20春地大《概率论与数理统计》在线作业二_04答案
概率论与数理统计习题二答案

概1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=⨯===P X P36261616161)"1,2""2,1(")3(1=⨯+⨯=⋃==P X P363616161616161)"1,3""2,2""3,1(")4(1=⨯+⨯+⨯=⋃⋃==P X P ……2P (X 2=1)=P ("1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃)=36112求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P 3、进行重复独立试验。
设每次试验成功的概率为)10(<<p p(1) 将试验进行到出现一次成功实验为止,以X 表示所需试验的次数,此时称X 服从参数为p 的几何分布。
求X 的分布律。
(2) 将试验进行到出现r 次成功为止,以Y 表示所需试验的次数,此时称Y 服从参数为r 、p 的巴斯卡分布。
求Y 的分布律。
解:(1){},......2,1,)1(1=-==-k p p k X P k (k-1次未成功,最后一次成功)(2){},......1,,)1(11+=-==---r r k p p C k X P rk r r k解:(1)是 (2)不是,因概率之和不为15、(1)设随机变量X 的分布律为{}N k Nak X P .....,2,1,===试确定常数a(2)设随机变量X 的分布律为{}.....2,1,32=⎪⎭⎫⎝⎛⋅==k b k X P k试确定常数b(3)设随机变量X 的分布律为{}0......2,1,0,!>=⋅==λλk k c k X P k为常数,试确定常数c 解:(1){}111====∑∑==a Nak X P Nk Nk , 1=∴a (2){}1231323211==-=⎪⎭⎫⎝⎛⋅==∑∑∞=∞=b b b k X P k kk , 21=∴b(3){}1!==⋅==∑∑∞=∞=λλe c k c k X P k kk , λ-=∴e c6、设随机变量X 的分布律为{}5,4,3,2,1,15===k kk X P 其分布函数为)(x F ,试求:(1)⎭⎬⎫⎩⎨⎧<<2521X P , (2){}21≤≤X P , (3)⎪⎭⎫⎝⎛51F 解:(1){}{}212521=+==⎭⎬⎫⎩⎨⎧<<X P X P X P 51152151=+=(2){}21≤≤X P {}{}21=+==X P X P 51152151=+= (3)⎪⎭⎫⎝⎛51F051=⎭⎬⎫⎩⎨⎧≤=X P7、一大楼装有5个同类型的供水设备。
概率论与数理统计第二阶段作业答案

沈阳铁路局学习中心第一部分:必须掌握的重点理论知识习题。
一、填空:1、某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
2、已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =- 3、设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
4、设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )5、若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
6、设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___0.45___.7、甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为____1/2___.8、设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___5/4____.9、 设两位化验员A ,B 独立地对某中聚合物含氯两用同样的方法各做10次测定,其测定值的样本方差依次为2222,.6065.0,5419.0B A B A σσS S 设==分别为A ,B 所测定的测定值总体的方差,设总体均为正态的。
概率论与数理统计第二版参考答案

习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/6 5/36 1/91/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5) 01.51.5{0}0!P X e-=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X e ee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
数理统计与概率论习题二答案.ppt

F ) 1 3( F () x 不 是 分 布 函 数 . 3
0.5ex , x 0 2.4 设随机变量X的分布函数 F( x) 0.8 , 0 x 1 1, x 1
求(1)P{X=0};(2)P(X<0);(3)P(0<X≤1.5);(4)P(X>3) 解 ( 1 ) P { X 0 } F ( 0 )l i m F ( x )
41设xn01求下列随机变量y的概率密度e??y2212?解2xxxfxex???????11212?????由yyxx??????????????????1?????yyyy1y2x122211y22???????yyfe??218122?????????yey2
2.1 某人投篮两次,设A={恰有一次投中},B={至少有一 次投中},C={两次都投中},D={两次都没投中},又设随 机变量X为投中的次数,试用X表示事件A,B,C,D.进一步 问A,B,C,D中哪些是互不相容事件?哪些是对立事件? {X1 } B {X1 } 解 A
解
x 1
l i m F ( x )l i m 0 . 3 0 . 3 F ( 1 ) 2 2
x 1
F ( xx ) 在 1 处 不 右 连 续 . 2 F () x 不 是 分 布 函 数 . 2
2.2 指出下列函数是否是分布函数?
x 0, (3 )F ) c o sx , x0 3(x 1, x0
2.6 一批零件中有8个正品和2个次品,安装机器时从这 批零件中任取一个.如果每次取出的次品不再放回去, 用X表示在取得正品以前已取出的次品数,求X的分布列 及分布函数. 解 X所有的取值为0,1,2 8 4 2 8 8 P { X0 } PX { 1 } 1 0 5 1 0 9 4 5
概率论与数理统计课后题参考答案

