向量的坐标及坐标法运算(一)

合集下载

空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
证:(1)∵ AP AB 1,2,12,1,4 0, AP AD 1,2,14,2,0 0 ,
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD

H

C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平

第2讲 空间向量基本定理、坐标运算和应用一(学生版)

第2讲 空间向量基本定理、坐标运算和应用一(学生版)

第2讲 空间向量基本定理、坐标运算及应用一1.空间向量基本定理如果空间中的三个向量a ,b ,c 不共面,那么对空间中的任意一个向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .特别地,当a ,b ,c 不共面时,可知x a +y b +z c =0时,x =y =z =0. 2.空间中向量的坐标一般地,如果空间向量的基底{e 1,e 2,e 3}中,e 1,e 2,e 3都是单位向量,而且这三个向量两两垂直,就称这组基底为单位正交基底,在单位正交基底下向量的分解称为向量的单位正交分解,而且,如果p =x e 1+y e 2+z e 3,则称有序实数组(x ,y ,z )为向量p 的坐标,记作p =(x ,y ,z ).其中x ,y ,z 都称为p 的坐标分量. 思考1:若a =x e 1+y e 2+z e 3,则a 的坐标一定是(x ,y ,z )吗?【名师提醒】 不一定,当e 1,e 2,e 3是单位正交基底时,坐标是(x ,y ,z ),否则不是. 3.空间向量的运算与坐标的关系假设空间中两个向量a ,b 满足a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则有以下结论: (1)a +b =(x 1+x 2,y 1+y 2,z 1+z 2);(2)若u ,v 是两个实数,u a +v b =(ux 1+vx 2,uy 1+vy 2,uz 1+vz 2); (3)a·b =x 1x 2+y 1y 2+z 1z 2;(4)|a |=a ·a(5)当a ≠0且b ≠0时,cos 〈a ,b 〉=a·b|a|·|b|=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22.4.空间向量的坐标与空间向量的平行、垂直(1)当a ≠0时,a ∥b ⇔b =λa ⇔(x 2,y 2,z 2)=λ(x 1,y 1,z 1)⇔⎩⎪⎨⎪⎧x 2=λx 1y 2=λy 1z 2=λz 1,当a 的每一个坐标分量都不为零时,有a ∥b ⇔x 2x 1=y 2y 1=z 2z 1.(2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2+z 1z 2=0.5.直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0【玩转典例】考点一 基底的判断【例1】(2020·全国高二课时练习)在正方体1111ABCD A B C D -中,可以作为空间向量的一组基底的是( ) A .AB AC AD ,, B .11AB AA AB ,, C .11111 D A DC D D ,,D .111AC AC CC ,,【玩转跟踪】1.(2020·全国高二课时练习)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等2.(2020·全国高二课时练习)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( ) A .{,,}a b b a a +- B .{,,}a b b a b +- C .{,,}a b b a c +- D .{,,}a b c a b c +++考点二 基本定理的运用【例2】(2020·绵竹市南轩中学高二月考)如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是1,且它们彼此的夹角都是60︒,M 为11A C 与11B D 的交点.若AB a =,AD b =,1AA c =,(1)用,,a b c 表示BM ; (2)求对角线1AC 的长; (3)求1cos ,AB AC 【玩转跟踪】1.(2020·济南市历城第二中学高二月考)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于60,M 是PC 的中点, 设,,AB a AD b AP c ===. (1)试用,,a b c 表示出向量BM ; (2)求BM 的长.2.(2020·陕西新城。

平面向量的直角坐标运算

平面向量的直角坐标运算

-2
与向A量 有 B 何关相系 同 ?
-3
4
(一)平面向量坐4 标的概念
3
a
a2 j
2
r
B
a
a2 j
a1i
1
j
A
ar 1 i
C
向量 a 表示平面内任意一向量
-2
2
4
6
Oi
-1
a A A B C C a B 1 i a 2j
-2
同一个向量的坐标是唯一的,与位置无关。
-3
Page ▪ 5
5
r 一般地,在平面直角坐标系中,对任意向量 a ,都有且只有
a
b
a1b1
a2b2.
aa∥b
b
a
b
0
a1b1
a2b2
0.
( 2 ) 若 A (x 1 ,y 1 ),B (x 2 ,y 2 ), u A u B u r (x 2 x 1 ,y 2y 1 )
两点间距离公式
Page ▪ 33
33
a a2 a a (计算向量的长度)
4/21/2020
练习一:单位向量i 、j 分别与x 轴、y 轴方向相同,求
① i i __1___ ② i j __0___ ③ j i ___0___ ④ j j __1___
解: i i i i cos i ,i
11 cos0
Page ▪ 1
1
1.向量加法:
B
C
OAACOC
2.向量减法:
OAOB OC O
A
B
OAOBBA
3. 数乘向量:
OBOAAB
A
O
如 a 与 b 果 b 0 平行,本 则定 由理 平

