苏州高新区实验初级中学(新实初中)数学圆 几何综合(篇)(Word版 含解析)

合集下载

江苏省苏州市苏州高新区实验初级中学2023-2024学年七年级下学期开学考试数学试题

江苏省苏州市苏州高新区实验初级中学2023-2024学年七年级下学期开学考试数学试题

江苏省苏州市苏州高新区实验初级中学2023-2024学年七年级下学期开学考试数学试题一、单选题1.下列语句中不是命题的是( ) A .锐角小于钝角 B .作AC 的垂直平分线 C .对顶角不相等D .三角形的内角和等于180︒2.如图,AB CD EF ∥∥,BC AD ∥,AC 平分BAD ∠且与EF 交于点O ,那么与AOE ∠相等的角有( )A .5个B .4个C .3个D .2个3.如图,3=4∠∠,则下列条件中不能推出AB CD ∥的是( )A .1∠与2∠互余B .12∠=∠C .13∠=∠且24∠∠=D .BM CN ∥4.一个多边形的每个内角都是108°,那么这个多边形是( ) A .五边形B .六边形C .七边形D .八边形5.三角形的两边长分别为2和7,另一边长a 为偶数.且28a <<,这个三角形的周长是( ) A .13B .15C .15或17D .176.如图,BE 、CF 都是ABC V 的角平分线,且70EDC ∠=︒,则A ∠=( )A .50︒B .40︒C .70︒D .35︒7.如图,AD 是ABC V 的中线,BE 是ABD △的中线,EF BC ⊥于点F .若24ABC S =V ,4BD =,则EF 长为( )A .3B .4C .5D .68.ABC V 中,A m ∠=︒,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠,1A BC ∠和1ACD ∠的平分线交于点2A ,得2A ∠L 2023A BC ∠和2023A CD ∠的平分线交于点2024A ,则2024A ∠为( )A .20222m B .20232m C .20242m D .20252m二、填空题9.如图,x =,y =.10.如图,60EF BC ED AB FED ∠=︒∥,∥,,则B ∠=.11.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =°.12.在一个凸多边形中,除去一个内角外,其余所有内角的和等于2290︒,则该凸多边形的边数为.13.一个多边形的内角和是它的外角和的4倍,这个多边形是边形. 14.设ABC V 的三边为a 、b 、c ,化简a b c a c b c a b -++--+----=. 15.如图所示,则A DBE C D E ∠+∠+∠+∠+∠=.16.如图,在四边形ABCD 中,DAB ∠的角平分线与ABC ∠的外角平分线相交于点P ,且240D C ∠+∠=°,则P ∠=.三、解答题17.网格中每个小正方形的边长都是一个单位长度,将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.根据下列条件,利用网格点和三角尺画图:(1)补全△A′B′C′;(2)画出AC边上的中线BD和AC边上的高线BE;(3)求△ABD 的面积.18.如图,在△ABC中,∠B=40°,∠BCD=100°,CE平分∠ACB.求∠A和∠BEC的度数.19.已知:如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分别是边AC,AB上的高,BD,CE相交于H,求∠BHC的度数.四、填空题20.已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解:是,理由如下:∵AD ⊥BC ,EG ⊥BC (已知) ∴∠4=∠5=90°( ) ∴AD ∥EG ( ) ∴∠1=∠E ( ) ∠2=∠3( ) ∵∠E =∠3(已知) ∴=( )∴AD 是∠BAC 的平分线( )五、解答题21.如图,在ABC V 中,CD ,CE 分别是ABC V 的高和角平分线,28,58A B ∠=︒∠=︒,求DCE ∠的度数.22.如图,在六边形ABCDEF 中,140165AF CD A C ∠=︒∠=︒∥,,.(1)求B ∠的度数;(2)当D ∠=度时,可使AB DE ∥.试说明你的结论.23.(1)如图①,把△ABC 纸片沿 DE 折叠,使点 A 落在四边形 BCED 的内部点 A′的位置,试说明 2∠A=∠1+∠2;(2)如图②,若把△ABC 纸片沿 DE 折叠,使点 A 落在四边形 BCED 的外部点A′的位置,写出∠A 与∠1、∠2 之间的等量关系(无需说明理由);(3)如图③,若把四边形 ABCD 沿 EF 折叠,使点 A 、D 落在四边形BCFE 的内部点 A′、D′的位置,请你探索此时∠A 、∠D 、∠1 与∠2 之间的数量关系,写出你发现的结论并说明理由.24.【概念认识】如图①所示,在ABC ∠中,若ABD DBE EBC ∠=∠=∠,则BD ,BE 叫做ABC ∠的“三分线”.其中,BD 是“邻AB 三分线”,BE 是“邻BC 三分线”.(1)如图②所示,在ABC V 中,100A ∠=︒,=45ABC ∠︒.若ABC ∠的三分线BD 交AC 于点D .求BDC ∠的度数.(2)如图③所示,在ABC V 中,BP ,CP 分别是ABC ∠的邻BC 三分线和ACB ∠的邻BC 三分线,且135BPC ∠=︒.求A ∠的度数. 【延伸推广】(3)在ABC V 中,ACD ∠是ABC V 的外角,ABC ∠的三分线所在的直线与ACD ∠的三分线所在的直线交于点P ,若()60A m m ∠=︒>︒,60ABC ∠=︒.求出BPC ∠的度敌.(用含m 的式子表示)。

