《平面直角坐标系》全章复习与巩固(提高)知识讲解讲解
平面直角坐标系全章复习与巩固提高知识讲解

《平面直角坐标系》知识讲解【学习目标】理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点1.的位置写出它的坐标;掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;2.逐步理解平面内的点与有序实数对之间的一一对应,3.通过学习平面直角坐标系的基础知识 ,进而培养数形结合的数学思想.关系【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收…,表示,其中前一数表示日期,后一数330),190) (21,,入,可用(13,2000) (17,,(1312),(20,,5)(4表示收入,但更多的人们还是用它来进行空间定位,如:,. 2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:1 / 6要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形'与‘数'联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x,0)、B(x,0)的距离为AB=|x- x|;2121 y轴上两点C(0,y)、D(0,y)的距离为CD=|y- y|.2211③平行于x轴的直线上两点A(x,y)、B(x,y)的距离为AB=|x- x|;y轴的直线上两点C(x,y)、D(x,y)的距离为CD=|y- y|.2121(5)利用坐2211平行于标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个2 / 6单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.(巴中)如图所示,用点A(3,1)表示放置3个胡萝卜、1棵青菜,用点B(2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C、D、E、F所表示的意义;(2)若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:①A→C→D→B;②A→E→D→B;③A→E→F→B,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多? 【思路点拨】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题.【答案与解读】解:(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜,可得:点C的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜;点E的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜;点F的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A→C→D→B,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A→E→D→B,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵);走路线③A→E→F→B,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵);由此可知,走第③条路线吃到的胡萝卜和青菜都最多.3 / 6)表示的意义及已确定平面直角坐标系,可知坐,3B(2由点A(3,1),点【总结升华】y轴表示青菜的数量.标系中x轴表示胡萝卜的数量,类型二、平面直角坐标系a的值.3)在第一、三象限的角平分线上,求5-a,a-)2.(1若点(的范围.m的值,并确定n,若4)AB∥x轴,求已知两点A(-3,m),B(n,2()点的坐标.4,求Px轴和y轴的距离分别是3和(3)点P到轴平x2)与【思路点拨】 (1)中在一、三象限的角平分线上的点的横坐标与纵坐标相等;(有多个.)中的点P行的直线上的点的纵坐标相等;(3 【答案与解读】.=4a-3,所以a-a,a-3)在第一、三象限的角平分线上,所以5a=解:(1)因为点(5-.-3、B两点不重合,所以n≠因为AB∥x轴,所以m=4,因为A(2),所以4x=±y=±3,3,|x|=4,所以|(3)设P点的坐标为(x,y),由已知条件得|y=).4,-34,-3)或(-(P点的坐标为(4,3)或(-4,3)或【总结升华】抓住平面直角坐标系中点的特征和点的特征的意义是解决此类问题的关键.举一反三:m-1),试根据下列条件:(-m,【变式】已知,点P x P的坐标为.轴平行的直线上,则m=(2,-4),且与,点在过(1)若点PA my的坐标为.=,-4),且与,点轴平行的直线上,则P)若点(2P在过A(2.-3),2)-2,(2【答案】(1)-3,(3,-4)。
