机械原理-凸轮设计(偏置直动滚子从动件盘形凸轮机构的设计)

合集下载

机械原理:第6章 凸轮机构

机械原理:第6章 凸轮机构
试求: 1.标出基圆半径r0? 2.标出图示位置从动件位移s 和机构
的压力角α ? 3.求出r0 、s 和α之间的关系式?
本题目主要考察对基圆、压力角及位移等 基本概念的理解和压力角的计算方法。 解
(1)图示位置的r0 、s 和α如图。
(2)r0 、s 与α之间的关系式为:
tan
v e
lOP e 1
r02 e2 s s r02 e2
例3 图示为摆动滚子从动件盘形凸轮机构,凸轮为偏心圆盘, 且以角速度ω逆时针方向回转。
试在图上标出: 1. 凸轮基圆;
2. 升程运动角和回程运动角;
3. 图示位置时从动件的初始位置角
0和角位移 ;
4. 图示位置从动件的压力角α;
5. 从动件的最大角位移max 。
r0min
( d s)2 e2 tan[ ]
直动滚子从动件盘 形凸轮机构
凸轮基圆半径
r0
m in
s
d2s
d 2
式中
([ dx )2 ( dy )2 ]3/ 2
d
dx
d
.
d2 y
d 2
d
dy
d
.
d2x
d 2
条件 min
直动平底从动件盘 形凸轮机构
滚子半径的设计
考虑运动失真: rr 0.8min 考虑强度要求: rr (0.1 ~ 0.5)r0
以凸轮转动中心为圆心,以凸轮理论轮廓曲线上的 最小半径为半径所画的圆。半径用r0表示。 从动件从距凸轮转动中心的最近点向最远点的运动过程。 从动件从距凸轮转动中心的最远点向最近点的运动过程。 从动件的最大运动距离。常用 h 表示行程。
基本名词术语
(5)推程角 从动件从距凸轮转动中心的最近点运动到最远点时, 凸轮所转过的角度。用Φ表示。

机械原理教案 凸轮机构及其设计

机械原理教案 凸轮机构及其设计

第九章凸轮机构及其设计§9.1 凸轮机构的应用及分类一、凸轮机构的应用凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构。

广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中。

(尤其是需要从动件准确地实现某种预期的运动规律时)常用于将“简单转动”→“复杂移动”、“复杂摆动”、“与其它机构组合得到复杂的运动”。

图示为内燃机配气凸轮机构。

具有曲线轮廓的构件1叫做凸轮,当它作等速转动时,其曲线轮廓通过与推杆2的平底接触,使气阀有规律地开启和闭合。

工作对气阀的动作程序及其速度和加速度都有严格的要求,这些要求都是通过凸轮的轮廓曲线来实现的。

组成:凸轮、从动件、机架(高副机构)。

二、凸轮机构的特点1)只需改变凸轮廓线,就可以得到复杂的运动规律;2)设计方法简便;3)构件少、结构紧凑;4)与其它机构组合可以得到很复杂的运动规律5)凸轮机构不宜传递很大的动力;6)从动件的行程不宜过大;7)特殊的凸轮廓线有时加工困难。

三、凸轮机构的类型凸轮机构的分类:1)盘形凸轮按凸轮形状分:2)移动凸轮3)柱体凸轮1)尖底从动件;按从动件型式分:2)滚子从动件;3)平底从动件1)力封闭→弹簧力、重力等按维持高副接触分(封闭)槽形凸轮2)几何封闭等宽凸轮等径凸轮共轭凸轮§9.2 从动件常用运动规律设计凸轮机构时,首先应根据工作要求确定从动件的运动规律,然后再按照这一运动规律设计凸轮廓线。

