大气 大气污染浓度估算模式(精选)
第4章 大气污染浓度估算模式2

对上式积分得到: 对上式积分得到: •
H2 2qL ρ ( x,0,0, H ) = exp − 2 2π uδz 2δz
风向与线源不垂直时, 风向与线源不垂直时,若风向与线源夹角 ϕ > 45° ,线源下风向的
浓度模式为: 浓度模式为:
H2 2qL ρ ( x,0,0, H ) = exp − 2 2π uδz sinϕ 2δz
∞
式中: 式中:
n为烟流在两界面之间的
反射次数 D为逆温层地离地面的 为逆温层地离地面的 高度,即混合层高度, 。 高度,即混合层高度,m。
简化的计算公式,分三种情况处理: 简化的计算公式,分三种情况处理: • 当
为烟流垂直扩散高度刚好达到逆温层底市的水平距离。 注: xD为烟流垂直扩散高度刚好达到逆温层底市的水平距离。 为中心处
2、熏烟型扩散模式
熏烟过程
在夜间发生辐射逆温时,清晨太阳升起后, 在夜间发生辐射逆温时,清晨太阳升起后,逆温从地面开始破坏而 逐渐向上发展。当逆温破坏到烟流下边缘以上时, 逐渐向上发展。当逆温破坏到烟流下边缘以上时,便发生了强烈的向下 混合作用,使地面污染物浓度增大。这一过程称为熏烟过程。 混合作用,使地面污染物浓度增大。这一过程称为熏烟过程。 熏烟过程可一直持续到烟流上边缘的逆温层消失为止。 熏烟过程可一直持续到烟流上边缘的逆温层消失为止。
Qx ρ= uD
(各参数符号见教材P105) 各参数符号见教材P105)
n
污染物在垂直方向的扩散情况不符。因而, 污染物在垂直方向的扩散情况不符。因而,箱模式往往低估了实际 的地面浓度。大城市范围越大,应用效果越好。 的地面浓度。大城市范围越大,应用效果越好。
简化为点源的面源模式
大气污染物排放量估算

源强]污染物排放系数及污染物排放量计算方法一、废水部分Wi=Ci×Qi×10 W——某一排放口i种污染物年排放量(公斤/年)Q——该排放口年废水排放量(万吨/年)C——该排放口i种污染物平均浓度(毫餐饮业及商场年废水排放量可按年用新鲜水量的80%计;美容、理发店和浴室等行业年废水排放量可按年用新鲜水量的85%计。
二、废气部分1、年废气排放量Q=P•B Q—某一锅炉、茶炉、大灶或工业窑炉年废气排放量(万标立方米/年)B——该锅炉、茶炉、大灶或工业窑炉年燃料消耗量(吨/年)P——该锅炉、茶炉、大灶或工业窑炉废气排放量的排放系数。
各种燃料废气排污系数2、年烟尘排放量G=B·K·(1-η)G——某一锅炉、茶炉、大灶或工业窑炉年烟尘排放量(吨年)。
B——该锅炉、茶炉、大灶或工业窑炉年燃料消耗量。
煤(吨/年);燃料油(立方米/年);燃料气(百万立方米/年)。
K——该锅炉、茶炉、大灶或工业窑炉年烟尘排放量的污染系数。
η——该锅炉、茶炉、大灶或工业窑炉除尘系统的除尘效率(%)。
其中旋风除尘器除尘效率为80%左右,水膜除尘器除尘效率为90%左右。
燃煤烟尘污染系数燃料油、燃料气烟尘排污系数注:1、燃料油比重为0.92~0.98吨/立方米。
2、燃料气(指液化气)1百万立方米(常压)≈2381吨3、各种污染物排放量SO2排放量:W=β .B (1–ŋ) CO和NOX排放量:W=β .B W—某锅炉、茶炉、大灶或工业窑炉某种污染物年排放量(吨)β—该锅炉、茶炉、大灶或工业窑炉该种污染物燃料煤、油、燃料气的排污系数B—该锅炉、茶炉、大灶或工业窑炉燃料年消耗量。
