偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)

合集下载

matlab解析法画凸轮轮廓线

matlab解析法画凸轮轮廓线

班级::学号:基于matlab的凸轮轮廓设计一、设计凸轮机构的意义在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作外表具有一定形状的凸轮。

凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。

如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。

所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、电脑的辅助装备及农业机具等,都可以找到凸轮机构。

在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。

设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。

因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。

Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。

其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。

因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。

运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。

二、设计凸轮机构的已知条件凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。

从动件在推程做等加/减速运动,在回程做余弦加速运动。

基圆半径rb=50mm,滚子半径rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100º,远休止角fs=60º,回程运动角fh=90º。

三、分析计算1、建立坐标系以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。

2、推杆运动规律计算凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。

根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为:推程加速阶段〔0~f t/2〕{s(f)=2∗ℎ∗f2ft2v(f)=ds(f)=4∗ℎ∗fft2推程减速阶段〔f t/2~f t〕{s(f)=ℎ−2∗ℎ∗(f t−f)2ft2v(f)=ds(f)=4∗ℎ∗(f t−f)ft2远休止阶段〔f t~(f t+f s)〕推杆运动方程为{s(f)=0v(f)=ds(f)=0根据已知条件,在回程做余弦加速运动,因此回程阶段〔(f t+f s)~(f t+f s+fℎ)〕的运动方程为{s(f)=ℎ∗[1+cos(π∗(f−f t−f s)fℎ)]2v(f)=ds(f)=−π∗ℎ∗sin(π∗(f−f t−f s)fℎ)2∗fℎ近休止阶段((f t+f s+fℎ)~360°〕的运动方程为{s(f)=0v(f)=ds(f)=0 3、凸轮理论轮廓线计算{x(f)=[s e+s(f)]∗sin(f)+e∗cos(f) y(f)=[s e+s(f)]∗cos(f)−e∗sin(f)式中s e=√r b2−e2,为推杆滚子中心到X轴的垂直距离。

基于Matlab和Pro_E的凸轮轮廓曲线精确设计_陈韵

基于Matlab和Pro_E的凸轮轮廓曲线精确设计_陈韵
煤矿机械,2010 ,(7) :221 -222.
Precise Design of the Cam Profile Curve based on MATLAB and Pro /E
CHEN Yun (Henan Mechanical and Electrical Engineering College, Xinxiang Henan 453002,China)
7π 6 ≤ δ4 ≤ 3π。 推杆的位移方程为
S=0 。
2 MATLAB 程序的编制和三维建模
根据凸轮理论轮廓曲线的数学模型,在 MAT-
收稿日期:2011-01-01 作者简介:陈 韵(1978—),女,河南淮阳人,助教,硕士,研究方向为先进制造技术。
77
Equipment Manufactring Technology No.4,2011
中图分类号:TH122
文献标识码:B
文章编号:1672-545X(2011)04-0077-02
凸轮机构在各种机械,特别是自动机械和自动 控制装置中被广泛应用。凸轮机构的最大优点,就是 只要适当设计出凸轮的轮廓曲线,就可以使推杆得 到各种预期的运动规律。因此凸轮机构的设计,关键 是获得精确的凸轮轮廓曲线。如果用作图法和解析 法来设计凸轮轮廓,一种方法是精确度低,一种方法 是工作量大。随着计算机的快速发展,凸轮机构的设 计效率也得到了快速提高。
所示。
图 1 MatLab 凸轮理论轮廓曲线 M 文件程序
图 4 Pro/E 凸轮轮廓曲线
图 5 凸轮的三维模型
3 结束语
图 2 MatLab 凸轮理论轮廓曲线
运 行 程 序 生 成 凸 轮 理 论 轮 廓 曲 线 坐 标 的 .IBL 文件,但这还不完全符合 Pro/E 的文件格式,需要修 改一下。用记事本打开 tulun.Ibl,在文件前加入命 令,如图 3 所示。

偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)

偏置直动滚子推杆盘形凸轮Matlab编程(附录程序)

机械原理大作业学院:机械与电子信息学院授课老师:曾小慧姓名:张京学号:20131004547日期:2015-5-23目录1.求轮廓曲线○1推程阶段○2远休止阶段○3回程阶段○4近休止阶段○5Matlab程序设计○6轮廓图形2.求工作廓线○1推程阶段○2远休止阶段○3回程阶段○4近休止阶段○5Matlab程序设计○6轮廓图形3.求解最大压力角○1压力角公式○2MATLAB程序设计○3根据MATLAB程序作图可得出其压力角与角度的关系并分析○4失真情况分析4.附录 Matlab程序凸轮轮廓9-14试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。

已知凸轮轴置于推杆轴线右侧,偏距e=20mm ,基圆半径r。

=50mm ,滚子半径rr=10mm 。

凸轮以等角速度沿顺时针方向回转,在凸轮转过角d 1=120º的过程中,推杆按正弦加速度运动规律上升h=50mm ;凸轮继续转过d 2=30º时,推杆保持不动;其后,凸轮再回转角度d 3=60º时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。