《平面直角坐标系》全章复习与巩固(基础)知识讲解

《平面直角坐标系》全章复习与巩固(基础)知识讲解责编:杜少波【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化. (3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x ,y+b)(或(x ,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:21a b ++.例如把(3,-2)放入其中,就会有32+(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________.【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入21a b ++求值即可.【答案】66 .【解析】解:将(-2,3)代入,21a b ++,得(-2)2+3+1=8,再将(8,1)代入,得82 +1+1=66,故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________.【答案】 (-5,3);向西走2米,向南走6米.类型二、平面直角坐标系2. (滨州)第三象限内的点P(x ,y),满足|x|=5,y 2=9,则点P 的坐标为________.【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x ,y 的具体值.【答案】(-5,-3).【解析】因为|x|=5,y 2=9.所以x =±5,y =±3,又点P(x ,y)在第三象限,所以x <0,y <0,故点P 的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x 轴的距离为( ) .A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.如图所示,建立适当的直角坐标系,写出图中的各顶点的坐标.【思路点拨】建立平面直角坐标系的关键是先确定原点,再确定x轴、y轴,建立不同的直角坐标系,各顶点的坐标也不同.【答案与解析】解:建立直角坐标系如图所示,则各点的坐标为(-4,0),(-3,0),(-3,-4),(3,-4),(3,0),(4,0),(0,3),再建立不同的平面直角坐标系,写出各顶点的坐标.(读者自己试试看)【总结升华】选择适当的直角坐标系可方便解题,一般尽可能使大多数的点的坐标为整数且易表示出来.【高清课堂:平面直角坐标系单元复习 8(1)】4.(2015春•荣昌县期末)如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C点和B点作x轴和y轴的平行线,如图,然后利用S四边形ABCO=S矩形OHEF ﹣S△ABH﹣S△CBE﹣S△OCF进行计算.【答案与解析】解:分别过C点和B点作x轴和y轴的平行线,如图,则E(5,3),所以S四边形ABCO=S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC向右平移1个单位,再向下平移2个单位,所得△A1B1C1的三个顶点坐标分别是什么?(2)将△ABC三个顶点的横坐标都减去5,纵坐标不变,分别得到A2、B2、C2,依次连接A2、B2、C2各点,所得△A2B2C2与△ABC的大小、形状和位置上有什么关系?(3)将△ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到A3、B3、C3,依次连接A3、B3、C3各点,所得△A3B3C3与△ABC的大小、形状和位置上有什么关系?【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6.三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。
七年级第六章平面直角坐标系复习课件

总结词
掌握点的对称作图方法
详细描述
根据对称性质,我们可以作 出对称点的位置。例如,已 知点A的坐标为(3,4),关于 x轴对称的点B的坐标为(3,4),关于y轴对称的点C的坐 标为(-3,4),关于原点对称 的点D的坐标为(-3,-4)。
03 图形在平面直角坐标系中 的表示
直线在坐标系中的表示
直线方程的基本形式
圆的性质
理解圆的对称性、相交、 相切等基本性质,掌握判 断两圆的位置关系的方法。
函数图像在坐标系中的表示
正比例函数图像
了解正比例函数图像的特 点和性质,掌握图像的平 移和伸缩变换。