煤(吨/年);燃料油(立方米/年);燃料气(百万立方米/年)ŋ—该锅炉、茶炉、大灶或工业窑炉脱硫系统的脱硫效率,其中水膜除尘器脱硫效率为15~20%,旋风除尘器的脱硫效率为0。
各种燃料各种污染物排污系数关于废气污染物排放量计算的简易计算法一:燃煤1、燃煤烟尘排放量的估算计算公式为:耗煤量(吨)X煤的灰分(%)X灰分中的烟尘(%)X(1-除尘效率%)烟尘排放量(吨)=——————————————————————————————— 1- 烟尘中的可燃物(%)其中耗煤量以1吨为基准,煤的灰分以20%为例,具体可见《排污收费制度》P115页;灰分中的烟尘是指烟尘中的灰分占燃煤灰分的百分比,与燃烧方式有关,以常见的链条炉为例,15%-25%,取20%;除尘以旋风除尘为例,取80%;烟尘中的可燃物一般为15%-45%,取20%,则1吨煤的烟尘排放量=1X20%X20%X(1-80%)/1-20%=0.01吨=10千克如除尘效率85%,1吨煤烟尘排放量=7.5千克如除尘效率90%,1吨煤烟尘排放量=5千克2、燃煤SO2排放量的估算计算公式:SO2排放量(吨)=2X0.8X耗煤量(吨)X煤中的含硫分(%)X(1-脱硫效率%)其中耗煤量以1吨为基准,煤中的含硫分为1.5%,则1吨煤的SO2产生量=2X0.8X1X1.5%=0.024吨=24千克其中煤中的含硫分为1%,则1吨煤的SO2产生量=2X0.8X1X1%=0.016吨=16千克3、燃煤NOX排放量的估算:计算公式:NOX排放量(吨)=1.63X耗煤量(吨)X(燃煤中氮的含量X燃煤中氮的NOX 转化率%+0.000938)NOX排放量(吨)=1.63X耗煤量(吨)X(0.015X燃煤中氮的NOX转化率%+0.000938)其中耗煤量以1吨为基准,燃煤中氮的含量=1.5% 燃煤中氮的转化率=25%, 具体可见《排污收费制度》P122页则1吨煤的NOX排放量=1.63X1X(0.015X25%+0.000938)=0.00764吨=7.6千克根据国家环保总局编著的《排污申报登记实用手册》―第21章第4节NOX、CO、CH化合物排放量计算‖,燃煤工业锅炉产生的NOX的计算公式如下:GNOX=B X FNOX GNOX:——NOX排放量,千克;B——耗煤量,吨FNOX——燃煤工业锅炉NOX产污排污系数,千克/吨燃煤工业锅炉NOX产污排污系数,千克/吨二、燃油1、燃油SO2排放量的估算计算公式:SO2排放量(吨)=2X耗油量(吨)X燃油中的含硫分(%)X(1-脱硫效率%) 其中耗油量以1吨为基准,油中的含硫分为2%,则1吨油的SO2产生量=2X1X2%=0.04吨=40千克2、燃油NOX排放量的估算:计算公式:NOX排放量(吨)=1.63X耗油量(吨)X(燃油中氮的含量% X燃油中氮的NOX 转化率%+0.000938)其中耗油量以1吨为基准,燃油中氮的转化率=35%, 氮的含量=0.14% 具体可见《排污收费制度》P123页则1吨油的NOX排放量=1.63X1X(0.14%X35%+0.000938)=0.00232吨=2.32千克。
大气扩散浓度估算模式

第四章 大气扩散浓度估算模式4.1 污染源的东侧为峭壁,其高度比污染源高得多。
设有效源高为H ,污染源到峭壁的距离为L ,峭壁对烟流扩散起全反射作用。
