微纳技术 最终版

Company

LOGO微纳技术研讨

组员:张勇丁月曹世进

指导老师:张胜文

微纳技术

概念由来及发展过程

应用领域

发展意义

未来发展前景

微纳技术一般指微米、纳米级(0.1---100nm)的材料、设计、制造、测量、控制和产品的研究、加工、制造以及应用技术。在基础科研以及制造行业中,微纳制造技术的研究从其诞生之初就一直牢据行业的尖端位置。

Company Logo 应用领域

微纳技术能源

生物医学

机械

制造光电

技术

机械制造微/纳制造领域已经成为衡量一个国家科技水平的重要标志之一。微/纳结构加工技术的发展和应用将给先进制造技术和超精密加工领域带来革命性的变革。

超精密加工及特种加工

硅微机械加工LIGA 技术隧道式近场放电加工生物制造

光电技术提高光电信号传输效率

有色金属及镀镍等材

料的反射镜

Text

透镜,棱镜

及反射镜光通讯耦合器件及微型槽阵列Text 激光系统中球面、非球面、柱面等特

殊曲面透镜阵列

MEMS器件和系统具有以下几个特征

体积小,尺寸在毫米与微米之间格

基于(但不限于)硅微加工技术制造

MEMS中的机械不限于狭义的机械力学中的机械,包括力、声、

光、磁乃至化学、生物等具有能量转化、传输等功能的效应

与微电子芯片类同,可以大批量、低成本生产,使其

性能价格比相对于传统机械性能价比有大幅度提高

MEMS的目标是微/纳机械与IC集成的具有智能的微系统

MEMS 汽车传感器分类

1.发动机控制系统用传感器:温度、压力、位置和转速、流量、气体浓度和爆震等传感器

2.底盘控制用传感器:车速、加速度、节气门位置、发动机转速、水和油温传感器、转矩、油压传感器

3.车身控制用传感器:安全气囊系统中的加速度传感器,倒车控制中的超声波传感器或激光传感器和保持车距的距离传感器等

4.电气设备中的传感器:确定汽车行驶方向的罗盘传感器、陀螺仪和车速传感器、方向盘转角传感器等

生物医学纳米药物

医学检查生物医学方面的微纳技术将在不断提高医疗技

术、减少医疗事故、延长人类寿命发挥越来越

重要的作用。

人造器官植入式电子装置医疗器械

拉曼散射效应定向药物投放

燃料电池黑硅(光伏材料)

微纳制造一旦成熟,将会消耗更少的能源与资源

前景

微纳技术是继IT、生物之后21世纪最具发展潜力的高新技术,是未来十年高增长的新兴产业。也是高新技术产业发展新的增长点,同样也是当今高科技发展的重要领域之一。

在不久的未来,微纳技术定会广泛应用在机械、医疗、能源、环境等方方面面,满足人们不断追求条件更好且可负担的医疗保健服务、更高的生活品质和质量更好的日用消费品,并应对由能源成本上涨和资源枯竭所带来的风险。

而且微纳技术的发展将会为维持强劲的社会经济提供动力以满足社会需求。

Company LOGO

聚合物微纳制造技术现状及展望

聚合物微纳制造技术现状及展望 目录 聚合物微纳制造技术现状及展望 (1) 1、微纳系统的意义、应用前景 (1) 2、微纳机电系统国内外研究现状和发展趋势 (3) 3. 聚合物微纳制造技术研究现状 (9) 4. 展望 (11) 微/纳米科学与技术是当今集机械工程、仪器科学与技术、光学工程、生物医学工程与微电子工程所产生的新兴、边缘、交叉前沿学科技术。微/纳米系统技术是以微机电系统为研究核心,以纳米机电系统为深入发展方向,并涉及相关微型化技术的国家战略高新技术[1]。微机电系统(Micro Electro Mechani cal System, MEMS ) 和纳机电系统(Nano Electro Mechanical System, NEMS )是微米/纳米技术的重要组成部分,逐渐形成一个新的技术领域。MEMS已经在产业化道路上发展,NEMS还处于基础研究阶段[2]。 从微小化和集成化的角度,MEMS (或称微系统)指可批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通讯和电源等于一体的微型器件或系统。而NEMS(或称纳系统) 是90 年代末提出来的一个新概念,是继MEMS 后在系统特征尺寸和效应上具有纳米技术特点的一类超小型机电一体的系统,一般指特征尺寸在亚纳米到数百纳米,以纳米级结构所产生的新效应(量子效应、接口效应和纳米尺度效应) 为工作特征的器件和系统。图1给出了MEMS 和NEMS 的特征尺度、机电系统的尺度与相应的理论问题[2]。 图1 MEMS 和NEMS 的特征尺度、机电系统的尺度与相应的理论问题 1、微纳系统的意义、应用前景 由于微/纳机电系统是一门新兴的交叉和边缘学科,学科还处于技术发展阶段,在国内外尚未形成绝对的学科和技术优势;微/纳米技术还是一项支撑技术,它对应用背景有较强的依赖性,目前它的主要应用领域在惯导器件、军事侦察、通信和生物医学领域,以及微型飞机和纳米卫星等产品上。 (1)重要的理论意义和深远的社会影响