以尖底直动从动件盘形凸轮机构为例,说明从动件的运动规律与凸轮廓线之间的相互关系。

基本概念:基圆——凸轮理论轮廓曲线最小向径.r 0所作的圆。

行程——从动件由最远点到最近点的位移量h (或摆角 ) 推程——从动件远离凸轮轴心的过程。

回程——从动件靠近凸轮轴心的过程。

推程运动角——从动件远离凸轮轴心过程,凸轮所转过的角度。

名称图形 说明尖 端 从 动 件从动件的尖端能够与任意复杂的凸轮轮廓保持接触,从而使从动件实现任意的运动规律。

机械原理课程设计偏置直动滚子从动杆盘型凸轮机构

机械原理课程设计偏置直动滚子从动杆盘型凸轮机构

机械原理课程设计--偏置直动滚子从动杆盘型凸轮机构目录(一)机械原理课程设计的目的和任务 (2)(二)设计题目及设计思路 (3)(三)凸轮基圆半径及滚子尺寸的确定 (5)(四)从动杆的运动规律及凸轮轮廓线方程 (7)(五)计算程序框图 (8)(六)计算机源程序 (11)(七)计算机程序结果及分析 (14)(八)凸轮机构示意简图 (20)(九)体会心得 (20)(十)参考资料 (21)(一)机械原理课程设计的目的和任务一、机械原理课程设计的目的:1、机械原理课程设计是一个重要实践性教学环节。

其目的在于:进一步巩固和加深所学知识;2、培养学生运用理论知识独立分析问题、解决问题的能力;3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念;4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。

二、机械原理课程设计的任务:1、偏置直动滚子从动杆盘型凸轮机构2、采用图解法设计:凸轮中心到摆杆中心A的距离为160mm,凸轮以顺时针方向等速回转,摆杆的运动规律如表:3、设计要求:①升程过程中,限制最大压力角αmax≤30º,确定凸轮基园半径r0②合理选择滚子半径rr③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸上;④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用A2图纸)⑤将机构简图、原始数据、尺寸综合方法写入说明书4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果备注:凸轮轮廓曲率半径与曲率中心理论轮廓方程()()x xy yϕϕ=⎧⎨=⎩,其中2222////x dx d x d x dy dy d x d y dϕϕϕϕ⎧==⎪⎨==⎪⎩其曲率半径为:3 222 () x y xy xyρ+=--;曲率中心位于:2222()()y x yx xxy xyx x yy xxy xyρρ⎧+=-⎪-⎪⎨+⎪=-⎪-⎩三、课程设计采用方法:对于此次任务,要用图解法和解析法两种方法。

机械原理第三章 凸轮机构及其设计

机械原理第三章 凸轮机构及其设计

第三章凸轮机构及其设计§3-1 概述1 凸轮机构的基本组成及应用特点组成:凸轮、从动件、机架运动特征:主动件(凸轮)作匀角速回转,或作匀速直线运动,从动件能实现各种复杂的预期运动规律。

尖底直动从动件盘形凸轮机构、尖底摆动从动件盘形凸轮机构滚子直动从动件盘形凸轮机构、滚子摆动从动件盘形凸轮机构圆柱凸轮机构、移动凸轮机构、平底直动从动件盘形凸轮机构端面圆柱凸轮机构、内燃机配气凸轮机构优点:(1)从动件易于实现各种复杂的预期运动规律。

(2)结构简单、紧凑。

(3)便于设计。

缺点:(1)高副机构,点或线接触,压强大、易磨损,传力小。

(2)加工制造比低副机构困难。

应用:主要用于自动机械、自动控制中(如轻纺、印刷机械)。

2 凸轮机构的分类1.按凸轮形状分:盘型、移动、圆柱2.按从动件运动副元素分:尖底、滚子、平底、球面(P197)3.按从动件运动形式分:直动、摆动4.按从动件与凸轮维持接触的形式分:力封闭、形封闭3 凸轮机构的工作循环与运动学设计参数§3-2凸轮机构基本运动参数设计一.有关名词行程-从动件最大位移h。

推程-S↑的过程。

回程-S↓的过程。

推程运动角-从动件上升h,对应凸轮转过的角度。

远休止角-从动件停留在最远位置,对应凸轮转过的角度。

回程运动角-从动件下降h,对应凸轮转过的角度。

近休止角-从动件停留在低远位置,对应凸轮转过的角度。

一个运动循环凸轮:转过2π,从动件:升→停→降→停基圆-以理论廓线最小向径r0作的圆。

尖底从动件:理论廓线即是实际廓线。

滚子从动件:以理论廓线上任意点为圆心,作一系列滚子圆,其内包络线为实际廓线。

从动件位移线图——从动件位移S与凸轮转角 (或时间t)之间的对应关系曲线。

从动件速度线图——位移对时间的一次导数加速度线图——位移对时间的二次导数 统称从动件运动线图 度量基准(在理论廓线上)1)从动件位移S :推程、回程均从最低位置度量。

