凸轮的matlab绘制

合集下载

基于MATLAB的凸轮轮廓曲线设计

基于MATLAB的凸轮轮廓曲线设计

tulun=@(x) (200*((x./pi)-1/(2*pi)*sin(2*x))).*(x>=0&x<= pi)+(-200/pi*x+400).*(x>=pi&x<=2*pi); i=1; (下转第174页)
《科技传播》 2011•8(上) 176
应用技术 Applied Technology
4 结论
在隧道施工的整个工程中 , 一旦发生灾害性事故 , 不仅延误 工期、大幅度提高工程费用 , 同时如处理不当 , 还会遗留工程质 量后患 , 甚至出现人生伤害 , 但由于隧道施工地质条件的不断变 化, 当一些不能预计到的突发现象发生时 , 应采取各种应变措施 , 按照安全、优质、高效、投资节约的总原则对事故进行处理 , 这 就是动态施工管理的本质含义。 在软弱围岩中的隧道施工 , 导致塌方的原因虽然是多种多样 的, 但如果在施工管理和技术上加以认真地改善 , 遵循“先预探、 管超前、预注浆、短进尺、弱爆破、强支护、早封闭、勤量测、 图 23.1.3 差动变压器结构示意图 图 3 差动变压器原理图 锚杆 快反馈、紧衬砌”的施工原则 , 加强超前地质预报和监控量测信 当铁芯由中心向上端移动时, L1 和 L2 的电感耦合增加, e2 增大, 而 L1 和 L3 的电感耦合减小, 锚杆是隧道施工过程中维护围岩稳定 , 保证施工安全的重要 息反馈 , 及时调整设计参数 , 就会使塌方事故得到有效控制 , 因 e3 变小,故两个次级绕组便产生电压差△e(△e=e2—e3) ,此输出电压△e 与铁芯的位移在一定范 支护手段之一 , 施工完成后 , 在一定程度上还可以作为永久支护 此要更多地从施工方面去分析塌方的原因 , 如由于抢工期心切而 围内成线性关系,因此差动变压器就将铁芯的位移量转换成电量。当铁芯由中心向下移动时,L1 结构的一部分发挥作用。对于软弱围岩中的隧道施工 , 锚杆能有 忽略地质因素 ; 片面追求进尺而不及时封闭断面或不及时跟进衬 与 L3 的电感耦合增大, e3 增大,而 L1 与 L2 的耦合减小,e2 变小,故次级输出电压△ e =e3—e2 , 此输出电压在相位上改变了 180º。在图(四)中,铁芯由中心零点向任一端移动时,次级输出电压 效限制约束围岩变形 , 制止围岩强度的恶化 , 其加固作用 , 可使 砌; 在出现塌方迹象时不采取或被动采取辅助措施 ; 破碎岩层中 △e 均为交流,若△ e 直接使用电压表测量,只能反映位移的大小,不能反映方向,为了达到消除 围岩中松动区的节理裂隙及破裂面等得以联结 , 使锚固区围岩形 不设超前支护或支护不到位等 , 都是造成塌方或是塌方扩大的原 零点残余电压及辨别方向的目的,必须经过放大和相位调节,才能得到正、负极性的输出电压,从 成整体加固带 , 大幅提高围岩强度 , 同时锚杆群可有效提高层状 因。 而判断出铁芯的正、负方向。 围岩的层间结合力 , 以提高隧道的整体稳定性。 若忽略涡流损耗、铁损等因素,差动变压器的输出由下式确定: 参考文献 锚杆施工中 , 要合理确定锚杆参数 , 充分发挥群锚作用 , 避 若铁芯处于中间平衡位置 [1]关宝树,杨其新.地下工程概论[M].成都:西南交通大学 免不配置垫板、布置不合理、砂浆充填不密实及长锚短打等现象 △e = 0 出版社,2001. 若铁芯上升时 发生。 [2]铁道部.铁路隧道工程施工技术指南(TZ 204-2008)[S]. ui 3.2 塌方处理效果 △e = 2ω△M 北京:中国铁道出版社,2008. 2 2 R p + ( ωL p ) 本次塌方处理从 7 月 24 日开始 , 至 9 月底处理完毕 , 整个处 [3]铁道部.铁路隧道喷锚构筑法技术规范[S].北京:中国铁 理过程历时 2 个多月 , 实际注浆量 224.0m3。注浆完毕后 , 开挖情 道出版社,2002. 若铁芯下降时 况显示 , 坍体泥岩破碎体及土石松散体相当于凝结成一个低标号 [4]铁路工程施工技术手册——隧道(上、下册)[M].北京: ui ,经量测资料分析 , 的混凝土整体 , 隧道拱部也具备了自稳能力 中国铁道出版社,2003. △e = -2ω△M