一次函数图像
掌握一次函数图像的特点 和性质,理解斜率对图像 的影响。
二次函数图像
了解二次函数图像的开口 方向、顶点和对称轴,掌 握判别式在解题中的应用。
上点的坐标。
参数方程的建立
参数方程可以通过已知的点或几 何关系来建立,通常需要选择合
适的参数来简化问题。
参数方程的应用
参数方程在解析几何、物理和工 程等领域有着广泛的应用,例如 在研究行星运动轨迹、解决振动
问题等。
向量表示
向量表示的概念
向量表示是一种描述平面或空间中点或物体运动的方法,通过向 量来表示点的坐标或物体的运动轨迹。
向量表示的建立
向量表示可以通过已知的点或几何关系来建立,通常需要选择合适 的基底来表示向量。
向量表示的应用
向量表示在解析几何、物理和工程等领域有着广泛的应用,例如在 研究速度和加速度、解决力学问题等。
THANKS FOR WATCHING
感谢您的观看
面积与体积的计算
总结词
在平面直角坐标系中,可以通过坐标值计算多边形的面积和 立体的体积。
2023年九年级中考数学复习讲义 平面直角坐标系

2023年中考数学复习讲义 平面直角坐标系第一部分:知识点精准记忆知识点一 平面直角坐标系的基础有序数对概念:有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b )。
【注意】a 、b 的先后顺序对位置有影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x 轴或横轴,通常取 向右 方向为正方向;竖直的数轴叫做y 轴或纵轴,通常取 向上 方向为正方向。
原点:两坐标轴交点叫做坐标系原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限:x 轴和y 轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A ,过点A 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上的对应的数a 、b 分别叫做点A 的横坐标和纵坐标,有序数对A(a ,b)叫做点A 的坐标,记作A(a ,b)。
知识点二 点的坐标的有关性质1. 各象限内的点的坐标特征1)点P(x ,y)在第一象限 x >0,y >0; 2)点P(x ,y)在第二象限 x <0,y >0;3)点P(x ,y)在第三象限 x <0,y <0; 4)点P(x ,y)在第四象限 x >0,y<⇔⇔⇔⇔0。
2. 坐标轴上的点的坐标特征1)点 P(x ,y)在x 轴上 y=0,x 为任意实数;2)点P(x ,y)在y 轴上 x=0,y 为任意实数;3)点P(x ,y)既在x 轴上,又在y 轴上 x=y=0,即点P 坐标为(0,0);3. 象限角的平分线上的点的坐标1)点P(x ,y)在第一、三象限角平分线上 x 与y 相等;2)点P(x ,y)在第二、四象限角平分线上 x 与y 互为相反数(x+y=0);4.与坐标轴平行的直线上的点的坐标特征1)平行于x 轴的直线上的各点:纵坐标相同;2)平行于y 轴的直线上的各点:横坐标相同;5. 点到坐标轴距离在平面直角坐标系中,已知点P ,则点P 到轴的距离为; 点P 到轴的距离为;点P 到原点O 的距离为P =6. 平面直角坐标系内平移变化平移规律:上加下减,右加左减7. 关于x 轴、y 轴、原点对称点的坐标1) 点P 关于轴的对称点为,即横坐标不变,纵坐标互为相反数;2) 点P 关于轴的对称点为, 即纵坐标不变,横坐标互为相反数;3)点P 关于原点的对称点为,即横、纵坐标都互为相反数;4)点(x ,y )关于(a ,b )的对称点为(2a-x ,2b-y )。
《平面直角坐标系》复习课件(共32张PPT)

特殊位置点的特殊坐标:
坐标轴上点P
(x,y)
连线平行于坐标轴 的点
点P(x,y)在各象限的
坐标特点
象限角平分线 上的点
x轴 y轴 原点 平行于 平行于y 第一 第二 第三 第四 一三象 二四象
x轴
轴
象限 象限 象限 象限 限
限
纵坐标相 横坐标相 x>0
(x,0) (0,y) (0,0) 同
.
6.点A(x,y),且x+y>0,
x 那0 么点A在第___象限 y
特殊点的坐标 y
(0,y)
在平面平直行角于坐x轴标的系直内线描上出(2,2),(的0,各2),点(2的,2)纵,(4坐,2)标,依相次连 接各点同,,从横中坐标你不发同现. 了什么?
1
-1 0 1 -1
在平面直角坐标系内描
出平(行-2于,3)y,轴的直线上的
x
1
2
.
C
3
4
5
1.点P的坐标是(2,-3),则点P在第 四象限.
2.若点P(x,y)的坐标满足xy﹥0,则点P
象限; 一或三
在第
若点P(x,y)的坐标满足xy﹤0,且在x轴上方,则点P
在第
象二限.
3.若点A的坐标是(-3,5),则它到x轴的距离是
,
到y轴的距离是
.