试推导吹南风时高架连续点源的扩散模式。
当吹北风时,这一模式又变成何种形式? 解:吹南风时以风向为x 轴,y 轴指向峭壁,原点为点源在地面上的投影。
若不存在峭壁,则有]}2)(exp[]2)(){exp[2exp(2),,,(222222'zz y z y H z H z y u Q H z y x σσσσσπρ+-+---= 现存在峭壁,可考虑ρ为实源与虚源在所关心点贡献之和。
实源]}2)(exp[]2)(){exp[2exp(22222221z z y z y H z H z y u Q σσσσσπρ+-+---= 虚源]}2)(exp[]2)(]{exp[2)2(exp[22222222z z y z y H z H z y L u Q σσσσσπρ+-+----= 因此]}2)(exp[]2)(){exp[2exp(2222222z z y zy H z H z y u Q σσσσσπρ+-+---=+ ]}2)(exp[]2)(]{exp[2)2(exp[2222222zz y z y H z H z y L u Q σσσσσπ+-+---- =]}2)(exp[]2)(]}{exp[2)2(exp[)2{exp(222222222z z y y zy H z H z y L y u Q σσσσσπ+-+----+- 刮北风时,坐标系建立不变,则结果仍为上式。
4.2 某发电厂烟囱高度120m ,内径5m ,排放速度13.5m/s ,烟气温度为418K 。
大气温度288K ,大气为中性层结,源高处的平均风速为4m/s 。
试用霍兰德、布里格斯(x<=10H s )、国家标准GB/T13201-91中的公式计算烟气抬升高度。
大气污染扩散及浓度估算模式概述(PPT 49张)

第三节 扩散参数的估计
上述高斯扩散中,欲计算出大气污染物浓度及其分
布,则必须知道源强Q、平均风速U,有效源高H和 大气扩散参数σy和σz。其中Q和U往往是通过测量或 由工程设计给出,于是问题归结于如何给出有效源 高和大气扩散参数。下面我们首先讨论扩散参数的 估算方法。 扩散参数(σy、σz)是下风向距离x,大气稳定度、 地面粗糙度等的函数。目前广泛使用的确定扩散参 数的方法是根据大量扩散试验总结出来的经验方法 和经验公式。
的基本模式。需要说明的是模式中的H是指 有效源高,有关有效源高的问题将在下面进 行专门讨论。式中平均风速是指烟云扩散范 围内的平均风速,通常可简单地取排放面高 度处的风速。
三、几个常用的大气扩散模式
1.高架连续点源: (a)地面浓度C(x、y、、o、o、H):
练习题
1、求以下污染气体的浓度单位换算关系(mg/m3ppm)在
标准状态下:CO、O3、NO2、NO。 2 大气中CO2的通量浓度为340ppm,问1Nm3空气中含CO2多 少克? 2、成人每次吸入的空气质量平均为500cm3,j假若每分钟呼 吸15次,空气中颗粒物的浓度为200µg/m3,试计算每小时 沉积于肺胞中的颗粒屋质量。已知该颗粒物在肺胞中的 沉降 系数为0.12。 4、据估计某平原城市远郊区燃烧的垃圾以每秒3克的速度向 四周排放氢氧化物为主的的污染物。当时气象状况为:风速 7m/s,夜间、阴天。请问此垃圾堆正下风向3km处的污染物 浓度是多少?此距离上偏离X轴线200m处浓度是多少?