基于MATLAB的凸轮轮廓曲线设计

基于MATLAB的凸轮轮廓曲线设计

基于MATLAB的凸轮轮廓曲线设计作者:丁昊昊,牛成亮,蒋超猛,龚伟来源:《科技传播》2011年第15期摘要凸轮机构的运动设计主要包括从动件运动规律的确定和凸轮轮廓曲线的设计等。

通常是先确定从动件的运动规律,然后根据从动件的运动规律确定凸轮的轮廓曲线。

本文是在从动件运动规律确定的情况下,利用MATLAB强大的数据处理功能来确定凸轮轮廓曲线。

本文以尖底直动从动件盘形凸轮为例,对其凸轮轮廓曲线进行设计。

结果表明:在从动件运动规律确定的情况下,利用MATLAB软件,可以很方便的得到相应的轮廓曲线。

关键词凸轮机构;凸轮轮廓曲线;MATLAB中图分类号TP31 文献标识码A 文章编号 1674-6708(2011)48-0176-021 凸轮轮廓曲线参数方程的建立1.1 盘形凸轮轮廓曲线1)如图1所示为偏置尖底直动从动件、凸轮逆时针方向转动的情况。

偏距e、基圆半径r0和从动件运动规律已给出。

假想凸轮固定不动,则机架按-w方向转动,这种运动称为“反转运动”。

从动件做复合运动,以从动件上与凸轮接触的点B为动点,静止坐标系固结于凸轮上,动坐标系固结于机架上。

动点B对于机架的相对运动为直线运动,机架对于凸轮的牵连运动为-w方向的转动,动点B对于凸轮的绝对运动所产生的轨迹便是凸轮的轮廓曲线。

如图1所示B0点是从动件处于最低位置时动点B的位置,设此点为凸轮轮廓曲线的起始点,当凸轮转过角度以后,从动件上升距离s,动点B从B0点上升到B1点。

然后将B1以O点为圆心转过-w角度便得到B点位置。

利用平面矢量旋转矩阵便可得到B 点位置坐标。

整理得到凸轮轮廓曲线上的点B的坐标与凸轮转角之间的关系。

2)对心平底直动从动件、凸轮顺时针转动的情况。

类似于偏置尖底直动从动件、凸轮逆时针方向转动的情况,对心平底直动从动件盘形凸轮的基圆半径和从动件运动规律已经给出。

对于平底直动从动件盘形凸轮机构,利用“反转运动”和从动件运动规律,可以得到平底运动所得到的直线族,直线族的包络线就是凸轮的轮廓曲线。

基于Matlab和UG的发动机配气凸轮的三维建模

基于Matlab和UG的发动机配气凸轮的三维建模

作者简介:陈家兑 ( 1 9 7 9一 ),男,广西 玉林 人,讲师 ,研究方 向为发动机可变气 门驱动技 术 ̄ U CA E 技 术。 【 g 4 】 第3 6 卷 第2 期 2 0 1 4 — 0 2 ( :
匐 似
l e g e n d ( ’ 位移’ , ’ 速 度’ , ’ 加 速 度’ )
中图分类号 :T D 9 4 文献标识码 :A
文章编号 :1 0 0 9 —0 1 3 4 ( 2 0 1 4 ) o r ( 下) 一 0 0 9 4 —0 3
Do i :1 0 . 3 9 6 c } / J . i s s n . 1 0 0 9 —0 1 3 4 . 2 0 1 4 . o 2 ( 下) . 2 6
摘 要 : 根据 发动机 配气需 要 , 设 定了高次多 项式配气凸轮的平底从动件升程函数 、回程函数和约束条 件 ;编 写M a t l a b 的M文件程序 求出高次多 项式凸轮 轮廓曲线 、曲线的点 数据和生成从 动件运 动学曲线 ,并利用从动件运 动学曲线分 析高次多项 式凸轮轮廓 的曲线性能 。利用 U G 的曲线生 成功 能、实体 功能获得高精度、曲线光滑连续的高次多项式发动机配气凸轮的三维模型 。 关键词 :M a t l a b ;U G;高次多项式 ;配气凸 轮
凸轮平 底从 动 件升 程 函数为 :
- ] c