5-第四章 自组装纳米制造技术_讲稿

[1]崔铮. 微纳米加工技术及其应用(第二版). 北京:高等教育出版,2009.5 [2]王国彪. 纳米制造前沿综述. 北京:科学出版社,2009.3 31引言 “自上而下”与“自下而上”纳米制造技术 当前的纳米制造技术广义上可分为“自上而下”和“自下而上”两类。 自上而下的方法是指从宏观对象出发,对宏观材料或原料进行加工,完成纳米尺度结构特征的制造。主要涉及的技术包括切割、刻蚀以及光刻等。“自上而下”的加工方式,其最小可加工结构尺寸最终受限于加工工具的能力:光刻工具或刻蚀设备的分辨能力等。 自下而上的方法是指从微观世界出发,通过控制原子、分子和其它纳米对象,制造期望的纳米结构、器件和系统。主要包括自组装和通过工具辅助对不同的纳米尺度对象进行纳米操作。上一讲介绍的原子、分子操纵即属于纳米操作。这一讲主要介绍自组装纳米制造技术。 自组装(self-assembly) 自组装是一个非常广义的概念,任何一种由独立个体自发地形成一个组织、结构或系统的过程都可以称之为自组装。它是通过各种类型的相互作用力将各种结构单元组织在一起的,是自然界中广泛存在的现象。 不同尺度的自组装系统 自组装系统的尺度范围广,可以是微观的、介观的或宏观的,小到原子核,大到宇宙天体,均存在广义上的自组装现象,如图。 静态自组装和动态自组装 自组装可分为两大类: 静态自组装(S)是指那种在全部或者局部范围内平衡的体系,它不需要消耗能量。在静态自组装中,形成有序的结构是需要能量的,但是组装结果处在能量极小或最小状态,一旦形成,它就非常稳定,目前大多数关于自组装的研究都是这一类型。如原子、离子和分子晶体,相分离和离子层状聚合物,自组装单层膜,胶质晶体,流体自组装等。 动态自组装(D)发生机制必须在系统消耗外界能量的情况下才能发生,一旦有能量的散失,形成的结构或系统中的各个单元之间就会有相互作用产生而被破坏。如生物细胞,细菌菌落,蚁群和鱼群,气象图,太阳系,星系等。动态自

微纳制造技术作业

问题:1、微机械制造材料大致分为几类而常用的制造微机电产品的材料有哪些,MEMS装置为何大多选用硅材料制造 2、纳米材料与常规的材料相比,有哪些优点 答:1、(1)微机械制造材料大致分为结构材料、功能材料和智能材料三大类。 (2)常用的制造微机电产品的材料有: a,结构材料:是以力学性能为基础,具有一定强度,对物理或化学性能也有一定要求,一般用于构造微机械器件结构机体的材料,如硅晶体。 b,功能材料:指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。如压电材料、光敏材料等。 c,智能材料:一般具备传感、致动和控制3个基本要素。如形状记忆合金、磁/电致伸缩材料、导电聚合物、电流变/磁流变材料等。 (3)由于硅材料具有众多优点,所以MEMS装置大多选用硅材料制造。 其优点如下:?? ①优异的机械特性:在集成电路和微电子器件生产中,主要利用硅的电学特性;在微机械结构中,则 是利用其机械特性。或者同时利用其机?械特性和电学特性,即具有机电合一的特性,便于实现机电器件的集?成化。? ②储量丰富,成本低。硅是地壳中含量最多的元素之一,自然界的硅元素通常以氧化物如石英(sio2) 的形式存在,使用时要提纯处理,通?常加工成为单晶形式(立方晶体,各向异性材料)? ③便于批量生产微机械结构和微机电元件。硅材料的制造工艺与基层电路工艺有很好的兼容性,便于 微型化、集成化和批量生产。硅的微细?加工技术比较成熟,且加工精度高,容易生成绝缘薄膜。? ④具有多种传感特性,如压电阻效应、霍尔效应。? ⑤纯净的单晶硅呈浅灰色,略具有金属性质。可以抛光加工,属于硬脆材料,热传导率较大,对温度 敏感。 2、纳米材料内部粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。对纳米体 材料,可以用“更轻、更高、更强”这六个字来概括。 ①“更轻”是指借助于纳米材料和技术,可以制备体积更小性能不变甚至更好的器件,减小器件的体

微细加工技术概述及其应用

2011 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:微细超精密机械加工技术原理及系统设计学生所在院(系):机电工程学院 学生所在学科:机械设计及理论 学生姓名:杨嘉 学号:10S008214 学生类别:学术型 考核结果阅卷人

微细加工技术概述及其应用 摘要 微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。 关键词:微细加工;电火花;微铣削 1微细加工技术简介及国内外研究成果 1.1微细加工技术的概念 微细加工原指加工尺度约在微米级范围的加工方法。在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。 现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,微细超精密加工的主要方法如下: 微细电火花加工技术的研究起步于20世纪60年代末,是在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时、局部高温来熔化和汽化蚀除金属的一种加工技术。由于其在微细轴孔加工及微三维结构制作方面存在的巨大潜力和应用背景,得到了