解:1.求理论廓线对于偏置直动滚子推杆盘形凸轮机构,凸轮理论廓线上B 点(即滚子中心)的直角坐标为]cos sin )[(0δδe s s x ++-=δδsin cos )(0e s s y -+= (a ) 式中mm mm e r s 826.452050222200=-=-=① 推程阶段3212001πδ=︒=)]2/()3sin()2/3[()]2/()/2sin()/[(110110111πδπδπδπδδδ-=-=h h s (⎥⎦⎤⎢⎣⎡=32,01πδ) ② 远休止阶段 63002πδ=︒=502=s ⎥⎦⎤⎢⎣⎡=6,02πδ③ 回程阶段36003πδ=︒=2/)]3cos(1[2/)]/cos(1[30333δδπδ+=+=h h s ⎥⎦⎤⎢⎣⎡=3,03πδ ④ 近休止阶段6515004πδ=︒= 04=s ⎥⎦⎤⎢⎣⎡=65,04πδ○5Matlab 程序设计: a1=linspace(0,2*pi/3); %推程阶段的自变量s1=h*(3*a1/2/pi-sin(3*a1)/2/pi); %推杆产生的相应位移x1=-((s0+s1).*sin(a1)+e*cos(a1)); %x 函数y1=(s0+s1).*cos(a1)-e*sin(a1); %y 函数a2=linspace(0,pi/6); %远休止阶段的自变量s2=50; %推杆位移x2=-((s0+s2).*sin(a2+2*pi/3)+e*cos(a2+2*pi/3)); %x 函数y2=(s0+s2).*cos(a2+2*pi/3)-e*sin(a2+2*pi/3); %y 函数a3=linspace(0,pi/3); %回程阶段的自变量s3=h*(1+cos(3*a3))/2; %推杆位移x3=-((s0+s3).*sin(a3+5*pi/6)+e*cos(a3+5*pi/6)); %x 函数y3=(s0+s3).*cos(a3+5*pi/6)-e*sin(a3+5*pi/6); %y 函数a4=linspace(0,5*pi/6); %近休止阶段的自变量s4=0; %推杆位移x4=-((s0+s4).*sin(a4+7*pi/6)+e*cos(a4+7*pi/6)); %x 函数y4=(s0+s4).*cos(a4+7*pi/6)-e*sin(a4+7*pi/6); %y 函数a0=linspace(0,2*pi); %基圆自变量x5=r0*cos(a0); %x 函数y5=r0*sin(a0); %y 函数○6轮廓图形 通过Matlab 软件,编写程序,将以上各相应值代入式(a)计算理论轮廓线上各点的坐标值。

偏置直动滚子从动件盘形凸轮机构

偏置直动滚子从动件盘形凸轮机构

河北工程大学机电学院机械原理课程设计说明书设计题目:偏置直动滚子从动杆盘型凸轮机构班级:姓名:学号:目录(一)设计题目及设计思路 (1)(二)凸轮基圆半径及滚子尺寸的确定 (1)(三)原始数据分析…………(四)从动杆的运动规律及凸轮轮廓线方程 (3)(五)凸轮机构的廓线设计原理 (4)(六)图解法设计盘型凸轮机构……………(七)检验压力角是否满足许用压力角的要求 (7)(八)机构示意简图 (8)(九)计算机源程序………(十)计算机程序结果及分析 (12)(一)机械原理课程设计的目的和任务一、机械原理课程设计的目的:1、机械原理课程设计是一个重要实践性教学环节。

其目的在于:进一步巩固和加深所学知识;2、培养学生运用理论知识独立分析问题、解决问题的能力;3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念;4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。

二、机械原理课程设计的任务:1、偏置直动滚子从动杆盘型凸轮机构2、采用图解法设计:凸轮中心到摆杆中心A的距离为20mm,凸轮以逆时针方向等速回转,摆杆的运动规律如表:3、设计要求:①升程过程中,限制最大压力角αmax≤30º,确定凸轮基园半径r0②合理选择滚子半径rr③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸上;④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2图纸)⑤将机构简图、原始数据、尺寸综合方法写入说明书4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果备注:凸轮轮廓曲率半径与曲率中心理论轮廓方程()()x xy yϕϕ=⎧⎨=⎩,其中2222////x dx d x d x dy dy d x d y dϕϕϕϕ⎧==⎪⎨==⎪⎩其曲率半径为:3 222 () x y xy xyρ+=--;曲率中心位于:2222()()y x yx xxy xyx x yy xxy xyρρ⎧+=-⎪-⎪⎨+⎪=-⎪-⎩三、课程设计采用方法:对于此次任务,要用图解法和解析法两种方法。

4-9偏置直动滚子从从动件盘形凸轮设计(精)

4-9偏置直动滚子从从动件盘形凸轮设计(精)
偏置直动滚子从动件盘形凸轮设计
作者:韦志钢 单位:浙江工贸职业技术学院
所属学科:工科 课程:激光设备机械设计基础
专业:光机电应用技术 适用对象:光机电应用技术专业的学生
偏置直动滚子从动件盘形凸轮设计
教学目标:
了解偏置直动滚子从动件盘形凸轮设 计方法。
偏置直动滚子从动件盘形凸轮设计
问题引入:
已知凸轮的基圆半径为r0,滚子半径rr,,偏心 距e,已知运动规律,凸轮沿顺时针方向等速回转。 当尖顶从动件变成滚子从动件时如何设计凸轮轮 廓?
偏置直动滚子从动件盘形凸轮设计
已知偏置直动滚子从动件盘形凸轮,基圆 半径为rb,偏心距e,凸轮沿逆时针方向等速回 转,滚子半径rr。运动规律如右下图。试设计 此凸轮。Leabharlann 偏置直动滚子从动件盘形凸轮设计
-
S
h 1 2 s1
3
s2
1
1
2
2
rb

O
1'
1
s1
s2
1
h
3
e
作图方法: 2 )以 O为圆心, rb 为 1) 先将滚子中心看作 4) 3) 将 在其切线与基圆 1 , 2 ,3…. 连成 5) 以理论廓线上各点 6) 再作此圆族的包 半径作基圆,以 e 尖顶,然后按尖顶 光滑曲线,便是所要 的交点上量取 S1 、 为圆心,以滚子半径 络线,即为凸轮工 为半径作偏距圆, 偏置从动件凸轮廓 求的凸轮理论廓线; S2 、…得反转后尖 r 作廓线(实际廓 线的设计方法确定 r为半径,作一系列 在偏距圆上1’点 顶所占据的一系列 圆; 滚子中心的轨迹, 作其切线与基圆的 线)。 称其为凸轮的理论 位置,即 1、2、 交点为从动件尖顶 廓线; 3… ; 的初始位置;