0 ,
d Z h ( x )


0, —
d 3 h ( x )

0;
( ) =a 0 +a l x+a 2 x +a 3 x
x7 + a4x 4 + a 5 x 5 + a6x6 + a 7
设 凸轮平 底从 动件 回程 函数 为 :

基于MATLAB的高次多项式凸轮型线优化设计

基于MATLAB的高次多项式凸轮型线优化设计
机械装备优化设计三级项目
基于MATLAB的高次多项式凸轮型线优化设计
设计人员(按贡献大小排序): 唐俊杰(12011010093) 卫健行(120101010092) 王荟博(120101010095) 指导老师:王葛
摘要
动力凸轮型线的设计十分重要 ,以高次多项式凸轮型线为例 ,在基于丰满 系 数 和 磨 损 设 计 多 目 标 函 数 情 况 下 , 利 用 MATLAB 及 其 优 化 工 具 箱 (optimizationtoolbox)对目标函数数学模型进行优化求解。应用MATLAB的优 化函数提供的强大计算功能 ,确定了凸轮型线高次五项式函数中的系数 ,并 能快速找到目标函数的优化值。显著提高了型线优化设计的速度和精度 , 还可根据实际情况灵活地调整权重系数W1和W2的值的大小,计算方便快捷。 在与传统设计方法比较结果表明,经优化设计,提高了动力凸轮的丰满系数, 降低了凸轮型线的磨损。
凸轮型线优化设计目标函数
凸轮型线对系统的工作质量有着重要的影响 ,所以配气凸轮的优化设计 , 在很大程度上能提高内燃机的工作性能[4]。为使配气机构具备良好的充、 排气性能要求凸轮型线具有较大的丰满系数。
ξ=∫2αB0h(α)dα2αBhmax
式中:hmax为凸轮的最大升程;ξ表示凸轮型线的丰满系数,其物理意义为高 次曲线和基本工作段包角所围的面积与最大升程和基本工作段包角所围面 积之比。它反映配气机构的气体通过能力,丰满系数大,进排气效率高,动力 性能好。对高次五项式方程推导,得丰满系数为
h(α)= C0+Cpβp+Cqβq+Crβr+Csβs
式中:h(α)表示气门升程,简写为hα;α表示凸轮转角,将基本段始点取作α= 0;β=(1-α/αB),α B为基本段半包角 ;C0,Cp,Cq,Cr,Cs表示待定系数;p,q,r,s表示幂 指数;取p= 2,q= 2n,r= 2n+ 2m,s=2n+ 4m,式中一般取n为3至20之间的实数;m 为1至20之间的实数。

凸轮轮廓线的绘制(MATLAB)

凸轮轮廓线的绘制(MATLAB)

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程名称:精密机械学基础设计题目:直动从动件盘形凸轮的设计院系:航天学院控制科学与工程系班级: 0904102班设计者:陈学坤学号: ********** 设计时间: 2011年10月直动从动件盘形凸轮机构的计算机辅助设计说明:凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。

此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。

首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。

1 凸轮轮廓方程*()()*()()*()*()X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+-(X,Y):凸轮轮廓线上的任意一点的坐标。