向量坐标表示及运算

向量坐标表示及运算

y
j
O
1 2
a
A(x, y)
a
(3)两个向量 a ( x1, y1 ), b ( x2 , y2 ) 相等的充要条件:a b x x
i
x
且y1 y2
(4)如图以原点O为起点作 OA a ,点A的位置 被 a 唯一确定. 此时点A的坐标即为 a 的坐标 (5)区别点的坐标和向量坐标 相等向量的坐标是相同的,但起点、终点的坐标可以不同
3.若 A(2,-1),B(4,2),C(1,5),则 AB +2 BC =________.
解析:∵A(2,-1),B(4,2),C(1,5), ∴ AB =(2,3), BC =(-3,3). ∴ AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
(x2-x1,y2-y1)
例1:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐 .
解: a b (2,1) (3,4) (1,5)
a b (2,1) (3,4) (5, 3)
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2、 1已知A(2,3), B (3,5), 求BA的坐标.
解: BA
2已知AB (1, 2), A(2,1), 求B的坐标.
解:设B x,y ,
2,3 3,5 5, 2.
AB 1, 2 x, y 2,1 ,
j
-4 -3
-1 -2
i1
2
3
4
x
c 2i 3 j ( 2, 3)

空间向量的坐标运算1

空间向量的坐标运算1
有序数组( a1, a2, a3)叫做 a 在
空间直角坐标系O--xyz中的坐标, 记作.
a =( a 1 , a2, a3)
z
a
k i Oj
A(a1,a2,
a3) y
x
;菲律宾签证 https:/// 菲律宾签证
;