凸轮的matlab绘制

凸轮的matlab绘制

附2:习题4-3解答(1)凸轮的理论廓线方程:000()sin cos ()cos sin x s s e y s s e s ϕϕϕϕ=++⎧⎨=+-⎩=式中 (2)从动件在不同阶段的位移方程:2sin()[0,120]230[120,150][150,300]'0[300,360]h h s h h πϕϕϕφπφϕϕϕφϕ⎧-∈︒︒⎪⎪∈︒︒⎪=⎨⎪-∈︒︒⎪⎪∈︒︒⎩推程阶段远休止阶段回程阶段近休止阶段(3)求解凸轮的实际廓线:a r a r 00x =x-r cos y =y-r sin sin cos ()cos sin sin ()sin cos cos dx dy dxds s s e d d dy ds s s e d d θθθθϕϕϕϕϕϕϕϕϕϕ⎧⎨⎩⎧⎪=⎪⎪⎪⎪⎪⎨⎪-⎪=⎪⎪⎪⎪⎩⎧=++-⎪⎪⎨⎪=++-⎪⎩式中而同样,由于位移s 与从动件所处的运动阶段有关,所以有:2cos()[0,120]0[120,150]s [150,300]'0[300,360]h hd hd πϕϕφφφϕϕϕφϕ⎧-∈︒︒⎪⎪∈︒︒⎪=⎨⎪∈︒︒⎪⎪∈︒︒⎩推程阶段远休止阶段回程阶段近休止阶段(4)代入已知条件,并用Matlab 语言编程求解,编程代码如下: disp ' ******** 偏置直动滚子从动件盘形凸轮设计 ********' disp '已知条件:'disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'disp ' 从动件在推程作摆线运动规律运动,在回程作等速运动规律运动' ro = 50;rr = 10;e = 12;h = 30;ft = 120;fs = 30;fh = 150;fprintf (1,' 基圆半径 ro = %3.4f mm \n',ro) fprintf (1,' 滚子半径 rr = %3.4f mm \n',rr) fprintf (1,' 推杆偏距 e = %3.4f mm \n',e) fprintf (1,' 推程行程 h = %3.4f mm \n',h) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) hd = pi / 180;du = 180 / pi; so = sqrt( ro^2 - e^2 ); d1 = ft + fs;d2 = ft + fs + fh; disp ' 'disp '计算过程和输出结果:'disp ' 1-1 推程(摆线运动规律运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft); for f = 1 : fts(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f);ds(f) = h / (ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft);ds = ds(f); d2s(f) = 2 * pi * h / (ft * hd) ^ 2 * sin(2 * pi * f / ft);d2s = d2s(f); enddisp ' 1-2 回程(等速运动规律运动)' s = zeros(fh);ds = zeros(fh);d2s = zeros(fh); for f = d1 : d2s(f) = h - h * (f-150) / fh; s = s(f); ds(f) = - h / (fh * hd);ds = ds(f); d2s(f) = 0;d2s = d2s(f); enddisp ' 2- 计算凸轮理论廓线与实际廓线的直角坐标'n = 360;s = zeros(n);ds = zeros(n);r = zeros(n);rp = zeros(n);x = zeros(n);y = zeros(n);dx = zeros(n);dy = zeros(n);xx = zeros(n);yy = zeros(n);xa = zeros(n);ya = zeros(n);xxa = zeros(n);yya = zeros(n);for f = 1 : nif f <= fts(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f);ds(f) = h /(ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft); ds = ds(f);elseif f > ft & f <= d1s = h;ds = 0;elseif f > d1 & f <= d2s(f) = h - h * (f-150) / fh; s = s(f);ds(f) = - h / (fh * hd);ds = ds(f);elseif f > d2 & f <= ns = 0;ds = 0;endxx(f) = (so + s) * sin(f * hd) + e * cos(f * hd); x = xx(f);yy(f) = (so + s) * cos(f * hd) - e * sin(f * hd); y = yy(f);dx(f) = (ds - e) * sin(f * hd) + (so + s) * cos(f * hd); dx = dx(f);dy(f) = (ds - e) * cos(f * hd) - (so + s) * sin(f * hd); dy = dy(f);xxa(f) = x + rr * dy / sqrt(dx ^ 2 + dy ^ 2);xa = xxa(f);yya(f) = y - rr * dx / sqrt(dx ^ 2 + dy ^ 2);ya = yya(f);r(f) = sqrt (x ^2 + y ^2 );rp(f) = sqrt (xa ^2 + ya ^2 );enddisp ' 2-1 推程(摆线运动规律运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = 10 : 10 :ftnu = [f xx(f) yy(f) xxa(f) yya(f)];disp(nu)enddisp ' 2-2 回程(等速运动规律运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = d1 : 10 : d2nu = [f xx(f) yy(f) xxa(f) yya(f)];disp(nu)enddisp ' 2-3 凸轮轮廓向径'disp ' 凸轮转角理论r 实际r'for f = 10 : 10 : nnu = [f r(f) rp(f)];disp(nu)enddisp '绘制凸轮的理论轮廓和实际轮廓:'plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)axis ([-(ro+h-10) (ro+h+10) -(ro+h+10) (ro+rr+10)]) % 横轴和纵轴的下限和上限axis equal % 横轴和纵轴的尺度比例相同text(ro+h+3,0,'X') % 标注横轴text(0,ro+rr+3,'Y') % 标注纵轴text(-5,5,'O') % 标注直角坐标系原点title('偏置直动滚子从动件盘形凸轮设计') % 标注图形标题hold on; % 保持图形plot([-(ro+h) (ro+h)],[0 0],'k') % 横轴(黑色)plot([0 0],[-(ro+h) (ro+rr)],'k') % 纵轴(黑色)plot([e e],[0 (ro+rr)],'k--') % 初始偏置位置(黑色,虚线) ct = linspace(0,2*pi); % 画圆的极角变化范围plot(ro*cos(ct),ro*sin(ct),'g') % 基圆(绿色)plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(蓝绿色,虚线)plot(e + rr*cos(ct),so + rr*sin(ct),'y') % 滚子圆(黄色)plot(xxa,yya,'b') % 实际轮廓(蓝色)(5)求解凸轮理论廓线和实际廓线坐标值如下:******** 偏置直动滚子从动件盘形凸轮设计********已知条件:凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边从动件在推程作摆线运动规律运动,在回程作等速运动规律运动基圆半径ro = 50.0000 mm滚子半径rr = 10.0000 mm推杆偏距 e = 12.0000 mm推程行程h = 30.0000 mm推程运动角ft = 120.0000 度远休止角fs = 30.0000 度回程运动角fh = 150.0000 度计算过程和输出结果:1-1 推程(摆线运动规律运动)1-2 回程(等速运动规律运动)计算凸轮理论廓线与实际廓线的直角坐标2-1 推程(摆线运动规律运动)凸轮转角理论x 理论y 实际x 实际y10.0000 20.2659 45.8284 16.5674 36.537520.0000 28.1734 42.3200 23.8536 33.301230.0000 36.0243 38.3959 31.4216 29.518140.0000 44.1625 33.9622 39.1460 25.311550.0000 52.6430 28.5078 46.7788 20.407760.0000 61.0261 21.3770 53.9159 14.345370.0000 68.4036 12.1267 59.9368 6.8057 80.0000 73.6533 0.8019 64.1128 -2.1946 90.0000 75.8133 -12.0000 65.8180 -12.3064 100.0000 74.4098 -25.3056 64.6887 -22.9602 110.0000 69.5921 -38.0996 60.7079 -33.5092 120.0000 62.0165 -49.6616 54.2107 -43.41102-2 回程(等速运动规律运动)凸轮转角理论x 理论y 实际x 实际y 150.0000 28.8770 -74.0165 25.2424 -64.7004 160.0000 14.9014 -76.0270 14.3851 -66.0404 170.0000 1.1258 -75.4900 2.4259 -65.5749 180.0000 -12.0000 -72.5386 -8.9229 -63.0238 190.0000 -24.0666 -67.3832 -19.3110 -58.5864 200.0000 -34.7179 -60.3010 -28.4390 -52.5180 210.0000 -43.6616 -51.6242 -36.0665 -45.1192 220.0000 -50.6772 -41.7260 -42.0190 -36.7223 230.0000 -55.6208 -31.0065 -46.1908 -27.6786 240.0000 -58.4280 -19.8770 -48.5462 -18.3440 250.0000 -59.1126 -8.7451 -49.1177 -9.0659 260.0000 -57.7635 1.9999 -48.0018 -0.1704 270.0000 -54.5386 12.0000 -45.3524 8.0487 280.0000 -49.6567 20.9409 -41.3723 15.3401 290.0000 -43.3865 28.5615 -36.3031 21.5028 300.0000 -36.0357 34.6616 -30.4141 26.39132-3 凸轮轮廓向径凸轮转角理论r 实际r10.0000 50.1094 40.118220.0000 50.8402 40.962930.0000 52.6498 43.111940.0000 55.7114 46.616350.0000 59.8663 51.036660.0000 64.6619 55.791770.0000 69.4702 60.322080.0000 73.6577 64.150490.0000 76.7571 66.9586100.0000 78.5951 68.6426110.0000 79.3387 69.3420120.0000 79.4501 69.4501130.0000 79.4501 69.4501140.0000 79.4501 69.4501150.0000 79.4501 69.4501160.0000 77.4736 67.5889170.0000 75.4984 65.6197180.0000 73.5245 63.6524190.0000 71.5521 61.6869200.0000 69.5812 59.7237210.0000 67.6121 57.7628220.0000 65.6448 55.8044230.0000 63.6795 53.8489240.0000 61.7165 51.8964250.0000 59.7559 49.9474260.0000 57.7981 48.0021270.0000 55.8432 46.0611280.0000 53.8916 44.1247290.0000 51.9438 42.1935300.0000 50.0000 40.2681310.0000 50.0000 40.0000320 50 40330.0000 50.0000 40.0000340 50 40350.0000 50.0000 40.0000360.0000 50.0000 40.0000(6)由Matlab绘制的实际图轮廓线和理论图轮廓线如下:图例:绿色——基圆;红色点划线——理论廓线;蓝色——实际廓线;黄色——滚子圆;蓝绿色,虚线——偏距圆;黑色,虚线——初始偏置位置;。