第一章 基本概念1、试对下列随机试验各写出一个样本空间: (1)掷一颗骰子;(2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球; (3)10只产品中有3只是次品,每次从中任取一只(取出后不放回),直到将3只次品全部取出,记录抽取的次数;(4)对某工厂生产的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如果查出2件次品就停止检查,或者查满4件也就停止检查,记录检查结果。
解:(1)}6,5,4,3,2,1{=Ω(2))}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(=Ω5个球中选3各球进行组合,有1035=C 种。
(3)}109876543{,,,,,,,=Ω最少抽取的次数是每次取出的都是次品;最多抽取的次数是把10只产品全部取出,总能抽出3个是次品。
(4)用数字1代表正品,数字0代表次品;样本空间包括查出2件是次品和查满4件产品这两种情况。
)}1,1,1,0(),1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(=Ω2、工厂对一批产品作出厂前的最后检查,用抽样检查方法,约定,从这批产品中任意取出4件产品来做检查,若4件产品全合格就允许这批产品正常出厂;若有1件次品就再作进一步检查;若有2件次品则将这批产品降级后出厂;若有2件以上次品就不允许出厂。
试写出这一试验的样本空间,并将“正常出厂”、“再作检查”、“降级出厂”、“不予出厂”这4个事件用样本空间的子集表示。
解:用数字1代表正品,数字0代表次品设=“正常出厂”; =“再作检查”; =“降级出厂”;D =“不予出厂”)}1,1,1,1{(=A)}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{(=B)}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{(=C )}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{(=D)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{(=⋃⋃⋃=ΩDC B A3、设A 、B 、C 是三个事件,试用A 、B 、C 的运算关系表示下列事件: (1)A 与B 都发生,但C 不发生;(2)A 发生,但B 与C 可能发生也可能不发生; (3)这三个事件都发生; (4)这三个事件都不发生; (5)这三个事件中至少有一个发生; (6)这三个事件中最多有一个发生; (7)这三个事件中至少有两个发生; (8)这三个事件中最多有两个发生; (9)这三个事件中恰有一个发生; (10)这三个事件中恰有两个发生。
《概率论与数理统计》在线作业(2)

《概率论与数理统计》在线作业(2)精品⽂档17春学期《概率论与数理统计》在线作业⼀、单选题(共 30 道试题,共 60 分。
)得分:601. 设X1,X2,X3是X的⼀个样本,EX的⼀个⽆偏估计量为()A. X1/2+X2/3+X3/4B. X1/4+X2/6+X3/12C. X1/2+X2/3-X3/6D. 2X1/3+X2/2-X3/6满分:2 分得分:22.A,B为两个互不相容事件,则下列各式中错误的是()。
A.B.C.D.满分:2 分得分:23. 设X服从⼆项分布B(n,p),E表⽰期望,D表⽰⽅差,则下列式⼦成⽴的是()A. E(2X-1)=2npB. D(2X-1)=4npC. E(2X+1)=4np+1D. D(2X_1)=4np(1-p)满分:2 分得分:24. .B.C.D.满分:2 分得分:25..A.B.C.D.满分:2 分得分:26. 若X与Y线性不相关,以下哪⼀个是正确的()。
A. cov(X,Y)=1B. cov(X,Y)=-1C. cov(X,Y)=0D. cov(X,Y)=100满分:2 分得分:27. 某⼈连续射击⼀⽬标,每次命中的概率为3/4,他连续射击知道命中,则射击次数为3的概率为()A. 27/64B. 3/16C. 3/64D. 3/8满分:2 分得分:2A. 0.125B. 0.5C. 0.875D. 1满分:2 分得分:29. 区间估计表明的是⼀个()A. 绝对可靠的范围B. 可能的范围C. 绝对不可靠的范围D. 不可能的范围满分:2 分得分:210. 抛币试验时,如果记“正⾯朝上”为1,“反⾯朝上”为0。
现随机抛掷硬币两次,记第⼀次抛币结果为随机变量X,第⼆次抛币结果为随机变量Y,则(X,Y)的取值有()个。
A. 1B. 2C. 3D. 4满分:2 分得分:2 11..A.B.C.D.A.B.C.D.满分:2 分得分:213. 在100件产品中,有95件合格品,5件次品,从中任取2件,则下列叙述正确的是()。
《概率论与数理统计》习题二