马上就明白了。哈里被人领养了,而汤姆没有,他还依旧被留在孤儿院。 如何答复汤姆呢?摩罗·邦尼博士知道,最直截了当的办法,就是找一家愿意领养孩子的人,然后秘密地办理领养手续,待一切办好之后,给汤姆回信,说:汤姆,我的孩子!我真有点疏忽大意了,像您这样好的孩 子,是不应该没有爸爸妈妈的。明天我一定给您送去。 对于一个孤儿,上帝真的会这样答复吗?摩罗·邦尼博士心里非常矛盾。他想,对于一个从小失去依靠的人,要想让他知道上帝是公平的,绝不能用这种办法。经过深思熟虑,他给汤姆回了这么一封信。 亲爱的汤姆: 我不 期望您现在就读懂这封信,不过我还是想现在就告诉您,上帝永远是公平的。假若您认为我没有送给您爸爸妈妈,就是我的不公,这实在让我感到遗憾。我想告诉你:我的公平在于免费地向人类供应了三样东西:生命、信念和目标。 您知道吗?你们每一个人的生命都是免费得到的。到目 前为止,我没让任何一个人在生前为他的生命支付过一分钱。信念和目标与生命一样,也是我免费提供给你们的,不论你生活在人间的哪一个角落,不论你是王子还是贫儿,只要想拥有它们,我都随时让您们据为己有。 孩子,让生命、信念和目标成为免费的东西,这就是我在人间的公平 所在,也是我作为上帝的最大智慧。但愿有一天,您能理解。 您的上帝 这封信后来被刊登在《基督教科学箴言报》上,成为上帝最著名的公平独白,同时也使很多人第一次真正地认识了上帝 务实的李敖 ?你会说我的思想有一点老古板,我对你们清华大学早期的校友名字叫胡适的态 度,你们知道我是老牌的态度,在很早的时候胡适送给我1000块,我在大学捐了150万台币,相当于35万人民币,我是来还这个情,告诉大家,人间有情有义,可是人间也会疏财仗义,我的解释是钱拿出来才是事,光同情你是不可以的。 在帮助慰安妇的时候我把胡适送给我的字都义卖了。 因为二次世界大战,在中国,在朝鲜,在高丽,在台湾,在菲律宾,街上走的女孩子17、18岁抓着就跑,放在军营里面,给他们做性奴隶,不但集体乱奸,怀孕了把她绑在门板上动妇科手术,没有麻醉药,日本人是这样子对待我们的。后来日本人为了应付联合国,就说我们和解这件事情,就 是全世界对慰安妇每个人送50万新台币,相当于10几万人民币,台湾当时还剩下54个老太太,很可怜,有的眼睛看不到,有的路走不动,一身都是性病,没有人理她们。慰安妇的团体和他们说,这个钱不能要,日本人说原谅他们,这50万现金对她们太重要了,可是她们说不可以拿这个钱,为 了国家的尊严和个人的荣誉不可以拿这个钱。不拿可是心里觉得很难过,因为她们现在需要这个钱,我李敖实在看不过去,我站出来,我拿出100件收藏品,举行义卖,我们卖了100万美金,每个人发50万,条件就是你不能要日本鬼子的50万,你要我的50万,还定了一个规定,如果你拿了日本 的50万,这个50万要还我,最后日本人真这样了,但是我说不行,不能要日本人的钱。所以日本人是行不通的,至少在台湾保留了我们中国人的尊严。 我和大家讲,大家注意,我这个招不谈高调的,就是你道德劝说慰安妇不拿这个钱,不尽人情,老太太们实在要这个钱,她内心发生了天 人交战,什么办法,就是我的方法,这才是务实。你们只看到我张牙舞爪,骂张三和李四,你们没有看到我务实这一面,这是很重要的。今天的意思就是大家要务实,面对今天的中国问题和中国的前途,就是说中国才是我们真正努力的方向,真正努力的目标,真正献身的目标。 摘自《李 敖2005年9月23日清华大学演讲文字实录》 爱的遗赠 ?艾尔非常年轻的时候,就已经是一个娴熟的艺术家和制陶工人了。他有一个妻子和两个优秀的儿子。 一天晚上,他的长子感到胃部疼得厉害,但是艾尔和妻子都认为这只是普通的肠道疾病,而没有多加注意。可是男孩得的却是急性阑尾炎, 他在那天晚上意外地死去了。如果不是由于他的粗枝大叶,如果他能稍微意识到儿子病情的严重性,儿子的死本来是完全可以避免的。——在这样巨大的犯罪感的压制下,艾尔的情绪急剧地变坏了。 不久之后,他的妻子也离开了他,留下他和6岁的小儿子相依为命,这使本来就已经很糟 的局面更加恶化。艾尔受不了这两件事给他带来了打击和痛苦,就妄图从酒精中寻求帮助和解脱,没过多久,他就变成了一个酒鬼。 随着对酒精的迷恋越来越深,艾尔所拥有的一切开始一点一点地失去了--他的家,他的土地,他的艺术作品,他的一切。最后,艾尔在旧金山的一家汽车旅 馆里孤独地死去了。 当我听到艾尔去世的消息后,我对他的蔑视也和世人对那些死后没给子孙留下任何遗产的人的蔑视一样。"这是一个多么彻底的失败者呀!"我心里这样想,"完全是浪费生命!" 随着时间的流逝,我开始对早年自己对艾尔的苛刻评断重新估价,因为,我认识了艾 尔现在已经成年的小儿子厄尼。他是我所知道的最仁慈最精细最富爱心的人之一。我观察着厄尼和他的孩子们,看见他们之间洋溢着丰富的关爱之情。