matlab凸轮摇杆机构设计动画代码

matlab凸轮摇杆机构设计动画代码

matlab凸轮摇杆机构设计动画代码一、引言凸轮摇杆机构是机械工程中常见的一种机构,其运动特性决定了它在很多领域都有广泛的应用,例如发动机、汽车、船舶等。

而在设计凸轮摇杆机构时,需要进行大量的计算和试验,这对于工程师来说是一个非常繁琐的过程。

但是,通过使用MATLAB软件可以大大简化这个过程,并且可以生成动画效果来更直观地展示凸轮摇杆机构的运动特性。

二、MATLAB凸轮摇杆机构设计代码以下是MATLAB代码实现凸轮摇杆机构的动画效果:1. 定义凸轮形状首先需要定义凸轮的形状,可以采用圆弧、正弦曲线等方式进行定义。

例如,在此我们采用正弦曲线进行定义:```matlabtheta = linspace(0,2*pi,100);r = 1+sin(theta);```2. 定义摇杆长度和连杆长度根据具体情况定义摇杆长度和连杆长度:```matlabL1 = 3;L2 = 6;```3. 计算连杆末端位置坐标根据凸轮形状和连杆长度,可以计算出连杆末端的位置坐标:```matlabx1 = r.*cos(theta);y1 = r.*sin(theta);x2 = x1 + L1*cos(theta);y2 = y1 + L1*sin(theta);```4. 计算摇杆末端位置坐标根据连杆长度和摇杆长度,可以计算出摇杆末端的位置坐标:```matlabtheta2 = asin((y2-L2)./L1);x3 = x2 - L2*cos(theta-theta2);y3 = y2 - L2*sin(theta-theta2);```5. 绘制动画效果最后,使用MATLAB的plot函数绘制凸轮摇杆机构的动画效果:```matlabfor i=1:length(x3)plot([0,x2(i),x3(i)],[0,y2(i),y3(i)],'k-o','linewidth',4,'MarkerFaceColor','r','MarkerSize',10)axis equalpause(0.01)end```三、MATLAB凸轮摇杆机构设计代码详解1. 步骤一:定义凸轮形状在此我们采用正弦曲线进行定义。