纳米科学与微纳制造》复习材料.docx

《纳米科学与微纳制造》复习材料1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性: 1)在常态下对动植物体友好的金,在纳米态下则有剧毒; 2)小于 100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存; 3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。 纳米材料有两层含义: 其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结 构单元的尺度小于 100nm ,如纳米晶合金中的晶粒 ; 其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在1-100nm 内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和 微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的 源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的 学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大 的好奇心和探索欲望。 5、纳米材料有哪 4 种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒

机械工程学科前沿技术综述说课讲解

机械工程学术前沿技术综述 摘要:最近几年,我国机械工程学科在各大领域内取得了一系列突破性进展和原创性成果,为繁荣的经济建设提供了大量的理论方法和实践经验,对世界产生了重要的影响。本文针对当前机械工程领域的发展现状,综述了其重要进展和成果,并对我国机械工程的发展趋势进行了展望。 关键词:机械工程,学术,前沿,综述 1 引论 总的来说,机械工程是一门与机械和动力生产有关的工程学科,它以有关的自然科学和技术科学为理论基础,结合生产实践中的技术经验,研究和解决在开发、设计、制造、安装、运用和修理各种机械中的全部理论和实际问题。 我国机械工程学科包含以下几个方面机械制造及其自动化机械电子工程机械设计及理论车辆工程和仿生技术。机械工程的服务领域广阔而多面,凡是使用机械、工具,以至能源和材料生产的部门,无不需要机械工程的服务。概括说来,现代机械工程有五大服务领域:研制和提供能量转换机械;研制和提供用以生产各种产品的机械;研制和提供从事各种服务的机械;研制和提供家庭和个人生活中应用的机械;研制和提供各种机械武器。 传统机械的发展经历了从制造简单工具到制造由多个零件、部件组成的现代机械的漫长过程。机械工程以增加生产、提高劳动生产率、提高生产的经济性为目标来研制和发展新的机械产品。随着世界的进步、国家的需求和学科的发展,机械工程科学的发展出现了以下显著特点和趋势:一方面,高技术领域如光电子、微纳系统、航空航天、生物医学、重大工程等的发展,要求机械与制造科学向这些领域提供更多更好的新理论、新方法和新技术,因而出现和发展着微纳制造、仿生及生物制造、微电子制造等制造科学新领域;另一方面,随着机械与制造科学与信息科学、生命科学、材料科学、管理科学、纳米科学技术的交叉,除了推动着机构学、摩擦学、动力学、结构强度学、传动学和设计学的发展外,还产生和发展着仿生机械学、纳米摩擦学、制造信息学、制造管理学等新的

MEMS技术发展综述

MEMS技术发展综述 施奕帆04209720 (东南大学信息科学与工程学院) 摘要:对于MEMS技术进行简要的介绍,了解其诞生与发展,所涉及的学科领域,目前的研究成果以及在生活、军事、医学等方面的应用。目前MEMS在我国的发展已取得一定成果,在21世纪可以有更大的突破,其未来在材料、工艺、微器件、微系统方面也具有巨大的发展空间。 关键词:MEMS、传感器、微制造技术 一、MEMS简介 微机电系统(micro electro mechanical system,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致了硅基MEMS传感器的诞生和发展。在随后的几十年里,MEMS得到了飞速发展,1987年美国加州大学伯克利分校研制出转子直径为60~120/μm的硅微型静电电机;1987~1988年,一系列关于微机械和微动力学的学术会议召开,所以20世纪80年代后期微机电系统一词就渐渐成为一个世界性的学术用语,MEMS技术的研究开发也成为一个热点,引起了世界各国科学界、产业界和政府部门的高度重视,经过几十年的发展,它已

成为世界瞩目的重大科技领域之一。 二、MEMS涉及领域及作用 MEMS技术涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等学科。MEMS开辟了一个新的技术领域,它的研究不仅涉及元件和系统的设计、材料、制造、测试、控制、集成、能源以及与外界的联接等许多方面,还涉及微电子学、微机构学、微动力学、微流体学、微热力学、微摩擦学、微光学、材料学、物理学、化学、生物学等基础理论 三、MEMS器件的分类及功能 目前,MEMS技术几乎可以应用于所有的行业领域,而它与不同的技术结合,往往会产生一种新型的MEMS器件。根据目前的研究情况,除了进行信号处理的集成电路部件以外,MEMS内部包含的单元主要有以下几大类: (1)微传感器: 主要包括机械类、磁学类、热学类、化学类、生物学类等。其主要功能是检测应变、加速度、速度、角速度(陀螺)、压力、流量、气体成分、湿度、pH值和离子浓度等数值,可应用于汽车、航天和石油勘探等行业。