E :从动件的偏心距,OC 。

R :凸轮的基园半径,OA 。

J :凸轮的转角。

S :S=f(J)为从动件的方程。

So :O S =H 为从动件的最大位移(mm )。

J1、J2、J3、J4为从动件的四个转角的区域。

S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。

2 实例R=40,E=10,H=50,J1=J2=J3=J4=900。

3 MATLAB 程序设计用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组:J=[J1,J2,J3,J4];S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4];用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,ds ds ds dt dt V dJ dJ dtω===在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以ds ds ds ds dt dt V dJ dt dJ dtω====速度 同理可得:dJds dtdva 22==加速度4 程序运行结果图一:余弦速运动规律下的凸轮轮廓曲线图二:余弦加速作用下的S-α曲线图三:余弦加速作用下的v-t曲线图四:余弦加速作用下的a-t曲线5 附程序:function tulunR=40;E=10;H=50;J1=90;J2=90;J3=90;J4=90;S0=(R^2-E^2)^(1/2);syms J S dJ dS d2J d2SJ11=linspace(0,J1,500);S1=(H/2).*(1-cos(pi.*J11/J1));X1=E.*cos(J11.*pi/180)+(S0+S1).*sin(J11.*pi/180); Y1=(S0+S1).*cos(J11.*pi/180)-E.*sin(J11.*pi/180);J22=linspace(J1,J1+J2,300);S2=J22./J22.*H;X2=E.*cos(J22.*pi/180)+(S0+H).*sin(J22.*pi/180); Y2=(S0+H).*cos(J22.*pi/180)-E.*sin(J22.*pi/180);J33=linspace(J1+J2,J1+J2+J3,300);S3=H-(H/2).*(1-cos(pi*J33/J3));X3=E*cos(J33*pi/180)+(S0+S3).*sin(J33*pi/180);Y3=(S0+S3).*cos(J33*pi/180)-E*sin(J33*pi/180);J44=linspace(J1+J2+J3,J1+J2+J3+J4,300);X4=E.*cos(J44*pi/180)+S0*sin(J44*pi/180);Y4=S0.*cos(J44*pi/180)-E*sin(J44*pi/180);S4=J44./J44.*0;X=[X1,X2,X3,X4];Y=[Y1,Y2,Y3,Y4];figure(1);plot(X,Y);hold on;t=linspace(0,2*pi,500);x=R*cos(t);y=R*sin(t);plot(x,y);title('凸轮的轮廓曲线');axis([-90,90,-90,90]);axis square;figure(2);plot(J11,S1);hold on;plot(J22,S2);plot(J33,S3);plot(J44,S4);ylabel('S');xlabel('α/rad');title('S-α曲线');J=[J11,J22,J33,J44];S=[S1,S2,S3,S4];dS=diff(S)./diff(J); %通过对位移求导后可得速度。

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用摘要:凸轮机构可以使从动件准确的实现某种预期的运动规律,它广泛的应用于自动机械、自动控制装置和装配生产线中。

本文将从凸轮机构的压力角及其基本尺寸的设计、从动件的运动规律、凸轮廓线的设计等方面介绍matlab在摆动滚子从动件盘形凸轮机构设计中的应用。

关键词:摆动滚子从动件盘形凸轮机构 matlabthe application of matlab in the oscillating roller follower disc cam mechanism designli hailong, luo fengming(southwest jiaotong university emei, le shan si chuan province ,614202)abstract:cam mechanism can make the follower accurately realize some expected movement which is widely used in automatic machinery, automatic control equipment and assembly production line. the article will introduce the application of matlab in the oscillating roller follower disc cam mechanism design from the pressure angle of cam and its basic size design, the motion law of the follower and cam profile design etc.key words: disk cam mechanism with oscillating roller follower;matlab1.问题的描述设计一个摆动滚子凸轮机构,要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件的升、回程运动规律均为等加速等减速运动。

基于MatLab的经编机钩针凸轮轮廓曲线反求设计

基于MatLab的经编机钩针凸轮轮廓曲线反求设计
第 2卷 9
第 1 期 1

织 学 报
V0 . 9 No. l 12 1
NO V. 2 o 0 8
20 0 8年 1 1月
J un lo xi s ac o r a fTe te Re e r h l
文 章 编 号 :2 39 2 (0 8 1- 140 0 5 —7 1 20 ) 10 2 .4
t ec m u v n MaL b,mo iyngte c n u v u t e ,fl rn h olce aa,p o e sn h l rd h a c re i t a d fi h a 'c ref rh r i t igt ec l td d t l e e rc si g tef t e i e d t y c b c s ln ne oain i t a aab u i pie itr lt n MaL b,a d s n ig t e n w aa t tC p o n e dn h e d t o Au o AD o g n rt o la l t e eae c mpibe c m o tu u e b x e .T e rs l fe p rme ts o h tt e c m n fcu e n t i y sts e a c n o rc r y E c 1 h e ut o x e v s i n h w ta h a ma ua trd i hs wa aif s i po u t n rq ie n ,vb ain d ce s s a d n ie d cie rd ci e ur me t ir t e ra e n os e l s, i c n b s d a eee c o i lrc m o o n t a e u e s rfrn e frsmi a a