凸轮机构matlab程序

凸轮机构matlab程序

凸轮轮廓程序:>> e=20;s0=77.46;a1=0:pi/36:pi/3;s1=50*[3*a1/pi-sin(6*a1)/(2*pi)];x1=(s0+s1).*sin(a1)+e*cos(a1);y1=(s0+s1).*cos(a1)-e*sin(a1);k1=150/pi*[1-cos(6*a1)];>> i1=[(k1-e).*sin(a1)+(s0+s1).*cos(a1)].*[(k1-e).*(k1-e)+(s0+s1).*(s0+s1)].^(-1/2);>> j1=[-(k1-e).*cos(a1)+(s0+s1).*sin(a1)].*[(k1-e).*(k1-e)+(s0+s1).*(s0+s1)].^(-1/2);>> x10=x1-10*j1;>> y10=y1-10*i1;a2=pi/3:pi/36:pi;s2=50;x2=(s0+s2).*sin(a2)+e*cos(a2);y2=(s0+s2).*cos(a2)-e*sin(a2);k2=0;>> i2=[(k2-e).*sin(a2)+(s0+s2).*cos(a2)].*[(k2-e).*(k2-e)+(s0+s2).*(s0+s2)].^(-1/2);j2=[-(k2-e).*cos(a2)+(s0+s2).*sin(a2)].*[(k2-e).*(k2-e)+(s0+s2).*(s0+s2)].^(-1/2);x20=x2-10*j2;y20=y2-10*i2;>> a3=pi:pi/36:4*pi/3;>> s3=50*[1-3*(a3-pi)/pi+sin(6*(a3-pi))/(2*pi)];>> x3=(s0+s3).*sin(a3)+e*cos(a3);>> y3=(s0+s3).*cos(a3)-e*sin(a3);>> k3=50*[-3/pi+3/pi*cos(6*(a3-pi))];>> i3=[(k3-e).*sin(a3)+(s0+s3).*cos(a3)].*[(k3-e).*(k3-e)+(s0+s3).*(s0+s3)].^(-1/2);>> j3=[-(k3-e).*cos(a3)+(s0+s3).*sin(a3)].*[(k3-e).*(k3-e)+(s0+s3).*(s0+s3)].^(-1/2);>> x30=x3-10*j3;>> y30=y3-10*i3;>> a4=4*pi/3:pi/36:2*pi;>> s4=0;>> x4=(s0+s4).*sin(a4)+e*cos(a4);>> y4=(s0+s4).*cos(a4)-e*sin(a4);>> k4=0;>> i4=[(k4-e).*sin(a4)+(s0+s4).*cos(a4)].*[(k4-e).*(k4-e)+(s0+s4).*(s0+s4)].^(-1/2);>> j4=[-(k4-e).*cos(a4)+(s0+s4).*sin(a4)].*[(k4-e).*(k4-e)+(s0+s4).*(s0+s4)].^(-1/2);>> x40=x4-10*j4;>> y40=y4-10*i4;>> plot(x10,y10,'-g*',x20,y20,'-r*',x30,y30,'-b*',x40,y40,'-k*')>>plot(x10,y10,'-g*',x20,y20,'-r*',x30,y30,'-b*',x40,y40,'-k*',x1,y1,'-g*',x2,y2,'-r*',x3,y3,'-b*',x4,y4,'-k*')>>凸轮压力角:>> x=0:0.01:pi/3;>> t=5.76*sin(6*x)+6*x.*sin(6*x)+(2-2*pi/15)*cos(6*x)-2+2*pi/15; >> xx =Columns 1 through 60 0.0100 0.0200 0.0300 0.0400 0.0500Columns 7 through 120.0600 0.0700 0.0800 0.0900 0.1000 0.1100Columns 13 through 180.1200 0.1300 0.1400 0.1500 0.1600 0.1700 Columns 19 through 240.1800 0.1900 0.2000 0.2100 0.2200 0.2300 Columns 25 through 300.2400 0.2500 0.2600 0.2700 0.2800 0.2900 Columns 31 through 360.3000 0.3100 0.3200 0.3300 0.3400 0.3500 Columns 37 through 420.3600 0.3700 0.3800 0.3900 0.4000 0.4100 Columns 43 through 480.4200 0.4300 0.4400 0.4500 0.4600 0.4700 Columns 49 through 540.4800 0.4900 0.5000 0.5100 0.5200 0.5300 Columns 55 through 600.5400 0.5500 0.5600 0.5700 0.5800 0.5900 Columns 61 through 660.6000 0.6100 0.6200 0.6300 0.6400 0.6500 Columns 67 through 720.6600 0.6700 0.6800 0.6900 0.7000 0.7100 Columns 73 through 780.7200 0.7300 0.7400 0.7500 0.7600 0.7700 Columns 79 through 840.7800 0.7900 0.8000 0.8100 0.8200 0.8300 Columns 85 through 900.8400 0.8500 0.8600 0.8700 0.8800 0.8900 Columns 91 through 960.9000 0.9100 0.9200 0.9300 0.9400 0.9500 Columns 97 through 1020.9600 0.9700 0.9800 0.9900 1.0000 1.0100 Columns 103 through 1051.0200 1.0300 1.0400>> tt =Columns 1 through 60.0000 0.3461 0.6925 1.0379 1.3809 1.7202 Columns 7 through 122.0546 2.3825 2.70283.0141 3.3150 3.6042 Columns 13 through 183.88044.1424 4.3889 4.6187 4.83075.0237 Columns 19 through 245.1967 5.3487 5.4788 5.5861 5.6698 5.7292 Columns 25 through 305.7636 5.7725 5.7555 5.7122 5.6422 5.5455 Columns 31 through 365.4219 5.2715 5.0944 4.8908 4.6610 4.4055 Columns 37 through 424.1248 3.8196 3.4906 3.1387 2.7647 2.3699 Columns 43 through 481.9552 1.5219 1.0714 0.6051 0.1243 -0.3692 Columns 49 through 54-0.8740 -1.3882 -1.9102 -2.4381 -2.9701 -3.5044 Columns 55 through 60-4.0388 -4.5716 -5.1008 -5.6243 -6.1401 -6.6464 Columns 61 through 66-7.1410 -7.6221 -8.0877 -8.5359 -8.9648 -9.3727 Columns 67 through 72-9.7578 -10.1184 -10.4528 -10.7596 -11.0372 -11.2843 Columns 73 through 78-11.4996 -11.6820 -11.8304 -11.9439 -12.0215 -12.0627 Columns 79 through 84-12.0668 -12.0335 -11.9623 -11.8531 -11.7059 -11.5207 Columns 85 through 90-11.2979 -11.0378 -10.7410 -10.4081 -10.0399 -9.6374 Columns 91 through 96-9.2016 -8.7339 -8.2356 -7.7081 -7.1530 -6.5722 Columns 97 through 102-5.9674 -5.3405 -4.6937 -4.0291 -3.3489 -2.6554Columns 103 through 105-1.9511 -1.2383 -0.5195>> x=0.46:0.001:0.47;>> t=5.76*sin(6*x)+6*x.*sin(6*x)+(2-2*pi/15)*cos(6*x)-2+2*pi/15; >> xx =Columns 1 through 60.4600 0.4610 0.4620 0.4630 0.4640 0.4650Columns 7 through 110.4660 0.4670 0.4680 0.4690 0.4700>> tt =Columns 1 through 60.1243 0.0755 0.0266 -0.0225 -0.0717 -0.1210Columns 7 through 11-0.1704 -0.2199 -0.2696 -0.3193 -0.3692>> x=0.462:0.0001:0.463;>> t=5.76*sin(6*x)+6*x.*sin(6*x)+(2-2*pi/15)*cos(6*x)-2+2*pi/15; >> xx =Columns 1 through 60.4620 0.4621 0.4622 0.4623 0.4624 0.4625Columns 7 through 110.4626 0.4627 0.4628 0.4629 0.4630>> tt =Columns 1 through 60.0266 0.0217 0.0168 0.0119 0.0070 0.0021Columns 7 through 11-0.0028 -0.0077 -0.0126 -0.0176 -0.0225>> z=[0 0.4625];>> y=[150/pi*(1-cos(6*z))-20].*[45.8+50*(3*z/pi-sin(6*z)/(2*pi))];>> y=[150/pi*(1-cos(6*z))-20]./[45.8+50*(3*z/pi-sin(6*z)/(2*pi))];>> yy =-0.4367 1.1121>> a=atan(y)a =-0.4117 0.8384>> a*180/pians =-23.5900 48.0382>>以上是计算推程压力角的临界值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理大作业学院:机械与电子信息学院授课老师:曾小慧:京学号:20131004547日期:2015-5-23目录1.求轮廓曲线○1推程阶段○2远休止阶段○3回程阶段○4近休止阶段○5Matlab程序设计○6轮廓图形2.求工作廓线○1推程阶段○2远休止阶段○3回程阶段○4近休止阶段○5Matlab程序设计○6轮廓图形3.求解最大压力角○1压力角公式○2MATLAB程序设计○3根据MATLAB程序作图可得出其压力角与角度的关系并分析○4失真情况分析4.附录 Matlab程序凸轮轮廓9-14试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。