微纳制造技术作业

微纳制造技术作业 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

问题:1、微机械制造材料大致分为几类而常用的制造微机电产品的材料有哪些,MEMS装置为何大多选用硅材料制造 2、纳米材料与常规的材料相比,有哪些优点 答:1、(1)微机械制造材料大致分为结构材料、功能材料和智能材料三大类。 (2)常用的制造微机电产品的材料有: a,结构材料:是以力学性能为基础,具有一定强度,对物理或化学性能也有一定要求,一般用于构造微机械器件结构机体的材料,如硅晶体。 b,功能材料:指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。如压电材料、光敏材料等。 c,智能材料:一般具备传感、致动和控制3个基本要素。如形状记忆合金、磁/电致伸缩材料、导电聚合物、电流变/磁流变材料等。 (3)由于硅材料具有众多优点,所以MEMS装置大多选用硅材料制造。 其优点如下: ①优异的机械特性:在集成电路和微电子器件生产中,主要利用硅的电学特性;在微机 械结构中,则是利用其机械特性。或者同时利用其机械特性和电学特性,即具有机电合一的特性,便于实现机电器件的集成化。 ②储量丰富,成本低。硅是地壳中含量最多的元素之一,自然界的硅元素通常以氧化物 如石英(sio2)的形式存在,使用时要提纯处理,通常加工成为单晶形式(立方晶体,各向异性材料) ③便于批量生产微机械结构和微机电元件。硅材料的制造工艺与基层电路工艺有很好的 兼容性,便于微型化、集成化和批量生产。硅的微细加工技术比较成熟,且加工精度高,容易生成绝缘薄膜。 ④具有多种传感特性,如压电阻效应、霍尔效应。 ⑤纯净的单晶硅呈浅灰色,略具有金属性质。可以抛光加工,属于硬脆材料,热传导率 较大,对温度敏感。 2、纳米材料内部粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的 特性。对纳米体材料,可以用“更轻、更高、更强”这六个字来概括。 ①“更轻”是指借助于纳米材料和技术,可以制备体积更小性能不变甚至更好的器件, 减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。 ②“更高”是指纳米材料可望有着更高的光、电、磁、热性能。 ③“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳 米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。纳米材料中的基本颗粒的微小尺寸效应,致使材料中的结构颗粒或原子团大多数是不存在位错的,这

MEMS文献综述报告

微机电系统(MEMS)的主要工艺 姓名:曹光浦 班级:02321202 学号:1120120403 指导老师:何光

前言 微电子机械系统(MEMS)的出现,极大地扩展了微电子领域的研究空间。从广义上讲,MEMS是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整系统。MEMS主要包含了微型传感器、执行器及相应的处理电路三部分。作为输入信号的自然界的各种信息,首先通过传感器转化成各种电信号,经过信号处理以后,再通过微执行器对外部世界发生作用。传感器可以把能量从一种形式转化成另一种形式,从而将现实世界的信号(如热、运动等信号)转化成系统可以处理的信号(如电信号)。执行器根据信号处理电路发出的指令完成人们所需要的操作。信号处理器则可以对信号进行转换、放大和计算等处理。 微机电系统(MEMS)的主要工艺 1、体加工工艺 1.1腐蚀工艺 腐蚀是指一种材料在它所处的环境中由于另一种材料的作用而造成的缓慢的损害的现象。然而在不同的科学领域对腐蚀这一概念则有完全不同的理解方式。在微加工工艺中,腐蚀工艺是用来“可控性”的“去除”材料的工艺。大部分的微加工工艺基于“Top-Down”的加工思想。“Top-Down”加工思想是通过去掉多余材料的方法,实现结构的加工。(雕刻——泥人)作为实现“去除”步骤的腐蚀工艺是形成特定平面及三维结构过程中,最为关键的一步。 腐蚀工艺简介图 1.2湿法腐蚀 湿法化学腐蚀是最早用于微机械结构制造的加工方法。所谓湿法腐蚀,就是将晶片置于液态的化学腐蚀液中进行腐蚀,在腐蚀过程中,腐蚀液将把它所接触的材

料通过化学反应逐步浸蚀溶掉。用于化学腐蚀的试剂很多,有酸性腐蚀剂,碱性腐蚀剂以及有机腐蚀剂等。根据所选择的腐蚀剂,又可分为各向同性腐蚀和各向异性腐蚀剂。各向同性腐蚀的试剂很多,包括各种盐类(如CN基、NH 基等)和酸,但是由于受到能否获得高纯试剂,以及希望避免金属离子的玷污这两个因素的限制,因此广泛采用HF—HNO3腐蚀系统。各向异性腐蚀是指对硅的不同晶面具有不同的腐蚀速率。基于这种腐蚀特性,可在硅衬底上加工出各种各样的微结构。各向异性腐蚀剂一般分为两类,一类是有机腐蚀剂,包括EPW(乙二胺、邻苯二酚和水)和联胺等,另一类是无机腐蚀剂,包括碱性腐蚀液,如KOH、NaOH、NH4OH 等。 1.3干法腐蚀 干法腐蚀是指利用高能束与表面薄膜反应,形成挥发性物质,或直接轰击薄膜表面使之被腐蚀的工艺。干法腐蚀能实现各向异性刻蚀,即纵向的刻蚀速率远大于横向刻蚀的速率,保证了细小图形转移后的高保真性。但工艺设备昂贵,不适用于生产。 就湿法和干法比较而言,湿法的腐蚀速率快、各向异性差、成本低,腐蚀厚度可以达到整个硅片的厚度,具有较高的机械灵敏度。但控制腐蚀厚度困难,且难以与集成电路进行集成。 湿法腐蚀和干法腐蚀的优缺点比较 2、硅片键合工艺

