
分享单肺通气与肺保护通气策略在临床实践中的成功应用案例,包括患者基本信 息、手术过程、通气策略实施情况、护理措施及效果评价等。
失败案例分析
失败教训
分析单肺通气与肺保护通气策略在临床实践中失败的案例,探讨失败原因、通气策略的不足之处以及如何避免类似失败的发 生。
Part
03
单肺通气与肺保护通气策略的 护理
术前评估与准备
评估患者情况
了解患者病史、手术类型 、麻醉风险等,为制定护 理计划提供依据。
术前宣教
向患者及家属介绍手术及 麻醉相关知识,减轻焦虑 和恐惧情绪。
术前准备
确保患者术前禁食、禁饮 ,完成必要的实验室检查 和影像学检查。
术中护理要点
围术期单肺与双肺通气的肺保护策略

围术期单肺与双肺通气的肺保护策略围术期患者存在发生多种肺损伤的风险,包括肺不张、肺炎、气胸、支气管胸膜痿、急性肺损伤、急性肺损伤/急性呼吸窘迫综合征(ALI/ARDS)等。
而麻醉管理既可能改善肺功能,也有可能导致或加重肺损伤。
应用更接近生理状态的潮气量及适当呼气末正压(PEEP的肺保护性通气策略能够减轻肺损伤的程度。
本文将对肺功能正常患者与存在慢性阻塞性肺部疾病(COPD患者进行单肺与双肺通气时,机械通气的效果以及机械通气在呼吸机相关肺损伤(VILI)中的作用进行探讨。
1慢性阻塞性肺疾病(COPD)COPD是手术患者中最常见的慢性呼吸系统疾病,包括三种病变形式:肺气肿、外周气道疾病和慢性支气管炎。
呼吸驱动力许多严重COPD患者存在静息下动脉血二氧化碳分压(PaCO2升高的情况,通常的病史采集、体格检查以及肺功能检查难以将这类“ CO2潴留”与其他非潴留情况相鉴别。
对于机械性肺功能低下的患者,这种CO2潴留的主要原因可能并非呼吸控制机能的改变,而更多是因为缺乏维持正常PaCO2所需要增加呼吸功的能力。
之前的理论认为,慢性高碳酸血症的患者有赖于低氧刺激以保证呼吸驱动,而对PaCO2敏感性降低。
这被用来解释临床上COPD患者濒临呼衰时,给予高浓度氧气反而诱发高碳酸血症性昏迷。
实际上,由于分钟通气量基本上没有改变,因此这类患者的PaCO2增高仅有很小一部分是由呼吸驱动减弱引起的。
造成PaCO2小幅升高的原因然而此类患者术后必须补充给氧,以预防与术后不可避免的功能残气量减少有关的低氧血症发生,同时要预料到可能会伴随有PaCO2升高,密切监测PaCO2 变化。
为了在术前识别此类患者,所有3期(FEV1 30-49%预期值)及4期(FEVK30濒期值)COPD患者都需要进行动脉血气分析检查。
肺大泡许多中重度COPD患者的肺实质会出现囊状空腔,即形成肺大泡。
肺大泡通常占据胸腔>50%时才出现症状,患者在原有阻塞性肺病的基础上出现限制性肺病的表现。
单肺通气与肺保护通气策略

选择单肺通气还是肺保护通气,需要根据患者 的病情、手术类型、麻醉方式等因素综合考虑。
单肺通气和肺保护通气可以结合使用,以提高 手术效果和患者安全。
单肺通气:通常采用双腔 气管插管,保证手术侧肺 的通气
肺保护通气:通常采用低 潮气量、高峰压等通气策 略,保护肺部免受损伤
单肺通气:适用于需要手 术侧肺通气的情况,如肺 癌手术等
肺保护通气:适用于需要 保护肺部的情况,如急性 呼吸窘迫综合征等
单肺通气与肺保护通气的优缺点
单肺通气:优点是操作简 单,适用于大多数手术; 缺点是容易导致肺不张和 通气不足。
肺复张:通过间歇 性正压通气,使肺 泡重新张开,减少 肺损伤
保护性通气策略: 根据患者的病情和 肺功能,选择合适 的通气模式和参数, 以减少肺损伤
单肺通气与肺保护通气的异同
单肺通气:主要用于手术 中的一侧肺通气,减少手 术对健康肺的干扰
肺保护通气:主要用于保 护肺部,减少肺部损伤, 适用于多种肺部疾病
肺保护通气策略可以提高患者的生存率,降低并 发症的发生率。
肺保护通气的目标
减少肺损伤 保护肺功能
降低呼吸机相关性肺炎的发生率 提高患者舒适度和生存质量
肺保护通气的实施方法
低潮气量通气:将 潮气量控制在68ml/kg体重,以 减少肺损伤
呼气末正压通气: 在呼气末施加正压, 以保持肺泡开放, 减少肺损伤
B
麻醉医生在患侧支气管 插管,健侧支气管封堵
C
机械通气设备调整至单 肺通气模式
D
监测患者生命体征,确 保通气效果和患者安全
肺保护通气的定义
肺保护通气策略是一种旨在减少肺损伤的通气方 式。