已知凸轮轴置于推杆轴线右侧,偏距e=20mm ,基圆半径r。

=50mm ,滚子半径rr=10mm 。

凸轮以等角速度沿顺时针方向回转,在凸轮转过角d 1=120º的过程中,推杆按正弦加速度运动规律上升h=50mm ;凸轮继续转过d 2=30º时,推杆保持不动;其后,凸轮再回转角度d 3=60º时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。

解:1.求理论廓线对于偏置直动滚子推杆盘形凸轮机构,凸轮理论廓线上B 点(即滚子中心)的直角坐标为]cos sin )[(0δδe s s x ++-=δδsin cos )(0e s s y -+= (a ) 式中mm mm e r s 826.452050222200=-=-=① 推程阶段3212001πδ=︒=)]2/()3sin()2/3[()]2/()/2sin()/[(110110111πδπδπδπδδδ-=-=h h s (⎥⎦⎤⎢⎣⎡=32,01πδ) ② 远休止阶段 63002πδ=︒=502=s ⎥⎦⎤⎢⎣⎡=6,02πδ③ 回程阶段36003πδ=︒=2/)]3cos(1[2/)]/cos(1[30333δδπδ+=+=h h s ⎥⎦⎤⎢⎣⎡=3,03πδ ④ 近休止阶段6515004πδ=︒= 04=s ⎥⎦⎤⎢⎣⎡=65,04πδ○5Matlab 程序设计: a1=linspace(0,2*pi/3); %推程阶段的自变量s1=h*(3*a1/2/pi-sin(3*a1)/2/pi); %推杆产生的相应位移x1=-((s0+s1).*sin(a1)+e*cos(a1)); %x 函数y1=(s0+s1).*cos(a1)-e*sin(a1); %y 函数a2=linspace(0,pi/6); %远休止阶段的自变量s2=50; %推杆位移x2=-((s0+s2).*sin(a2+2*pi/3)+e*cos(a2+2*pi/3)); %x 函数y2=(s0+s2).*cos(a2+2*pi/3)-e*sin(a2+2*pi/3); %y 函数a3=linspace(0,pi/3); %回程阶段的自变量s3=h*(1+cos(3*a3))/2; %推杆位移x3=-((s0+s3).*sin(a3+5*pi/6)+e*cos(a3+5*pi/6)); %x 函数y3=(s0+s3).*cos(a3+5*pi/6)-e*sin(a3+5*pi/6); %y 函数a4=linspace(0,5*pi/6); %近休止阶段的自变量s4=0; %推杆位移x4=-((s0+s4).*sin(a4+7*pi/6)+e*cos(a4+7*pi/6)); %x 函数y4=(s0+s4).*cos(a4+7*pi/6)-e*sin(a4+7*pi/6); %y 函数a0=linspace(0,2*pi); %基圆自变量x5=r0*cos(a0); %x 函数y5=r0*sin(a0); %y 函数○6轮廓图形 通过Matlab 软件,编写程序,将以上各相应值代入式(a)计算理论轮廓线上各点的坐标值。