纳米制造技术的详细介绍和应用的详细资料概述

纳米制造技术的详细介绍和应用的详细资料概述 史铁林,教育部“微纳制造与纳米测量技术”创新团队负责人、中国振动工程学会常务理事、中国振动工程学会动态信号分析专业委员会主任委员、中国振动工程学会故障诊断专业委员会副主任委员、中国微米纳米技术学会理事。他先后获多项中国青年科技奖、全国优秀博士后、湖北省五四青年奖章、中国机械工程学会杰出青年科技奖和首批“新世纪百千万人才工程”国家级人选等荣誉称号。他发表学术论文250余篇,其中SCI收录150多篇,申请国家发明专利80多项,授权50多项。 问:纳米技术、信息技术和生物技术并列为21世纪的三大科技,而纳米制造则是支撑它们走向应用的基础。那么,纳米制造是如何定义的?其主要特征是什么? 史铁林:美国科学基金会将纳米制造定义为构建适用于跨尺度集成的、可提供具有特定功能的产品和服务的纳米尺度的结构、特征、器件和系统的制造过程。纳米制造已远远超出常规制造的理论和技术范畴,相关技术的发展将依赖于新的科学原理和理论基础,依赖于多学科交叉融合。纳米制造从牛顿力学、宏观统计分析和工程经验为主要特征的传统制造技术走向基于现代多学科综合交叉集成的先进制造科学与技术。其主要特征在于:(1)制造对象与过程涉及跨尺度;(2)制造过程中界面/表面效益占主导作用;(3)制造过程中原子/分子行为及量子效应影响显著;(4)制造装备中微扰动影响显著。 问:纳米制造的关键结构从尺度上主要体现为结合微米与纳米的跨尺度制造和纳米范畴的纳尺度制造,请介绍一下这两种关键结构的特点,以及您的团队在该领域取得的成果。史铁林:跨尺度集成制造是将不同尺度的结构组合、加工形成多尺度整体的过程。微纳集成结构可以根据它们的结构特性分为无序分级结构、一维纳米分支结构、层叠分级结构、几何形状可控分级结构和纳米悬浮分级结构等。微纳集成结构可以有不同的形状、尺寸、层数等几何特征,其关键的一点是要实现纳结构在微结构上的定点、可控集成。稳定的微纳集成结构不仅能为研究纳米材料的光、电等方面的性能提供方便,还可能为功能微/纳米电子器件的研制打下基础。在微纳结构的集成过程中,微结构界面的各种因素都会对纳米结构集成效果带来较大影响,因此研究微环境对纳结构形成的影响机理,实现微环境的

自组装技术综述

第一章 1 背景意义(引言) 材料在人类社会进步过程中有着特殊意义。从石器时代,青铜时代,铁器时代,到水泥/钢筋时代,再到硅时代,无一不体现出材料的重要作用。科学家预言,我们正步入纳米时代。 纳米是长度单位,原称毫微米,就是十亿分之一米或者说百万分之一毫米,略等于45个原子排列起来的长度。纳米科学与技术,有时简称为纳米技术,研究领域为结构尺寸在1至100纳米范围内材料的性质和应用。 现在纳米研究正在蓬勃展开。科学家们通过实验发现,在纳米尺度的结构有很多新现象,新特征,新技术。纳米电子器件有金属块,纳米陶瓷,纳米氧化物,纳米药物,纳米卫星,以后还有纳米化妆品、纳米电冰箱、纳米洗衣机、纳米布、纳米水等新产品问世。 过去几十年间,微电子和计算机技术被广泛运用。内存的容量和运行速度以幂指数式增长。这种增长机制正是通过降低芯片的尺寸来实现的。目前,为满足客户需求,芯片尺寸已降低到100nm以内。在生物医学和人类健康领域,为了更好的诊断和治疗,纳米探测器,纳米抗体,纳米药物的研究正蓬勃展开。 在纳米尺度上实现材料表面结构和性质的加工或图案化,对现代技术的发展和理论的应用有着重要的意义,特别是新型微小结构的成功构造或现有结构的微型化。微加工或图案化技术,除了对微电子

技术中的集成电路、信息存储器件、微机电系统有巨大推动作用外,还对小型传感器、机械材料、生物载体和微型光学元件等的响应速度、成本、能耗和性能有优化作用。与此同时,纳米技术的发展和应用融合了多门传统学科,相继衍生出多种学科门类,创造了新的理论和方法,为微观世界的研究提供了很好的契机。 然而也面临着很多困难,纳米材料在热力学、动力学、光学、磁学、电学以及化学性质方面都与宏观物体有很大的不同。首先的加工制作的困难。尺度太小,要求很精确,受传统理论的限制。比如,光刻中受衍射极限的限制,传统的方法很难获得突破性进展。此外也受形态和空间排布的影响。1959年,著名理论物理学家Feynman就提出纳米材料与技术的构想。在之后的几十年间,一直没多少人关注。纵是在1981年扫描隧道电子显微镜和在1986年原子力显微镜被发明后,纳米技术的应用仍受局限。然而到了20世纪末,随着科技的进一步发展,纳米技术的重要性终于凸显出,成为各主要发达国家重视的科技计划。 近年来在光刻、电子束刻蚀、离子刻蚀、气相沉积等物理微加工技术快速发展的同时, 利用化学自组装技术构筑有序微结构也受到了人们越来越多的关注。通过自组装技术能解决我们面临的很多问题。 随着胶体晶体研究的火热,人们发现一种不依靠人力就能完成组装和构筑结构的方法,由于这种方法简便、制造结构多样、重复性好