5
3
4.若点B在x轴上方,y轴右侧,并且到x轴、y轴距离分别是2、
1
-4 -3 -2 -1 0 -1 -2 -3
-4
A的横坐标为4
A的纵坐标为2
有序数对(4, 2)就叫做A的坐标
记作:(A ·4,2)
横坐轴 写在前面 1 2 3 4 5 x 横轴
初一数学平面直角坐标系知识梳理与练习巩固

初一数学平面直角坐标系知识梳理与练习巩固第十讲平面直角坐标系知识网络1.正确理解定义平面直角坐标系是由平面内两条互相垂直且有公共原点的数轴组成的。
平面上的点的确定是用有序实数对来表达的,这里的“有序”是不容颠倒的,通常规定横坐标在纵坐标的前面。
2.掌握几个重点1). 各个象限内点的特征已知点P(x,y),若点P在第一象限,则x>0,y>0;在第二象限,则x<0,y>0;在第三象限,则x<0,y<0;在第四象限,则x>0,y<0;在x轴上时y=0;在y轴上时x=0。
2). 点到坐标轴的距离。
点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|。
3). 平行于x轴的直线上的点的特征:纵坐标相等,平行于y轴的直线上的点的特征:横坐标相等。
4). 根据坐标确定平面直角坐标系内的点:先在x轴上找到与横坐标对应的点,然后过该点作x轴的垂线;再在y轴上找到与纵坐标对应的点,然后过该点作y轴的垂线。
两条垂线的交点就是所求的点。
5). 根据点确定坐标:过点分别作x轴和y轴的垂线,对应到坐标轴上的数分别是它们的横坐标和纵坐标。
3.记住一个规律在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)[或(x-a,y)];将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)[或(x,y-b)]。
注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
4.各个象限内和坐标轴的点的坐标的符号规律⑴x轴将坐标平面分为两部分,x轴上方的点的_____坐标为正数;x轴下方的点的______坐标为负数。
即第_____、_____象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为______数;第_____、______四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为_______数。
平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
平面直角坐标系复习课课件(所有知识点)

点的横坐 标符号
点的纵坐 标符号
在第三象限
在第四象限
在x轴的 正半轴上
在x轴的 负半轴上
在y轴的 正半轴上
在y轴的 负半轴上
在原点
(1)点P的坐标是(2,-3),则点P在第 象限;
(2)若点P(x,y)的坐标满足xy﹥0,
则点P在第
象限;
(3)若点P(x,y)的坐标满足 xy﹤0,且在x轴上
方,则点P在第
3.已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于 原点的对称点的坐标。
关于谁谁不变 另一个互为相反数 关于原点 横纵坐标都互为相反数
特殊点的坐标所有知识点汇总
概念 1、坐标系画法(坐标、x轴和y轴、象限)
平 面 直 角
及有 关知 识
一一对应
2、平面上的点
点的坐标
坐 标 坐标 系 方法
体育馆 文化宫
商场 宾馆
火车站
医院
小卖部 学校
解:以火车站为原点,东西向为横轴,建
立如图所示的坐标系.
y
体育馆
商场 宾馆
文化宫
火车站
x
医院 小卖部
第一三象限角 平分线上
第二四象限角 平分线上
x=y x=-y
1.已知点A(2,y ),点B(x ,5 ),点A、B在一、三象限的角
平分线上, 则x =__5__,y =__2__;
2.已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐
标。
(—1,1)
3.已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的
x
-1
-2
D(-3,-2) -3 -4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系》知识讲解【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.(巴中)如图所示,用点A(3,1)表示放置3个胡萝卜、1棵青菜,用点B(2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C、D、E、F所表示的意义;(2)若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:①A→C→D→B;②A→E→D→B;③A→E→F→B,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多?【思路点拨】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题.