在计算时应注意:在推程阶段取1δδ=,在远休止阶段取201δδδ+=,在回程阶段取30201δδδδ++=,在近休止阶段取4030201δδδδδ+++=。

画出的图形如下图所示2.求工作廓线θcos 'r r x x -= θsin 'r r y y -= (b )其中 22)/()/(/)/(sin δδδθd dy d dx d dx +-= 22)/()/(/)/(cos δδδθd dy d dx d dy +=① 推程阶段⎥⎦⎤⎢⎣⎡=32,01πδ 1011cos )(sin })2/()]3cos(1[3{/δδπδδs s e h d dx +----=1011sin )(cos })2/()]3cos(1[3{/δδπδδs s e h d dy +---=② 远休止阶段⎥⎦⎤⎢⎣⎡=6,02πδ )3/2cos()()3/2sin(/202δπδπδ++-+=s s e d dx)3/2sin()()3/2cos(/202δπδπδ++-+-=s s e d dy③ 回程阶段⎥⎦⎤⎢⎣⎡=3,03πδ )6/5cos()()6/5sin(]2/)3sin(3[/3033δπδπδδ++-++=s s e h d dx)6/5sin()()6/5cos(]2/)3sin(3[/3033δπδπδδ++-++-=s s e h d dy④ 近休止阶段⎥⎦⎤⎢⎣⎡=65,04πδ )6/7cos()()6/7sin(/404δπδπδ++-+=s s e d dx)6/7sin()()6/7cos(/404δπδπδ++-+-=s s e d dy○5Matlab 程序设计: %工作廓线m1=-(h*3/2/pi*(1-cos(3*a1))-e).*sin(a1)-(s0+s1).*cos(a1); %中间变量dx/d$ n1=(h*3/2/pi*(1-cos(3*a1))-e).*cos(a1)-(s0+s1).*sin(a1); %中间变量dy/d$ p1=-m1./sqrt(m1.^2+n1.^2); %sin&q1=n1./sqrt(m1.^2+n1.^2); %cos&x6=x1-r*q1; %x'函数y6=y1-r*p1; %y'函数m2=-(s0+s2).*cos(a2+2*pi/3)+e*sin(a2+2*pi/3); %中间变量dx/d$ n2=-(s0+s2).*sin(a2+2*pi/3)-e*cos(a2+2*pi/3); %中间变量dy/d$ p2=-m2./sqrt(m2.^2+n2.^2); %sin&q2=n2./sqrt(m2.^2+n2.^2); %cos&x7=x2-r*q2; %x'函数y7=y2-r*p2; %y'函数m3=(h*3/2*sin(3*a3)+e).*sin(a3+5*pi/6)-(s0+s3).*cos(a3+5*pi/6); %中间变量dx/d$ n3=-(h*3/2*sin(3*a3)+e).*cos(a3+5*pi/6)-(s0+s3).*sin(a3+5*pi/6);%中间变量dy/d$ p3=-m3./sqrt(m3.^2+n3.^2); %sin&q3=n3./sqrt(m3.^2+n3.^2); %cos&x8=x3-r*q3; %x'函数y8=y3-r*p3; %y'函数m4=-(s0+s4).*cos(a4+7*pi/6)+e*sin(a4+7*pi/6); %中间变量dx/d$ n4=-(s0+s4).*sin(a4+7*pi/6)-e*cos(a4+7*pi/6); %中间变量dy/d$p4=-m4./sqrt(m4.^2+n4.^2); %sin&q4=n4./sqrt(m4.^2+n4.^2); %cos&x9=x4-r*q4; %x'函数y9=y4-r*p4; %y'函数○6轮廓图形同理,通过Matlab软件,编写程序,将以上各相应值代入式(a)计算理论轮廓线上各点的坐标值。

获得凸轮的工作廓线如下图所示。

将滚子画在上图中,可得最终的图形。

将Matlab中编程获得的凸轮轮廓曲线点的坐标保存为后缀名为dat文件,导入到UG中,完成凸轮的三维建模,如下图所示。

3.求解最大压力角○1压力角公式 压力角|)0/()e -/(|arctan s s d ds +=σα○2MATLAB 程序设计 clearr0=50;e=20;h=50;s0=sqrt(r0^2-e^2);r=10;a1=0:0.01:2*pi/3;s1=h*(3*a1/2/pi-sin(3*a1)/2/pi);c1=h*(3/2/pi- 3*cos(3*a1)/2/pi); %中间变量ds/d бt1=atan( abs((c1-e)/(s0+s1))); %压力角的计算plot(a1,t1)grid onhold ona2=2*pi/3:0.01:5*pi/6;s2=50;c2=0;t2=atan( abs((c2-e)/(s0+s2)));plot(a2,t2)grid onhold ona3=5*pi/6:0.01:7*pi/6;s3=h*(1+cos(3*(a3-5*pi/6)))/2;c3=-h*3*sin(3*(a3-5*pi/6))/2;t3=atan( abs((c3-e)/(s0+s3)));plot(a3,t3)grid onhold ona4=7*pi/6:0.01:2*pi;s4=0;c4=0;t4=atan( abs((c4-e)/(s0+s4)));plot(a4,t4)grid on○3根据MATLAB 程序作图可得出其压力角与角度的关系并分析当在推程段时,0=δ度时,得最大压力角度即为5.2341.0=α; 当在远休止段时,其压力角为定值,度即为7.1121.0=α;当其在回程段时,度时189=δ,得最大压力角度;即为8.5597.0=α 当在近休止段时,其压力角为定值,度即为5.2341.0=α○4失真情况分析由实际轮廓线可知其并未出现尖端,故其没有发生失真情况。