《纳米科学与微纳制造》复习材料

《纳米科学与微纳制造》复习材料 1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性: 1)在常态下对动植物体友好的金,在纳米态下则有剧毒; 2)小于100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存; 3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1 nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。 纳米材料有两层含义: 其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于 100nm,如纳米晶合金中的晶粒; 其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在1-100nm内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望。 5、纳米材料有哪 4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、名词解释:STM、AFM、SEM、TEM 答:STM (scanning tunneling microscope) 扫描隧道显微镜 AFM(Atomic Force Microscope) 原子力显微镜 SEM(scanning electron microscope) 扫描电子显微镜 TEM(Transmission Electron Microscope) 透射电子显微镜 XRF(X Ray Fluorescence) X射线荧光光谱分析 7、扫描隧道显微镜和原子力显微镜的工作原理 扫描隧道显微镜:在样品与探针之间加上小的探测电压,调节样品与探针间距,控制系统使针尖靠近样品表面,当针尖原子与样品表面原子距离≤10?时,由于隧道效应,探针和样品表面之间产生电子隧穿,在样品的表面针尖之间有一纳安级电流通过,电流强度对探针和样品表面间的距离非常敏感,距离变化 1?,电流就变化一个数量级左右。移动探针或样

微电子发展现状综述

1微电子产业的发展规律及面临的发展瓶颈 1.1集成电路封装技术的发展历史可划分为三个阶段: 第一阶段(20世纪70年代之前),以通孔插装型封装为主:典型的封装形式包括最初的金属圆形(TO型)封装,以及后来的陶瓷双列直插封装(CDIP)、陶瓷一玻璃双列直插封装(CerDIP)和塑料双列直插封装(PDIP)等;其中的PDIP,由于其性能优良、成本低廉,同时又适于大批量生产而成为这一阶段的主流产品。 第二阶段(20世纪80年代以后),从通孔插装型封装向表面贴装型封装的转变,从平面两边引线型封装向平面四边引线型封装发展。表面贴装技术被称为电子封装领域的一场革命,得到迅猛发展。与之相适应,一些适应表面贴装技术的封装形式,如塑料有引线片式裁体(PLCC)、塑料四边引线扁平封装(PQFP)、塑料小外形封装(PSOP)以及无引线四边扁平封装(PQFN)等封装形式应运而生,迅速发展。其中的PQFP,由于密度高、引线节距小、成本低并适于表面安装,成为这一时期的主导产品。 ,第三阶段(20世纪90年代以后),集成电路发展进入超大规模集成电路时代,特征尺寸达到0.18~0.25m 要求集成电路封装向更高密度和更高速度方向发展。因此,集成电路封装的引线方式从平面四边引线型向平面球栅阵列型封装发展,引线技术从金属引线向微型焊球方向发展。在此背景下,焊球阵列封装(BGA)获得迅猛发展,并成为主流产品。BGA按封装基板不同可分为塑料焊球阵列封装(PBGA),陶瓷焊球阵列封装(CBGA),载带焊球阵列封装(TBGA),带散热器焊球阵列封装(EBGA),以及倒装芯片焊球阵列封装(FC-BGA)等。为适应手机、笔记本电脑等便携式电子产品小、轻、薄、低成本等需求,在BGA的基础上又发展了芯片级封装(CSP);CSP又包括引线框架型CSP、柔性插入板CSP、刚性插入板CSP、园片级CSP等各种形式,目前处于快速发展阶段。同时,多芯片组件(MCM)和系统封装(SIP)也在蓬勃发展,这可能孕育着电子封装的下一场革命性变革。MCM按照基板材料的不同分为多层陶瓷基板MCM(MCM-C)、多层薄膜基板MCM(MCM-D)、多层印制板MCM(MCM-L)和厚薄膜混合基板MCM(MCM-C/D)等多种形式。SIP是为整机系统小型化的需要,提高集成电路功能和密度而发展起来的。SIP使用成熟的组装和互连技术,把各种集成电路如CMOS电路、GaAS电路、SiGe电路或者光电子器件、MEMS器件以及各类无源元件如电阻、电容、电感等集成到一个封装体内,实现整机系统的功能。 1.2 集成电路技术发展面临的物理瓶颈 沿着“摩尔定律”, 集成电路技术走过了50 余年的历程. 如今的生产技术已接近22 nm。如果继续沿着按比例缩小(scaling down) 之路走下去, 根据2011 年ITRS (International Technology Roadmap for Semiconductors)的最新预测, DRAM 的最小加工线宽在2024 年有可能达到8 nm , 进入量子物理和介观(mesoscopic) 物理的范畴。 由于介观尺度的材料一方面含有一定量粒子, 无法仅仅用薛定谔方程求解, 另一方面, 其粒子数又没有多到可以忽略统计涨落的程度(根据传统测量方法得到的硅原子半径为110 pm,通过计算方法得到的硅原子半径为111 pm),这就使得集成电路技术的进一步发展遇到很多物理障碍, 如费米钉扎、库伦阻塞、量子隧穿、杂质涨落、自旋输运等(如图一), 需用介观物理和基于量子化的处理方法来解决。