北京交通大学远程教育课程作业年级:层次:专业名称:课程名称:作业序号:学号:姓名:作业说明:1、请下载后对照网络学习资源、光盘、学习导航内的导学、教材等资料学习;有问题在在线答疑处提问;2、请一定按个人工作室内的本学期教学安排时间段按时提交作业,晚交、不交会影响平时成绩;需要提交的作业内容请查看下载作业处的说明3、提交作业后,请及时查看我给你的评语及成绩,有疑义请在课程工作室内的在线答疑部分提问;需要重新上传时一定留言,我给你删除原作业后才能上传4、作业完成提交时请添加附件提交,并且将作业附件正确命名:学号课程名称作业次数《概率论与数理统计》习题二第三章多维随机变量及其分布一、选择题1、设二维随机变量(X,Y则P{XY=2}=()A. B. C. D.2、设二维随机变量(X,Y)的概率密度为,则当时,(X,Y)关于X的边缘概率密度为f x(x)=()A. B.2x C. D. 2y3、二维随机变量(X,Y)的联合密度函数是f(x,y),分布函数为F(x,y),关于X,Y的边缘分布函数分别是F X(x),F Y(y),则,,分别为()A.0,F X(x),F(x,y) B. 1,F Y(y),F(x,y)C. f(x,y), F(x,y) , F Y(y)D. 1, F X(x),F(x,y)4、设随机变量X,Y,独立同分布且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A.F2(z) B. 1,F(x)F(y)C. 1-[1-F(z)]2D. [1-F(x)][1-F(y)]5、设X~N(-1,2),Y~N(1.3),且X与Y相互独立,则X+2Y~()A.N(1,8) B.N(1,14) C.N(1,22) D. N(1,40)二、填空题1、设X和Y为两个随机变量,且P{X,Y}=,P{X}= P{Y}=,则P{max{X,Y}}=______2、设随机变量Xi~(i=1,2……),且满足P{X1X2=0}=1,则P{X1=X2}等于_______________3、设平面区域D由曲线y=及直线y=0,x=1,x=e2,所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为__________4、 设随机变量X 与Y 相互独立,且服从区间[0,3]上的均匀分布,则P{max{X,Y }}=___________5、 设随机变量(X ,Y )~N (0,22;1,32;0),则P{}=_________三、解答题1. 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
概率论与数理统计2含答案

一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。
设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。
3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。
其中X 为样本均值,S n X X n i n 22111=--=∑()。
4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。
5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。
(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。
( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。
( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(单选题)1: 市场供应的某种商品中,甲厂生产的产品占50%,乙厂生产的产品占30%,丙厂生产的产品占
20%,甲、乙、丙产品的合格率分别为90%、85%、和95%,则顾客买到这种
产品为合格品的概率是()
A: 0.24
B: 0.64
C: 0.895
D: 0.985
正确答案: C
(单选题)2:
A: A
B: B
C: C
D: D
正确答案: B
(单选题)3: 现抽样检验某车间生产的产品,抽取100件产品,发现有4件次品,60件一等品,36件二等品。
问此车间生产的合格率为()
A: 96﹪
B: 4﹪
C: 64﹪
D: 36﹪
正确答案: A
(单选题)4: 某单位有200台电话机,每台电话机大约有5%的时间要使用外线电话,若每台电话机是否使用外线是相互独立的,该单位需要安装()条外线,才能以90%以上的概率保证每台电话机需要使用外线时而不被占用。
A: 至少12条
B: 至少13条
C: 至少14条
D: 至少15条
正确答案: C
(单选题)5: 设一百件产品中有十件次品,每次随机地抽取一件,检验后放回去,连续抽三次,计算最多取
到一件次品的概率()
A: 0.45
B: 0.78
C: 0.972
D: 0.25
正确答案: C。