2)凸轮转角δ:从行程开始对应的向径度量(以O 为圆心,O 至行程起始点为半径作弧与导路中心线相交得P 点,∠POX=δ)。

机械原理-凸轮轮廓曲线设计图解法

机械原理-凸轮轮廓曲线设计图解法


3’ 2’ 1’ ω O 1 2
1
2
3
3
直动从动件盘形凸轮轮廓的绘制
1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从 动件的运动规律,设计该凸轮轮廓曲线。
4’ 5’ 6’
-ω ω
3’ 2’ 1’
7’
8’ 5 6 7 8
1 2 3 4
设计步骤: ①作基圆r0。
②反向等分各运动角,得到一系列与基圆的交点。
7’ 5’ 3’ 1’ 1 3 5 78 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
e

ω 15’ 15 14’14
k12 k11 k10 k9 k15 k14 k13
A
13’
12’
k1 13 k 12 k32 k8 k7k6 k5k4 11 10 9
O
注意:与前不同的是——过 各等分点作偏距圆的一系列 切线,即是从动件导路在反 转过程中的一系列位置线。
11’
10’ 9’
直动平底从动件盘形凸轮轮廓的绘制

直动平底从动件盘形凸轮轮廓的绘制
-

实际廓线
直动平底从动件盘形凸轮轮廓的绘制
-

实际廓线
③过各交点作从动件导路线,确定反转后从动件尖顶在各等分点的位置。 ④将各尖顶点连接成一条光滑曲线。
直动从动件盘形凸轮轮廓的绘制
2.对心直动滚子从动件盘形凸轮 已知凸轮的基圆半径r0,滚子半径 rT ,角速度ω 和从动件的运动规 律,设计该凸轮轮廓曲线。
3’ 2’ 1’ 7’ 8’ 1 2 3 4 5 6 7 8 4’

理论轮廓
ω
5’ 6’

机械原理课程设计--偏置直动滚子从动件盘形凸轮机构的设计

机械原理课程设计--偏置直动滚子从动件盘形凸轮机构的设计

课程设计(论文)课程名称机械原理题目名称偏置直动滚子从动件盘形凸轮机构的设计学生学部(系)机电工程学部2012年6月27日目录课程设计(论文)任务书 (3)摘要 ............................................................................................................................. 错误!未定义书签。

一、根据已知尺寸做出基圆.......................................................................................... 错误!未定义书签。

二、用反转法设计图轮廓线.......................................................................................... 错误!未定义书签。

三、绘制推杆的位移图线............................................................................................ 错误!未定义书签。

四、压力角是否满足许用压力角的要求...................................................................... 错误!未定义书签。

五、心得与体会 ............................................................................................................. 错误!未定义书签。

课程设计(论文)任务书一、课程设计(论文)的内容通过用autoCAD 软件绘图,利用图解法进行偏置直动滚子从动件盘形凸轮机构的设计,最后检验压力角是否满足许用压力角的要求。

机械原理,孙恒,西北工业大学版第9章凸轮机构及其设计


从动件----直动、摆 动 。
凸轮机构特点:机构简单紧凑,推杆能达到各种预期 的运动规律。 但凸轮廓线与推杆之间为点、线接触,易磨损。
2、凸轮机构的分类
按凸轮形状分:盘形凸轮、平板凸轮、圆柱凸轮 按推杆形状分:尖顶推杆、滚子推杆、平底推杆
封闭方式:力封闭(如弹簧)、几何封闭
§9-2 推杆运动规律 名词介绍:
3、解析法设计凸轮轮廓曲线 ① 偏置直动滚子推杆盘形凸轮机构
建立 oxy 坐标系, B0 点 为凸轮推程段廓线起 始点。 rr -----滚子半径
x ( s0 s) sin e cos y ( s0 s) cos e sin
此式为凸轮理 论廓线方程式。 e—偏心距
得推杆推程运动规律:
S h / 0 v h / 0 a0
等速运动规律有刚性 冲击。(加速度有无 穷大值的突变)
同理可推得等速运动回程时运动规律:
S h(1 / 0 ) v h / 0 a0
(2)二次多项式运动规律 二次多项式表达式:

S C 0 C1 C 2 2 v ds / dt C1 2C 2 a dv / dt 2C 2

2
2
等减速回程: 2 2 S 2h( 0 ) / 0
) /0 v 4h ( 0 a 4h / 0
2
2

2
(3) 五次多项式运动规律
s C0 C1 C2 2 C3 3 C4 4 C5 5 v C1 2C2 3C3 2 4C4 3 5C5 4 a 2C2 2 6C3 2 12C4 2 2 20C5 2 3
回程时的运动方程:

4-9偏置直动滚子从从动件盘形凸轮设计(精)

偏置直动滚子从动件盘形凸轮设计
作者:韦志钢 单位:浙江工贸职业技术学院
所属学科:工科 课程:激光设备机械设计基础
专业:光机电应用技术 适用对象:光机电应用技术专业的学生
偏置直动滚子从动件盘形凸轮设计
教学目标:
了解偏置直动滚子从动件盘形凸轮设 计方法。
偏置直动滚子从动件盘形凸轮设计
问题引入:
已知凸轮的基圆半径为r0,滚子半径rr,,偏心 距e,已知运动规律,凸轮沿顺时针方向等速回转。 当尖顶从动件变成滚子从动件时如何设计凸轮轮 廓?
偏置直动滚子从动件盘形凸轮设计
已知偏置直动滚子从动件盘形凸轮,基圆 半径为rb,偏心距e,凸轮沿逆时针方向等速回 转,滚子半径rr。运动规律如右下图。试设计 此凸轮。Leabharlann 偏置直动滚子从动件盘形凸轮设计
-
S
h 1 2 s1
3
s2
1
1
2
2
rb

O
1'
1
s1
s2
1
h
3
e
作图方法: 2 )以 O为圆心, rb 为 1) 先将滚子中心看作 4) 3) 将 在其切线与基圆 1 , 2 ,3…. 连成 5) 以理论廓线上各点 6) 再作此圆族的包 半径作基圆,以 e 尖顶,然后按尖顶 光滑曲线,便是所要 的交点上量取 S1 、 为圆心,以滚子半径 络线,即为凸轮工 为半径作偏距圆, 偏置从动件凸轮廓 求的凸轮理论廓线; S2 、…得反转后尖 r 作廓线(实际廓 线的设计方法确定 r为半径,作一系列 在偏距圆上1’点 顶所占据的一系列 圆; 滚子中心的轨迹, 作其切线与基圆的 线)。 称其为凸轮的理论 位置,即 1、2、 交点为从动件尖顶 廓线; 3… ; 的初始位置;

机械原理第9章凸轮机构及其设计


第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。

2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。

缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。

易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。

不能与凹槽的凸轮轮廓时时处处保持接触。

平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。

不能与凹槽的凸轮轮廓时时处处保持接触。

3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。

(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。

4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。

①等宽凸轮机构②等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。

推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。

推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。

回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。

休止:推杆处于静止不动的阶段。

推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国地质大学课程论文题目偏置直动滚子从动件盘形凸轮机构的设计指导老师__ _____________姓名班级学号专业机械设计制造及其自动化院系机电学院日期 2015 年 5 月 30 日解析法分析机构运动——MATLAB辅助分析摘要:在各种机械,特别是自动化和自动控制装置中,广泛采用着各种形式的凸轮机构,例如盘形凸轮机构在印刷机中的应用,等经凸轮机构在机械加工中的应用,利用分度凸轮机构实现转位,圆柱凸轮机构在机械加工中的应用。

凸轮机构的最大优点是只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且响应快速,机构简单紧凑。

正因如此,凸轮机构不可能被数控,电控等装置完全代替。

但是凸轮机构的缺点是凸轮轮廓线与推杆之间为点,线接触,易磨损,凸轮制造较困难。

在这些前提之下,设计者要理性的分析实际情况,设计出合理的凸轮机构,保证工作的质量与效率。

本次设计的是偏置直动滚子从动件盘形凸轮机构,推杆是滚子推杆,这种推杆由于滚子与凸轮廓之间为滚动摩擦,所以磨损较小,可用来传递较大动力,因而被大量使用,通过设计从根本上了解这种凸轮机构的设计原理,增加对凸轮机构的认识。