基于Matlab的发动机配气凸轮机构的动力学建模与仿真

基于Matlab的发动机配气凸轮机构的动力学建模与仿真

故应对其进行弹性动力学分析 ,将整个配气机构看作一个弹性 数 的增 多 , 计算工作量会大大增加 , 因此在建立 动力学模型时 ,
系统 , 研究气 门的实际输出随凸轮轴输入 的动态响应 , 可以为配 应该抓住 主要 的而忽略次要 的影响 因素 ,对 相关参数进行合理 气凸轮廓线 的运动, 动力学综合提供理论依据。 取舍 和简化 。 图 1a所示 , 如 () 是一个发动机配气凸轮机构系统 ,
Ke r :Va v a n e ha i m ;Dy m i i y wo ds lec l m c n s na c smul to a i n;M a l / i ul tab S m i nk
中图分类 号 :P 3 ,H12.文献标 识码 : T 19T 2 A
汽车发 动机配气机构的任务是保证气门在规定时刻开启或 关闭 , 开启或关闭应该 动作迅速 。随着 凸轮轴转速的提高 , 构件
t n i l utao glr ao V v l Tim to im r eatn f i t i wd y c t n n i y o i o a e a2hse hd oe xc adf c n o i e f u i ih h t nf l C l s l t . s e e. i