我知道那种仁慈和爱心一定源自某处。 我很少听到厄尼谈论他的父亲。要为一个酒鬼辩护是多么困难啊。一天,我鼓起勇气问他,"有一 件事使我感到很迷惑,"我说,"我知道你主要由你的父亲抚养长大的。那么他究竟是如何使你成为这样一个非同一般的人的呢?" 厄尼平静地坐在那儿,仔细思索了一会儿,然后他说:"从我记事起一直到我18岁离开家,父亲每天晚上都到我的房间里来,在我的面颊上吻一下,并且说:' 我爱你,儿子。'" 我的眼睛湿润了,我意识到我过去觉得艾尔是一个失败者的想法是多么的愚蠢。他虽然没给儿子留下了什么物质财富,但是他用一个父亲的仁慈和爱心,培养出了一个非常善良无私的儿子。 ? 给狗取个好名字 ? 我的朋友琴德太太,住在纽约白利斯德路,她刚雇好一个 女佣,告诉她下星期一开始来工作。琴德太大打电话给那女佣以前的女主人,那太太指这个女佣并不好。当那女佣来上班的时候,琴德太太说: "妮莉,前天我打电话给你以前做事的那家太太。她说你诚实可靠,会做菜,会照顾孩子,不过她说你平时很随便,总不能将房间整理干净。 我相信她说的是没有根据的,你穿的很整洁,这是谁都可以看出来的……我可以打赌,你收拾房间,一定同你的人一样整洁干净。我也相信,我们一定会相处得很好。" 是的,她们果然相处得非常好,妮莉不得不顾全她的名誉,所以琴德太太所讲的,她真的做到了。她把屋子收拾得干干 净净,她宁愿自己多费些时间,辛苦些,也不愿意破坏琴德太太对她的好印象。 包德文铁路机车工厂总经理华克伦,他说过这样的话:"一般人,都会愿意接受指导,如果你得到他的敬重,并且对他的某种能力表示敬重的话。" 我们也可以这样说,如果你想改善一个人某方面的缺点, 你要表示出,他已经具有这方面的优点了。莎士比亚说: "如果你没有某种美德,就假定你有。"最好是"假定"对方有你所要激发的美德,给他一个美好的名誉去表现,他会尽其所能,也不愿意使你感到失望的。 雷布利克在她的《我和梅脱林克的生活》一书中,曾叙述一个低卑的比 利时女佣的惊人改变。 她这样写着:隔壁饭店里有个女佣,每天替我送饭菜来,她的名字叫洗碗的玛丽。因为她开始工作时,是厨房里的一个助手。她那副长相真古怪,一对斗鸡眼,两条弯弯的腿,身上瘦得没有四两肉,精神也是显得无精打采、迷迷糊糊的。 有一天,当她端着一 盘面来给我时,我坦白的对她这样说:"玛丽,你不知你有内在的财富?" 玛丽平时似乎有约束自己感情的习惯,生怕会招来什么灾祸,不敢做出一点喜欢的样子,她把面放到桌上后,才叹了口气说:"太太,我是从来不敢想到那些的。"她没有任何怀疑,也没有提出更多的问题,她只是回 到厨房,反复思索我所说的话,深信这不是人家开她的玩笑。 就从那天起,她自己似乎也考虑到那回事了;在她谦卑的心理,已起了一种神奇的变化。她相信自己是看不见的暗室之宝;她开始注意修饰她的面部和身体。她那原来枯萎了的青春,渐渐洋溢出青春般的气息来。 两个月 后,当我要离开那地方时,她突然告诉我,她就要跟厨师的侄儿结婚了。她悄悄的告诉我:"我要去做人家的太太了!她向我道谢我只用了这样简短的一句话,就改变了她的人生。 雷布利克给"洗碗的玛丽",一个美好的名誉,而那个名誉改变了她的一生。 当利士纳要影响在法国的美 国士兵的行为时,也用了同样的方法。哈巴德将军--一位最受人们欢迎的美国将军,他曾经告诉利士纳说,在他看来,在法国的二百万美国兵,是他所接触过最合乎理想、最整洁的队伍。 这是不是过份的赞许?或许是的。可是我们看利士纳如何应用它! 利士纳说:"我从未忘记把哈 巴德将军所说的话,告诉士兵们,我并没有怀疑这话的真实性,即使并不真实,那些士兵们知道哈巴德将军的意见后,他们会努力去达到那个水准。" 有这样一句古语:"如果不给一条狗取个好听的名字,不如把它勒死算了。" 几乎包括了富人、穷人、乞丐、盗贼,每一个人都愿意竭 尽其所能,保持别人赠予他的"诚实"的美誉。 "星星监狱"狱长洛斯说: "如果你必须去对付一个盗贼、骗子,只有一个办法可以制服他,那就是待他如同一个诚会、体面的绅士一样,假设他是位规规矩矩的正人君子。他会感到受宠若惊,他会很骄傲的认为有人信任他。" 那句话 太重要,太好了!我们不妨再说一遍: "如果你必须去对付一个盗贼、骗子,只有一个办法可以制服他,那就是待他如同一个诚实、体面的绅士,假设他是位规规矩矩的正人君子。他会感到受宠若惊,他会很骄傲的认为有人信任他。" 所以,如果你要影响一个人的行为,而不引起他 的反感,记住这项规则,那是: 给人一个美名让他去保全。 ? 松下幸之助:为你配副好眼镜 ?每一个生意人都想赚钱,这是天经地义的事。可是,满脑子都是生意经,这只是一般人的想法。 很久以前,我曾接到一封从北海道的札幌市寄来的信件,内容大致如下:"我是一位眼镜商 人,前几天,在杂志上看到了您的照片。因为您所配戴的眼镜不大适合脸形,希望我能为您服务,