4.附录 Matlab程序%凸轮理论廓线与工作廓线的画法clear %清除变量r0=50; %定义基圆半径e=20; %定义偏距h=50; %推杆上升高度s0=sqrt(r0^2-e^2);r=10; %滚子半径%理论廓线a1=linspace(0,2*pi/3); %推程阶段的自变量s1=h*(3*a1/2/pi-sin(3*a1)/2/pi); %推杆产生的相应位移x1=-((s0+s1).*sin(a1)+e*cos(a1)); %x函数y1=(s0+s1).*cos(a1)-e*sin(a1); %y函数a2=linspace(0,pi/6); %远休止阶段的自变量s2=50; %推杆位移x2=-((s0+s2).*sin(a2+2*pi/3)+e*cos(a2+2*pi/3)); %x函数y2=(s0+s2).*cos(a2+2*pi/3)-e*sin(a2+2*pi/3); %y函数a3=linspace(0,pi/3); %回程阶段的自变量s3=h*(1+cos(3*a3))/2; %推杆位移x3=-((s0+s3).*sin(a3+5*pi/6)+e*cos(a3+5*pi/6)); %x函数y3=(s0+s3).*cos(a3+5*pi/6)-e*sin(a3+5*pi/6); %y函数a4=linspace(0,5*pi/6); %近休止阶段的自变量s4=0; %推杆位移x4=-((s0+s4).*sin(a4+7*pi/6)+e*cos(a4+7*pi/6)); %x函数y4=(s0+s4).*cos(a4+7*pi/6)-e*sin(a4+7*pi/6); %y函数a0=linspace(0,2*pi); %基圆自变量x5=r0*cos(a0); %x函数y5=r0*sin(a0); %y函数%工作廓线m1=-(h*3/2/pi*(1-cos(3*a1))-e).*sin(a1)-(s0+s1).*cos(a1); %中间变量dx/d$ n1=(h*3/2/pi*(1-cos(3*a1))-e).*cos(a1)-(s0+s1).*sin(a1); %中间变量dy/d$ p1=-m1./sqrt(m1.^2+n1.^2); %sin&q1=n1./sqrt(m1.^2+n1.^2); %cos&x6=x1-r*q1; %x'函数y6=y1-r*p1; %y'函数m2=-(s0+s2).*cos(a2+2*pi/3)+e*sin(a2+2*pi/3); %中间变量dx/d$n2=-(s0+s2).*sin(a2+2*pi/3)-e*cos(a2+2*pi/3); %中间变量dy/d$p2=-m2./sqrt(m2.^2+n2.^2); %sin&q2=n2./sqrt(m2.^2+n2.^2); %cos&x7=x2-r*q2; %x'函数y7=y2-r*p2; %y'函数m3=(h*3/2*sin(3*a3)+e).*sin(a3+5*pi/6)-(s0+s3).*cos(a3+5*pi/6); %中间变量dx/d$ n3=-(h*3/2*sin(3*a3)+e).*cos(a3+5*pi/6)-(s0+s3).*sin(a3+5*pi/6);%中间变量dy/d$ p3=-m3./sqrt(m3.^2+n3.^2); %sin&q3=n3./sqrt(m3.^2+n3.^2); %cos&x8=x3-r*q3; %x'函数y8=y3-r*p3; %y'函数m4=-(s0+s4).*cos(a4+7*pi/6)+e*sin(a4+7*pi/6); %中间变量dx/d$n4=-(s0+s4).*sin(a4+7*pi/6)-e*cos(a4+7*pi/6); %中间变量dy/d$p4=-m4./sqrt(m4.^2+n4.^2); %sin&q4=n4./sqrt(m4.^2+n4.^2); %cos&x9=x4-r*q4; %x'函数y9=y4-r*p4; %y'函数%画滚子g1=x1(1)+r*cos(a0);j1=y1(1)+r*sin(a0);g2=x1(25)+r*cos(a0);j2=y1(25)+r*sin(a0);g3=x1(50)+r*cos(a0);j3=y1(50)+r*sin(a0);g4=x1(60)+r*cos(a0);j4=y1(60)+r*sin(a0);g5=x1(75)+r*cos(a0);j5=y1(75)+r*sin(a0);g6=x1(90)+r*cos(a0);j6=y1(90)+r*sin(a0);g7=x2(1)+r*cos(a0);j7=y2(1)+r*sin(a0);g8=x2(50)+r*cos(a0);j8=y2(50)+r*sin(a0);g9=x3(1)+r*cos(a0);j9=y3(1)+r*sin(a0);g10=x3(25)+r*cos(a0);j10=y3(25)+r*sin(a0);g11=x3(40)+r*cos(a0);j11=y3(40)+r*sin(a0);g12=x3(50)+r*cos(a0);j12=y3(50)+r*sin(a0);g13=x3(75)+r*cos(a0);j13=y3(75)+r*sin(a0);g14=x4(1)+r*cos(a0);j14=y4(1)+r*sin(a0);g15=x4(50)+r*cos(a0);j15=y4(50)+r*sin(a0);figure %创建图形窗口plot(x1,y1,'b-',x2,y2,'g-',x3,y3,'m-',x4,y4,'c-',...x6,y6,'b-',x7,y7,'g-',x8,y8,'m-',x9,y9,'c-',...'LineWidth',2) %画函数曲线grid on %加网格hold on %保持图像plot(x5,y5,'r--',g1,j1,'k-',g2,j2,'k-',g3,j3,'k-',...g4,j4,'k-',g5,j5,'k-',g6,j6,'k-',g7,j7,'k-',...g8,j8,'k-',g9,j9,'k-',g10,j10,'k-',g11,j11,'k-',...g12,j12,'k-',g13,j13,'k-',g14,j14,'k-',g15,j15,'k-','LineWidth',2) %画基圆title('凸轮理论廓线与工作廓线','FontSize',16) %标题axis ([-100,80,-120,60])axis('equal')points=[x6',y6',zeros(100,1);x7',y7',zeros(100,1);...x8',y8',zeros(100,1);x9',y9',zeros(100,1)]%最大压力角clearr0=50;e=20;h=50;s0=sqrt(r0^2-e^2);r=10;a1=0:0.01:2*pi/3;s1=h*(3*a1/2/pi-sin(3*a1)/2/pi);c1=h*(3/2/pi- 3*cos(3*a1)/2/pi); %中间变量ds/dбt1=atan( abs((c1-e)/(s0+s1))); %压力角的计算plot(a1,t1)grid onhold ona2=2*pi/3:0.01:5*pi/6;s2=50;c2=0;t2=atan( abs((c2-e)/(s0+s2))); plot(a2,t2)grid onhold ona3=5*pi/6:0.01:7*pi/6;s3=h*(1+cos(3*(a3-5*pi/6)))/2; c3=-h*3*sin(3*(a3-5*pi/6))/2; t3=atan( abs((c3-e)/(s0+s3))); plot(a3,t3)grid onhold ona4=7*pi/6:0.01:2*pi;s4=0;c4=0;t4=atan( abs((c4-e)/(s0+s4))); plot(a4,t4)grid on。

相关文档
最新文档