一个烟团在大小不同的湍涡中的扩散情况。
(c)表示尺度与烟团大 小相仿的湍流作用。这时, 烟团被湍涡拉开撕裂而变形。 这是一种比较快的扩散过程。
从应用角度研究大气污染扩散,就是找出不同气象条件下, 污染物在大气中的搬运规律,以求最大限度地减低空气污染 的程度。利用这些规律可以解决下述一些问题:
15.8大气污染物浓度估算方法解析

1.霍兰德(Holland,1953年)公式
H USd u (1.5 2.7 Ts Ta 1 d ) (1.5U s d 9.6 103 QH ) Ts u
式中 Us—烟气(实际状态)出口速度(m/s); d —烟囱口内径(m); u —烟囱口高度上的平均风速(m/s),可用风速廓线模式(15-17) 或(15-18)计算; Ts、Ta—分别为烟气出温度和环境大气的温度(K); QH—烟气热排放率(kW),由式(15-55)计算。 霍兰德式适用于中性条件。对于非中性条件,霍兰德建议在不稳定时 增加10%~20%,稳定时减少10%~20%。 霍兰德式对排热率和高度都不大的烟囱可获得比较保守的估算,对 较大的热力浮升源不适用,计算结果过于偏低。
H 0.362Q
1/ 3 H
x
1/ 3
u
1
(15-50) (15-51)
3/5 2/5 H 0.332Q H HS u 1
x 0.33Q
2/5 H
HS
3/ 5
u
( 6 / 5 )
式中,x* 是大气湍流特征距离。当 x 超过 x* 时,大气湍流对烟气抬升起主导作用。
15.8 大气污染物浓度估算方法
15.8.1有效源高的计算 大气扩散模式中的有效源高 H是烟囱的几何高度HS与烟 流抬升高度ΔH之和
已有的抬升高度计算公式很 多,大多是根据实验中总结 出来的经验或半经验公式。 这里仅介绍常用的几个公式。
对一确定的烟囱,HS是一定的,因此只要计算出烟流抬升高度就可得出有 效源高。 烟气的初始动量产生动力抬升,热浮力产生热力抬升。初始动量决定于烟 气出口速度Us和烟囱口的内径d,热浮力则决定于烟气与周围空气之间的温 度差(Ts-Ta)或密度差(ρ-ρs)。 实测资料表明,热而强的大烟囱热力抬升是主要的,动力抬升是次要的; 小烟囱的动力抬升比例有所增加。 烟气与周围空气的混合速度对烟气的抬升高度影响很大,平均风速愈大, 湍流愈强,混合就愈快,温差和动量都迅速减少,故抬升愈小。 稳定的温度层结抑制烟云的抬升,不稳定层结促进抬升;当层结不稳定时 湍流交换活跃,过快的交换混合对抬升不利。 城市等粗糙下垫面上空的湍流较强,不利于抬升。离地面愈高,地面粗糙 度引起的湍流减弱,对抬升有利。复杂的地形还可能形成局部温场和风场而 影响抬升。 烟囱本身的几何形状和周围障碍物也会引起动力效应。当烟气出口速度 过低,以致接近烟囱口处平均风速时,烟气不但不会抬升,反而会产生烟气 下洗 。
大气扩散浓度估算模式

y2 H2 exp x , y ,0, H exp 2 2 2 2 令y=0、z=0,得
第四章 大气扩散浓度估算模式
• • • • • • • 4.1 4.2 4.3 4.4 4.5 4.6 4.7 大气扩散 高斯扩散模式 污染物浓度的估算方法 特殊气象条件下的扩散模式 城市及山区的扩散模式 烟囱高度设计 厂址选择
4.1 大气扩散
• 污染物进入大气后,随着大气的运动发生迁移、扩 散稀释及降解转化。
• 4.2.4 无界空间连续点源扩散模式
• 正态分布函数
x, y, z A x e
• 式中
ay 2
e
bz 2
a
• 则
1 2
2 y
b
1
2 2 z
2 y2 Q z x, y , z exp 2 2 2 2 2 u y z y z
• 4.1.2.2 湍流扩散
• 1)大气的无规则运动称为大气湍流。根据其成因可把湍流 分为两类:
• 热力湍流:垂直方向温度分布不均匀,使空气发生垂直运动 并进一步发展形成。其强度主要取决于大气稳定度。 • 机械湍流:由于垂直方向风速分布不均匀及地面粗糙度引起 的湍流。其强度主要取决于风速梯度和地面粗糙度。