课件1:6.2.2 直线上向量的坐标及其运算

课件1:6.2.2  直线上向量的坐标及其运算

[微体验]
1.已知数轴上点 A,B 的坐标分别为-1,-4,则|A→B|为( )
A.1
B.2
C.3
D.4
答案 C
解析 A→B=-4-(-1)=-3,|A→B|=3.
2.已知数轴上两点A,B的坐标分别为-5,4,则A与B 的距离为( )
A.1
B.-1
C.9
D.-9
答案 C
解析 AB=|4-(-5)|=9.
【课堂探究】
探究一 求直线上向量的坐标
【例 1】(1)若 e 是直线 l 上的一个单位向量,这条直线上的向量
a,b 的坐标分别为 x,y,下列说法错误的是( )
A.|a|=x
B.b=ye
C.a+b 的坐标为 x+y
D.|e|=1
(2)如图所示,写出直线上向量 a,b 的坐标.
(1)答案 A 解析 由题意知,|e|=1,|a|=|x|,b=ye, a+b=xe+ye=(x+y)e, 所以a+b的坐标为x+y,只有A错误. (2)解 如图,因为a=-4e,b=3e, 所以向量a,b的坐标分别是-4,3.
6.2.2 直线上向量的坐标及其运算
课程标准
学科素养
1.理解直线上向量的坐标的概念,会求
直线上向量的坐标. 通过学习直线上向量的坐标及其运
2.理解直线上向量的坐标运算,会求直 算,提升数学抽象、直观想象、数学
线上向量的加、减、数乘的坐标运算. 运算的核心素养.
3.会求数轴上两点之间的距离及中点
坐标.
本课结束
更多精彩内容请登录:
2.如图,向量O→A的坐标为________.
答案 3 解析 因为向量O→A的始点在原点,因此终点 A 的坐标就是 向量的坐标,故向量O→A的坐标为 3.

空间向量坐标运算

空间向量坐标运算

空间向量坐标运算空间向量是指在空间中有大小和方向的线段。

空间向量的坐标运算包括向量的加法、减法、数乘和内积。

下面将对这些运算进行详细介绍。

一、向量的加法设空间中有两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。

向量的加法即将两个向量的对应分量相加得到一个新的向量C。

它的坐标为(Ax+Bx, Ay+By, Az+Bz)。

例如,设A = (1, 2, 3)和B = (4, 5, 6),则A+B = (1+4, 2+5, 3+6) = (5, 7, 9)。

二、向量的减法向量的减法是指将一个向量减去另一个向量。

设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A减去向量B的坐标为(Ax-Bx, Ay-By, Az-Bz)。

例如,设A = (1, 2, 3)和B = (4, 5, 6),则A-B = (1-4, 2-5, 3-6) = (-3, -3, -3)。

三、向量的数乘向量的数乘是指一个向量乘以一个实数。

设向量A的坐标为(Ax, Ay, Az),实数k,则向量A乘以实数k的坐标为(kAx, kAy, kAz)。

例如,设A = (1, 2, 3),k = 2,则kA = (2*1, 2*2, 2*3) = (2, 4,6)。

四、向量的内积向量的内积又称为点乘,它是两个向量之间的一种运算。

设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A与向量B的内积为Ax*Bx + Ay*By + Az*Bz。

例如,设A = (1, 2, 3)和B = (4, 5, 6),则A·B = 1*4 + 2*5 +3*6 = 32。

向量的内积有以下几个性质:1. 交换律:A·B = B·A;2. 分配律:(A+B)·C = A·C + B·C;3. 数乘结合律:(kA)·B = k(A·B) = A·(kB)。

1.3 空间向量的坐标表示及其运算(共47张PPT)

1.3 空间向量的坐标表示及其运算(共47张PPT)
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0

a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档