蔓 一蔓 — —套—套 —


— —
一 一 L — — —
蔓 — — — — 一
建立 了发动机 配气 凸轮机 构 的动 力 学数 学模 型 , 出 了运 用仿 真技 术对 凸轮 机 构进行 动 提
法, 绍 了在 snh k下的凸轮机 构仿 真过 程 。 过 实例得 出: 介 iun r 通 高速 情 况 下考 虑 系统元 件 的 弹性 变形 时 , 门的加 速 度响应 是 大幅波 动 。该 方 法具有 运 算 简便 、 气 精度 高、 速度 快等特 点 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附2:习题4-3解答(1)凸轮的理论廓线方程:000()sin cos ()cos sin x s s e y s s e s ϕϕϕϕ=++⎧⎨=+-⎩=式中 (2)从动件在不同阶段的位移方程:2sin()[0,120]230[120,150][150,300]'0[300,360]h h s h h πϕϕϕφπφϕϕϕφϕ⎧-∈︒︒⎪⎪∈︒︒⎪=⎨⎪-∈︒︒⎪⎪∈︒︒⎩推程阶段远休止阶段回程阶段近休止阶段(3)求解凸轮的实际廓线:a r a r 00x =x-r cos y =y-r sin sin cos ()cos sin sin ()sin cos cos dx dy dxds s s e d d dy ds s s e d d θθθθϕϕϕϕϕϕϕϕϕϕ⎧⎨⎩⎧⎪=⎪⎪⎪⎪⎪⎨⎪-⎪=⎪⎪⎪⎪⎩⎧=++-⎪⎪⎨⎪=++-⎪⎩式中而同样,由于位移s 与从动件所处的运动阶段有关,所以有:2cos()[0,120]0[120,150]s [150,300]'0[300,360]h hd hd πϕϕφφφϕϕϕφϕ⎧-∈︒︒⎪⎪∈︒︒⎪=⎨⎪∈︒︒⎪⎪∈︒︒⎩推程阶段远休止阶段回程阶段近休止阶段(4)代入已知条件,并用Matlab 语言编程求解,编程代码如下: disp ' ******** 偏置直动滚子从动件盘形凸轮设计 ********' disp '已知条件:'disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'disp ' 从动件在推程作摆线运动规律运动,在回程作等速运动规律运动' ro = 50;rr = 10;e = 12;h = 30;ft = 120;fs = 30;fh = 150;fprintf (1,' 基圆半径 ro = %3.4f mm \n',ro) fprintf (1,' 滚子半径 rr = %3.4f mm \n',rr) fprintf (1,' 推杆偏距 e = %3.4f mm \n',e) fprintf (1,' 推程行程 h = %3.4f mm \n',h) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) hd = pi / 180;du = 180 / pi; so = sqrt( ro^2 - e^2 ); d1 = ft + fs;d2 = ft + fs + fh; disp ' 'disp '计算过程和输出结果:'disp ' 1-1 推程(摆线运动规律运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft); for f = 1 : fts(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f);ds(f) = h / (ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft);ds = ds(f); d2s(f) = 2 * pi * h / (ft * hd) ^ 2 * sin(2 * pi * f / ft);d2s = d2s(f); enddisp ' 1-2 回程(等速运动规律运动)' s = zeros(fh);ds = zeros(fh);d2s = zeros(fh); for f = d1 : d2s(f) = h - h * (f-150) / fh; s = s(f); ds(f) = - h / (fh * hd);ds = ds(f); d2s(f) = 0;d2s = d2s(f); enddisp ' 2- 计算凸轮理论廓线与实际廓线的直角坐标'n = 360;s = zeros(n);ds = zeros(n);r = zeros(n);rp = zeros(n);x = zeros(n);y = zeros(n);dx = zeros(n);dy = zeros(n);xx = zeros(n);yy = zeros(n);xa = zeros(n);ya = zeros(n);xxa = zeros(n);yya = zeros(n);for f = 1 : nif f <= fts(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f);ds(f) = h /(ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft); ds = ds(f);elseif f > ft & f <= d1s = h;ds = 0;elseif f > d1 & f <= d2s(f) = h - h * (f-150) / fh; s = s(f);ds(f) = - h / (fh * hd);ds = ds(f);elseif f > d2 & f <= ns = 0;ds = 0;endxx(f) = (so + s) * sin(f * hd) + e * cos(f * hd); x = xx(f);yy(f) = (so + s) * cos(f * hd) - e * sin(f * hd); y = yy(f);dx(f) = (ds - e) * sin(f * hd) + (so + s) * cos(f * hd); dx = dx(f);dy(f) = (ds - e) * cos(f * hd) - (so + s) * sin(f * hd); dy = dy(f);xxa(f) = x + rr * dy / sqrt(dx ^ 2 + dy ^ 2);xa = xxa(f);yya(f) = y - rr * dx / sqrt(dx ^ 2 + dy ^ 2);ya = yya(f);r(f) = sqrt (x ^2 + y ^2 );rp(f) = sqrt (xa ^2 + ya ^2 );enddisp ' 2-1 推程(摆线运动规律运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = 10 : 10 :ftnu = [f xx(f) yy(f) xxa(f) yya(f)];disp(nu)enddisp ' 2-2 回程(等速运动规律运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = d1 : 10 : d2nu = [f xx(f) yy(f) xxa(f) yya(f)];disp(nu)enddisp ' 2-3 凸轮轮廓向径'disp ' 凸轮转角理论r 实际r'for f = 10 : 10 : nnu = [f