极端制造概述

引言 2 基本概念 3 重要性 4 极端制造的国内外研究现状及趋势 5 极端制造的时代特征 5.1 极大尺寸的巨系统制造 5.2 极高速装备制造 5.3 极小尺寸微纳制造 5.4 超精密制造 5.5 极端环境(极高/低温、极高/低压力)环境下的制造或服役5.6 极高能量密度制造 6 极端制造需要探索全新的理论、方法和技术 7 极端制造的关键科学问题 8 极端制造主要研究领域及内容 8.1 极大尺度制造

8.2 极小尺度制造 8.3 超精密制造 8.4 极高服役性能的制造 8.5 产生极端物理条件重大装置的制造 1.引言 今天我们生活在一个经济全球化、科技突飞猛进的新时代。社会的进步和幸福生活的创造,需要我们探索新的世界,开拓新的未来。我们要飞跃无边的宇宙,去发现新的“地球”,寻找未来的人类家园;我们要探索大海深处的奥秘和宝藏,使之为人民造福。而要实现这些目标,必须制造极端环境下服役的极大、极速装备。另一方面,物质可以无限细分,我们要进入物质的微观世界,需要物质无限细分和观测的极端环境下运行的特殊装备和物理仪器,它必须依赖制造来实现。因此极端制造是人类探索宇宙、改造世界、造福人类的不可缺少的手段[1]。 2.基本概念 极端制造(Extreme Manufacturing,也称极限制造、超常制造),是指在极端条件或环境下,运用先进制造技术及高端装备,制造极端尺度(极大或极小尺度)、极限精度、极高性能的结构、器件或系统,以及能产生极端物理环境或条件的科学实验装置。 极端制造的本质特征是尺度效应和环境效应。在极端尺度和极端环境下,材料、构件的物理性能将产生明显的非常规现象,甚至与现有物理学、材料科学和加工制造原理相悖,必须研究相应的新原理、新方法和新技术。极端制造的基本科学问题是研究物质如何通过与能量的复杂、精准的交互作用演变为极端性能产品的科学规律。 上述极端制造的过程及系统的理论、方法和技术称为极端制造技术科学。 3.重要性 极端制造是在基础研究重大创新的支撑下,以突破现有制造极限为目标的更高水平制造。极端制造是推动制造装备、制造工艺和相关产业发展最有力、最直接的牵引力和原动力,是制造业未来的重要发展方向。 极端制造技术已成为高科技领域发展进步的基础和前提。从表面上看,极端制造是产品尺度

学术报告综述

作为一名研究生,参加过很多的学术报告活动,让我受益匪浅,对我以后的科研之路和以后的工作指明了方向,为科研学术孜孜不倦。更加努力的去学习相关的知识。 报告题目:优化设计平台建设及其应用 主讲人:赵匀 时间:2015-11-04 随着科技的进步,人们对产品的要求也越来越高,需要对产品进行一系列的优化,优化设计是优化设计是20世纪60年代发展起来的,以数学规划理论为基础,根据最优化的原理和方法,应用计算机技术,寻求最优设计参数的一种新方法,为工程设计提供了一种重要的科学设计方法。 机械优化设计就是在满足给定的载荷、环境条件、产品的形态、几何尺寸关系或其它约束条件下,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件, 利用数值优化计算方法使目标函数获得最优设计方案一种现代设计方法。进行最优化设计时,首先必须将实际问题加以数学描述,形成一组由数学表达式组成的数学模型,然后选择一种最优化数值计算方法和计算机程序,在计算机上运算求解,得到一组由数学表达式组成的最优设计参数。利用优化设计,可进一步改善和提高产品的性能;在满足各种设计条件下减少产品或工程结构重量,从而节省产品成本消耗、降低工程造价;可以进一步提高产品或工程设计效率。因此,优化设计是直接提高产品设计性能、降低产品成本的有效设计方法。优化设计可给企业带来直接的经济效益,从而提高企业产品的竞争能力。