通过用MATLAB软件进行偏置直动滚子从动件盘形凸轮轮廓设计,得出理论廓线和工作廓线,进一步加深对凸轮的理解。

一、课程设计(论文)的要求与数据设计题目:偏置直动滚子从动件盘形凸轮机构的设计试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。

已知凸轮轴置于推杆轴线右侧,偏距e=20mm,基圆半径r0=50mm,滚子半径r r=10mm。

凸轮以等角速度沿顺时针方向回转,在凸轮转过δ2=120°的过程中,推杆按正弦加速度沿顺时针方向回转,在凸轮转过δ2=30°时,推杆保持不动;其后,凸轮在回转角度δ3=60°期间,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。

求实际和理论轮廓线,验算压力角,验算失真情况,确定铣刀中心轴位置。

二、设计数据根据数据可绘得等减速运动规律上升时理论轮廓线:三、解析法计算(1)计算推杆的位移并对凸轮转角求导。

当凸轮转角δ在0≤δ≤2π/3过程中,推杆按正弦加速度运动规律上升h=50mm。

则:可得:0≤δ≤2π/30≤δ≤2π/3当凸轮转角δ在2π/3≤δ≤5π/6过程中,推杆远休s=50,2π/3≤δ≤5π/6,,2π/3≤δ≤5π/6当凸轮转角δ在5π/6≤δ≤7π/6过程中,推杆又按余弦加速度运动规律下降至起始位置。