r(f) rp(f)];disp(nu)enddisp '绘制凸轮的理论轮廓和实际轮廓:'plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)axis ([-(ro+h-10) (ro+h+10) -(ro+h+10) (ro+rr+10)]) % 横轴和纵轴的下限和上限axis equal % 横轴和纵轴的尺度比例相同text(ro+h+3,0,'X') % 标注横轴text(0,ro+rr+3,'Y') % 标注纵轴text(-5,5,'O') % 标注直角坐标系原点title('偏置直动滚子从动件盘形凸轮设计') % 标注图形标题hold on; % 保持图形plot([-(ro+h) (ro+h)],[0 0],'k') % 横轴(黑色)plot([0 0],[-(ro+h) (ro+rr)],'k') % 纵轴(黑色)plot([e e],[0 (ro+rr)],'k--') % 初始偏置位置(黑色,虚线) ct = linspace(0,2*pi); % 画圆的极角变化范围plot(ro*cos(ct),ro*sin(ct),'g') % 基圆(绿色)plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(蓝绿色,虚线)plot(e + rr*cos(ct),so + rr*sin(ct),'y') % 滚子圆(黄色)plot(xxa,yya,'b') % 实际轮廓(蓝色)(5)求解凸轮理论廓线和实际廓线坐标值如下:******** 偏置直动滚子从动件盘形凸轮设计********已知条件:凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边从动件在推程作摆线运动规律运动,在回程作等速运动规律运动基圆半径ro = 50.0000 mm滚子半径rr = 10.0000 mm推杆偏距 e = 12.0000 mm推程行程h = 30.0000 mm推程运动角ft = 120.0000 度远休止角fs = 30.0000 度回程运动角fh = 150.0000 度计算过程和输出结果:1-1 推程(摆线运动规律运动)1-2 回程(等速运动规律运动)计算凸轮理论廓线与实际廓线的直角坐标2-1 推程(摆线运动规律运动)凸轮转角理论x 理论y 实际x 实际y10.0000 20.2659 45.8284 16.5674 36.537520.0000 28.1734 42.3200 23.8536 33.301230.0000 36.0243 38.3959 31.4216 29.518140.0000 44.1625 33.9622 39.1460 25.311550.0000 52.6430 28.5078 46.7788 20.407760.0000 61.0261 21.3770 53.9159 14.345370.0000 68.4036 12.1267 59.9368 6.8057 80.0000 73.6533 0.8019 64.1128 -2.1946 90.0000 75.8133 -12.0000 65.8180 -12.3064 100.0000 74.4098 -25.3056 64.6887 -22.9602 110.0000 69.5921 -38.0996 60.7079 -33.5092 120.0000 62.0165 -49.6616 54.2107 -43.41102-2 回程(等速运动规律运动)凸轮转角理论x 理论y 实际x 实际y 150.0000 28.8770 -74.0165 25.2424 -64.7004 160.0000 14.9014 -76.0270 14.3851 -66.0404 170.0000 1.1258 -75.4900 2.4259 -65.5749 180.0000 -12.0000 -72.5386 -8.9229 -63.0238 190.0000 -24.0666 -67.3832 -19.3110 -58.5864 200.0000 -34.7179 -60.3010 -28.4390 -52.5180 210.0000 -43.6616 -51.6242 -36.0665 -45.1192 220.0000 -50.6772 -41.7260 -42.0190 -36.7223 230.0000 -55.6208 -31.0065 -46.1908 -27.6786 240.0000 -58.4280 -19.8770 -48.5462 -18.3440 250.0000 -59.1126 -8.7451 -49.1177 -9.0659 260.0000 -57.7635 1.9999 -48.0018 -0.1704 270.0000 -54.5386 12.0000 -45.3524 8.0487 280.0000 -49.6567 20.9409 -41.3723 15.3401 290.0000 -43.3865 28.5615 -36.3031 21.5028 300.0000 -36.0357 34.6616 -30.4141 26.39132-3 凸轮轮廓向径凸轮转角理论r 实际r10.0000 50.1094 40.118220.0000 50.8402 40.962930.0000 52.6498 43.111940.0000 55.7114 46.616350.0000 59.8663 51.036660.0000 64.6619 55.791770.0000 69.4702 60.322080.0000 73.6577 64.150490.0000 76.7571 66.9586100.0000 78.5951 68.6426110.0000 79.3387 69.3420120.0000 79.4501 69.4501130.0000 79.4501 69.4501140.0000 79.4501 69.4501150.0000 79.4501 69.4501160.0000 77.4736 67.5889170.0000 75.4984 65.6197180.0000 73.5245 63.6524190.0000 71.5521 61.6869200.0000 69.5812 59.7237210.0000 67.6121 57.7628220.0000 65.6448 55.8044230.0000 63.6795 53.8489240.0000 61.7165 51.8964250.0000 59.7559 49.9474260.0000 57.7981 48.0021270.0000 55.8432 46.0611280.0000 53.8916 44.1247290.0000 51.9438 42.1935300.0000 50.0000 40.2681310.0000 50.0000 40.0000320 50 40330.0000 50.0000 40.0000340 50 40350.0000 50.0000 40.0000360.0000 50.0000 40.0000(6)由Matlab绘制的实际图轮廓线和理论图轮廓线如下:图例:绿色——基圆;红色点划线——理论廓线;蓝色——实际廓线;黄色——滚子圆;蓝绿色,虚线——偏距圆;黑色,虚线——初始偏置位置;。

相关文档
最新文档