优化设计的目标是使设计对象最优,而优化设计的手段是计算机及优化计算软件。优化计算软件是以优化计算方法为基础而形成的应用程序系统。因此,优化设计还可以被理解为采用计算程序的从设计空间搜索最佳设计方案的现代设计 手段。优化设计与常规设计相比具有借助计算机为工具的明显特征。优化设计中优化计算方法的数学基础包括线性规划、非线性规划、动态规划、几何规划等内容的数学规划理论。 优化设计一般包含如下主要内容:①将设计中的实际物理模型抽象为数学模型。确定设计过程中主要的设计目标和设计条件,在此基础上构造评价设计方案的目标函数和约束条件等。②数学模型的求解。根据数学模型的性质,选择合适的优化方法,并利用计算机进行数学模型的求解,得到优化设计方案。 随着科技的发展,许多新的成果进行了优化设计,特别是信息化技术的发展推动了设计方法的革命,开发了系列软件,其中包括:CAD、ANSYS、ADAMS、VB、VC等,这些软件各有特色,在应用上相互交叉。其中CAD软件是应用最广,对产业发展影响最大的软件,完全代替了传统的设计方法,使设计更加快捷方便,且具有记忆功能,使传输、保存、调用更加方便。ADAMS软件不但具备虚拟制造、试验和测试功能,而且通过二次开发还可以优化参数,VB和VC软件具有较强的可视性,适合机构的运动学和动力学目标的优化。优化是现代设计的核心技术。现代设计思想和方法大大推动了制造业的发展;反过来,每个设计者必须掌握现代设计方法,并熟练使用各种软件工具。我们浙江理工大学在农业机器方面有着领先的圆盘的实验平台,我们作为研究生更应该去学习使用、利用好这些平台,才能搞好学术。 报告题目:微纳卫星与空间攻防 主讲人:廖文和

机械工程学科前沿技术综述

摘要:最近几年,我国机械工程学科在各大领域内取得了一系列突破性进展和原创性成果,为繁荣的经济建设提供了大量的理论方法和实践经验,对世界产生了重要的影响。本文针对当前机械工程领域的发展现状,综述了其重要进展和成果,并对我国机械工程的发展趋势进行了展望。 关键词:机械工程,学术,前沿,综述 1 引论 总的来说,机械工程是一门与机械和动力生产有关的工程学科,它以有关的自然科学和技术科学为理论基础,结合生产实践中的技术经验,研究和解决在开发、设计、制造、安装、运用和修理各种机械中的全部理论和实际问题。 我国机械工程学科包含以下几个方面机械制造及其自动化机械电子工程机械设 计及理论车辆工程和仿生技术。机械工程的服务领域广阔而多面,凡是使用机械、工具,以至能源和材料生产的部门,无不需要机械工程的服务。概括说来,现代机械工程有五大服务领域:研制和提供能量转换机械;研制和提供用以生产各种产品的机械;研制和提供从事各种服务的机械;研制和提供家庭和个人生活中应用的机械;研制和提供各种机械武器。 传统机械的发展经历了从制造简单工具到制造由多个零件、部件组成的现代机械的漫长过程。机械工程以增加生产、提高劳动生产率、提高生产的经济性为目标来研制和发展新的机械产品。随着世界的进步、国家的需求和学科的发展,机械工程科学的发展出现了以下显著特点和趋势:一方面,高技术领域如光电子、微纳系统、航空航天、生物医学、重大工程等的发展,要求机械与制造科学向这些领域提供更多更好的新理论、新方法和新技术,因而出现和发展着微纳制造、仿生及生物制造、微电子制造等制造科学新领域;另一方面,随着机械与制造科学与信息科学、生命科学、材料科学、管理科学、纳米科学技术的交叉,除了推动着机构学、摩擦学、动力学、结构强度学、传动学和设计学的发展外,还产生和发展着仿生机械学、纳米摩擦学、制造信息学、制造管理学等新的交叉科学。在未来的时代,新产品的研制将以降低资源消耗,发展洁净的再生能源,治理、减轻以至消除环境污染作为超经济的目标任务。

第三章 微纳制造技术_光刻

单项工艺: 光刻 1. Introduction Photolithography ? Photo-litho-graphy: latin : light-stone-writing ? Photolithography is an optical means for transferring patterns onto a substrate. It is essentially the same process that is used in lithographic printing. ? Patterns are first transferred to an imagable photoresist layer. ? Photoresist is a liquid film that can be spread out onto a substrate, exposed with a desired pattern, and developed into a selectively placed layer for subsequent processing. ? Photolithography is a binary pattern transfer: there is no gray -scale, color, nor depth to the image. Key Historical Events in Photolithography ? 1826- Joseph Nicephore Niepce, in Chalon, France, takes the first photograph using bitumen of Judea on a pewter plate, developed using oil of lavender and mineral spirits. ? 1843- William Henry Fox Talbot, in England, develops dichromated gelatin, patented in Britain in 1852. ? 1935- Louis Minsk of Eastman Kodak developed the first synthetic photopolymer, poly(vinyl cinnamate), the basis of the first negative photoresists. ? 1940- Otto Suess of Kalle Div. of Hoechst AG, developed the first diazoquinone-based positive photoresist. ? 1954- Louis Plambeck, Jr., of Du Pont, develops the Dycryl polymeric letterpress plate. transparent glass Cr patterned film 掩模版 Si 光刻胶 SiO 2 film Al film Si UV 曝光 Si 显影 Si 图形转移 Si 腐蚀Al film Patterning by lithography and wet etching 完整的光刻工艺 Wafer with mask film (e.g. SiO2, Al)带有掩 膜的晶圆片 Photoresist coating 旋涂光刻胶 Prebake (softbake)前烘 Mask alignment 对准 Exposure 曝光 Develop-ment 显影 Postbake 后烘 Removal of exposed photoresist 去除曝光的胶 Etching of mask film 腐蚀掩膜 Removal of unexposed resist 去除非曝光的胶 Next process (e.g. implantation, deposition)

相关文档
最新文档