则:可得:5π/6≤δ≤7π/65π/6≤δ≤7π/6当凸轮转角δ在7π/6≤δ≤2π过程中,推杆近休。

s=0,7π/6≤δ≤2π,7π/6≤δ≤2π(2)计算凸轮的理论廓线和实际廓线。

凸轮理论廓线上B点(即滚子中心)的直角坐标为x=(s0+s)cosδ-esinδy=(s0+0)sinδ-ecosδ式中,凸轮实际廓线的方程即B'点的坐标方程式为x'=x-r r cosθy=y-r r sinθ因为所以故x'=x=10cosθy'=y-10sinθMatlab程序%凸轮理论廓线与工作廓线的画法clear %清除变量r0=50; %定义基圆半径e=20; %定义偏距h=50; %推杆上升高度s0=sqrt(r0^2-e^2);r=10; %滚子半径%理论廓线a1=linspace(0,2*pi/3); %推程阶段的自变量s1=h*(3*a1/2/pi-sin(3*a1)/2/pi); %推杆产生的相应位移x1=-((s0+s1).*sin(a1)+e*cos(a1)); %x函数y1=(s0+s1).*cos(a1)-e*sin(a1); %y函数a2=linspace(0,pi/6); %远休止阶段的自变量s2=50; %推杆位移x2=-((s0+s2).*sin(a2+2*pi/3)+e*cos(a2+2*pi/3)); %x函数y2=(s0+s2).*cos(a2+2*pi/3)-e*sin(a2+2*pi/3); %y函数a3=linspace(0,pi/3); %回程阶段的自变量s3=h*(1+cos(3*a3))/2; %推杆位移x3=-((s0+s3).*sin(a3+5*pi/6)+e*cos(a3+5*pi/6)); %x函数y3=(s0+s3).*cos(a3+5*pi/6)-e*sin(a3+5*pi/6); %y函数a4=linspace(0,5*pi/6); %近休止阶段的自变量s4=0; %推杆位移x4=-((s0+s4).*sin(a4+7*pi/6)+e*cos(a4+7*pi/6)); %x函数y4=(s0+s4).*cos(a4+7*pi/6)-e*sin(a4+7*pi/6); %y函数a0=linspace(0,2*pi); %基圆自变量x5=r0*cos(a0); %x函数y5=r0*sin(a0); %y函数%工作廓线m1=-(h*3/2/pi*(1-cos(3*a1))-e).*sin(a1)-(s0+s1).*cos(a1); %中间变量dx/d$ n1=(h*3/2/pi*(1-cos(3*a1))-e).*cos(a1)-(s0+s1).*sin(a1); %中间变量dy/d$ p1=-m1./sqrt(m1.^2+n1.^2); %sin&q1=n1./sqrt(m1.^2+n1.^2); %cos&x6=x1-r*q1; %x'函数y6=y1-r*p1; %y'函数m2=-(s0+s2).*cos(a2+2*pi/3)+e*sin(a2+2*pi/3); %中间变量dx/d$n2=-(s0+s2).*sin(a2+2*pi/3)-e*cos(a2+2*pi/3); %中间变量dy/d$p2=-m2./sqrt(m2.^2+n2.^2); %sin&q2=n2./sqrt(m2.^2+n2.^2); %cos&x7=x2-r*q2; %x'函数y7=y2-r*p2; %y'函数m3=(h*3/2*sin(3*a3)+e).*sin(a3+5*pi/6)-(s0+s3).*cos(a3+5*pi/6); %中间变量dx/d$ n3=-(h*3/2*sin(3*a3)+e).*cos(a3+5*pi/6)-(s0+s3).*sin(a3+5*pi/6);%中间变量dy/d$ p3=-m3./sqrt(m3.^2+n3.^2); %sin&q3=n3./sqrt(m3.^2+n3.^2); %cos&x8=x3-r*q3; %x'函数y8=y3-r*p3; %y'函数m4=-(s0+s4).*cos(a4+7*pi/6)+e*sin(a4+7*pi/6); %n4=-(s0+s4).*sin(a4+7*pi/6)-e*cos(a4+7*pi/6); %p4=-m4./sqrt(m4.^2+n4.^2); %sin&q4=n4./sqrt(m4.^2+n4.^2); %cos&x9=x4-r*q4; %x'函数y9=y4-r*p4; %y'函数%画滚子g1=x1(1)+r*cos(a0);j1=y1(1)+r*sin(a0);g2=x1(25)+r*cos(a0);j2=y1(25)+r*sin(a0);g3=x1(50)+r*cos(a0);j3=y1(50)+r*sin(a0);g4=x1(60)+r*cos(a0);j4=y1(60)+r*sin(a0);g5=x1(75)+r*cos(a0);j5=y1(75)+r*sin(a0);g6=x1(90)+r*cos(a0);j6=y1(90)+r*sin(a0);g7=x2(1)+r*cos(a0);j7=y2(1)+r*sin(a0);g8=x2(50)+r*cos(a0);j8=y2(50)+r*sin(a0);g9=x3(1)+r*cos(a0);j9=y3(1)+r*sin(a0);g10=x3(25)+r*cos(a0);j10=y3(25)+r*sin(a0);g11=x3(40)+r*cos(a0);j11=y3(40)+r*sin(a0);g12=x3(50)+r*cos(a0); 中间变量dx/d$ 中间变量dy/d$j12=y3(50)+r*sin(a0);g13=x3(75)+r*cos(a0);j13=y3(75)+r*sin(a0);g14=x4(1)+r*cos(a0);j14=y4(1)+r*sin(a0);g15=x4(50)+r*cos(a0);j15=y4(50)+r*sin(a0);figure %创建图形窗口plot(x1,y1,'b-',x2,y2,'g-',x3,y3,'m-',x4,y4,'c-',...x6,y6,'b-',x7,y7,'g-',x8,y8,'m-',x9,y9,'c-',...'LineWidth',2) %画函数曲线grid on %加网格hold on %保持图像plot(x5,y5,'r--',g1,j1,'k-',g2,j2,'k-',g3,j3,'k-',...g4,j4,'k-',g5,j5,'k-',g6,j6,'k-',g7,j7,'k-',...g8,j8,'k-',g9,j9,'k-',g10,j10,'k-',g11,j11,'k-',...g12,j12,'k-',g13,j13,'k-',g14,j14,'k-',g15,j15,'k-','LineWidth',2) %画基圆title('凸轮理论廓线与工作廓线','FontSize',16) %标题axis ([-100,80,-120,60])axis('equal')points=[x6',y6',zeros(100,1);x7',y7',zeros(100,1);...x8',y8',zeros(100,1);x9',y9',zeros(100,1)]运行结果:四、数据分析推程时,许用压力角[α]的值一般为:对直动推杆取[α]=30º。

相关文档
最新文档