【答案与解析】解:(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2个胡萝卜、3棵青菜,可得:点C的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜;点E的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜;点F的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A→C→D→B,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A→E→D→B,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵);走路线③A→E→F→B,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵);由此可知,走第③条路线吃到的胡萝卜和青菜都最多.【总结升华】由点A(3,1),点B(2,3)表示的意义及已确定平面直角坐标系,可知坐标系中x轴表示胡萝卜的数量,y轴表示青菜的数量.类型二、平面直角坐标系2. (1)若点(5-a,a-3)在第一、三象限的角平分线上,求a的值.(2)已知两点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围.(3)点P到x轴和y轴的距离分别是3和4,求P点的坐标.【思路点拨】 (1)中在一、三象限的角平分线上的点的横坐标与纵坐标相等;(2)与x轴平行的直线上的点的纵坐标相等;(3)中的点P有多个.【答案与解析】解:(1)因为点(5-a,a-3)在第一、三象限的角平分线上,所以5-a=a-3,所以a=4.(2)因为AB∥x轴,所以m=4,因为A、B两点不重合,所以n≠-3.(3)设P点的坐标为(x,y),由已知条件得|y|=3,|x|=4,所以y=±3,x=±4,所以P点的坐标为(4,3)或(-4,3)或(4,-3)或(-4,-3).【总结升华】抓住平面直角坐标系中点的特征和点的特征的意义是解决此类问题的关键.举一反三:【变式】已知,点P(-m,m-1),试根据下列条件:(1)若点P在过A(2,-4),且与x轴平行的直线上,则m= ,点P的坐标为.(2)若点P在过A(2,-4),且与y轴平行的直线上,则m= ,点P的坐标为.【答案】(1)-3,(3,-4); (2)-2,(2,-3).3. (德阳市)如图所示,在平面直角坐标系中,有若干个整数点其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,根据这个规律探索可得,第100个点的坐标为________.【答案】(14,8)【解析】从特殊情形出发:横坐标为1的整数点有1个,横坐标为2的整数点有2个,横坐标为3的整数点有3个,依次类似,横坐标为n的整数总共有n 个.故共有1+2+3+4+…1n·(n+1)个,由题意分析推测: 21 当横坐标为14即n=14时,共有×14×(14+1)=105; 21 当横坐标为13即n=13时,共有×13×(13+1)=91; 2+n=故第100个点的横坐标为14,而横坐标为14的点共有14个,按“→”向上方向,故纵坐标13-5=8.【总结升华】当我们面临的数学问题比较抽象而无法下手时,可以从个别的、特殊的情形入手,通过对特例的分析、思考寻找解题的途径,这种思考问题的方法值得学习和借鉴.举一反三:【变式】(杭州)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,表示非负实数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为( ).A.(5,2009) B.(6,2010) C.(3,401) D.(4,402)【答案】D.类型三、坐标方法的简单应用4.如图所示,三角形ABC三个顶点的坐标分别是A(2,-2),B(1,2),C(-2,-1).求三角形ABC的面积.【思路点拨】观察三角形ABC的三边都不与坐标轴平行,此时可构造一个过三角形三个顶点的正方形ADEF.用正方形ADEF的面积,减去三角形ABD,三角形BCE,三角形ACF的面积即得三角形ABC的面积.【答案与解析】解:过点A,C分别作平行于y轴的直线,过点A,B分别作平行于x轴的直线,它们的交点为D,E,F,得到正方形ADEF,则该正方形的面积为4×4=16.三角形ABD、三角形BCE、三角形2,,1212. 2所以三角形ABC的面积为16-2-4.5-2=7.5.【总结升华】本例通过图形的转化,点的坐标与线段长度的转化解决了求图形面积的问题.点的坐标能体现它到坐标轴的距离,于是将点的坐标转化为点到坐标轴的距离,这种应用十分广泛.举一反三:【变式】如果点,,点C在y轴上,且△ABC的面积是4,求C点坐标.【答案】解:△ABC的底AB的长为:,则高为:,即点C的纵坐标为±2, 4又点C在y轴上,所以点C的坐标为(0,﹣2)或(0,2).5. (上海)如图所示,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB =2,如果将线段AB沿y轴翻折,点A落在C处,那么C的横坐标是_______.【答案】-2.【解析】将线段AB沿y轴翻折以后,点A与点C关于y轴对称,则两点的横坐标互为相反数,点A的横坐标为2,则点C的横坐标为-2.【总结升华】考查平面直角坐标系内图形与坐标的关系以及轴对称的性质.。