H2 x ,0,0, H exp 2 u y z 2 z Q
• 3)地面最大浓度模式
max
z 2Q 2 uH e y
z
x x max
H 2
• 4.2.6 地面连续点源扩散模式 • 令H=0,得
大气污染物的浓度预测模式

H n Q H u
n1 0 h
n2 1
(5-16)
T Qh 0.35PaQv Tt
△T=Tt-Ta
式中:n0——烟气热状况及地表状况系数; n1——烟气热释放率指数; n2——排气筒高度指数; *Qh——烟气热释放率,kJ/s; H——排气筒距地面几何高度,m,超过240m取H=240m;
02
1.5m/s>u10 ≥0.5m/s 1.57 0.47 0.21 0.12 0.07 0.05
A B C D E F
*有效源高的计算
有效源高H等于烟囱实体高度Hs与烟流抬升高度△H之和:
He=Hs+△H
(1)有风时,中性和不稳定条件下,△H按下述方法计算。
①当烟气热释放率Qh大于或等于2100kJ/s,且烟气温度与环
1.1 坐标系
原点: 排放点(无界点源或地面源)或高架排放点在地面的 投影;
X轴:与平均风向一致;
Y轴:在水平面内垂直于X轴, Y轴的正向在X轴的左侧,
Z轴:垂直于水平面,向上为正向,
即为右手坐标系。 在这种坐标系中,烟流中心或与X轴重合(无界点源), 或在XOY面的投影为X轴(高架点源)。下面介绍的模式都 是在这种坐标系中导出的。
式中γ1、γ2、α1、α2均为常数。
地面最大浓度模式(P112)
Cmax 2Q 2 e uH e P 1
1 e 2 ( 1 ) 2 2
掌握
H 1 xmax ( ) (1 ) 2 2
P1 2 1 2
(
掌握
1 ) 2
(1
(1 ) 2
1 1 (1 ) 2 2 1
158大气污染物浓度估算方法

158大气污染物浓度估算方法大气污染物浓度估算方法是环境科学和气象学领域的重要研究内容。
准确地估算大气污染物的浓度对于评估环境质量、制定环境政策和采取减排措施具有重要意义。
在估算大气污染物浓度时,需要考虑多种因素,包括气象条件、污染源排放情况、地形地貌等。
目前,有多种方法可用于估算大气污染物的浓度,其中包括统计回归方法、物质平衡方法、遥感技术和数值模拟方法等。
根据不同的研究目标和数据可用性,选择适当的方法进行浓度估算至关重要。
下面将介绍一些常用的方法:1. 统计回归方法:这是一种基于统计数据的浓度估算方法。
该方法通过收集大气污染物浓度数据和相关因素(如温度、湿度、风速等)数据,建立回归模型来估算未来的浓度。
这种方法适用于短期的浓度估算,但需要有足够的历史数据来建立可靠的模型。
2. 物质平衡方法:这种方法基于物质在大气中的平衡原理,考虑到污染源的排放、大气扩散、沉降和生物转化等过程,来估算大气污染物的浓度。
这种方法适用于长期和区域尺度的浓度估算,但需要准确的污染源排放数据和气象数据。
3. 遥感技术:遥感技术通过卫星或飞机传感器获取大气污染物的遥感影像,进而估算浓度。
这种方法可以获得大范围的浓度数据,但需要准确的遥感影像和相关的算法。
4. 数值模拟方法:数值模拟方法是一种基于数学模型的浓度估算方法。
该方法将大气物理和化学过程建模,通过解方程组来模拟大气污染物的传输和转化过程,从而估算浓度。
数值模拟方法可以提供高空间分辨率和时间分辨率的浓度数据,但需要准确的模型参数和大量的计算资源。
除了以上介绍的方法,还有其他一些技术可以用于估算大气污染物的浓度,如人工神经网络、支持向量机等。
这些方法在不同的研究领域和应用场景中得到了广泛的应用。
总之,大气污染物浓度估算方法是一项复杂而关键的研究工作。
选择适当的方法对于准确评估大气质量和采取有效的控制措施至关重要。
未来,随着科学技术的不断发展,我们可以期待这些估算方法的进一步改进和创新。