江苏省苏州市高新区实验初级中学2024-2025学年九年级数学第一学期开学学业水平测试试题【含答案】

江苏省苏州市高新区实验初级中学2024-2025学年九年级数学第一学期开学学业水平测试试题【含答案】

江苏省苏州市高新区实验初级中学2024-2025学年九年级数学第一学期开学学业水平测试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A .40B .42C .38D .22、(4分)实数a ,b 在数轴上的位置如图所示,则化简﹣﹣的结果是()A .2b B .2a C .2(b ﹣a )D .03、(4分)如图,在ABC ∆中,8AB =,6BC =,10AC =,D 为边AC 上一动点,DE AB ⊥于点E ,DF BC ⊥于点F ,则EF 的最小值为()A .2.4B .3C .4.8D .54、(4分)下列图案中,不是中心对称图形的是()A .B .C .D .5、(4分)下列计算正确的是()A =±2B =C ÷=2D .=46、(4分)下列方程是关于x 的一元二次方程的是()A .20ax bx c ++=B .12x x +=C .()()110x x -+=D .22340x xy y +-=7、(4分)1的平方根是()A .1B .-1C .±1D .08、(4分)如图,在平面直角坐标系中,函数和的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组的解是()A ..B ..C ..D ..二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)命题“等腰三角形两底角相等”的逆命题是_______10、(4分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为_____.(写出一个即可)11、(4分)如果2x =是关于x 的方程21124k x x =+--的增根,那么实数k 的值为__________12、(4分)若112a b -=,则422a ab b a ab b +---的值是________13、(4分)在平面直角坐标系中,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象如图所示,根据图象中的信息可求得关于x 的方程3kx b +=的解为____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).15、(8分)在“6.26”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?16、(8分)按照下列要求画图并作答:如图,已知ABC .()1画出BC 边上的高线AD ;()2画ADC ∠的对顶角EDF ∠,使点E 在AD 的延长线上,DE AD =,点F 在CD 的延长线上,DF CD =,连接EF ,AF ;()3猜想线段AF 与EF 的大小关系是:______;直线AC 与EF 的位置关系是:______.17、(10分)“雁门清高”苦荞茶,是大同左云的特产,享誉全国,某经销商计划购进甲、乙两种包装的苦荞茶500盒进行销售,这两种茶的进价、售价如下表所示:进价(元/盒)售价(元/盒)甲种4048乙种106128设该经销离购进甲种包装的苦荞茶x 盒,总进价为y 元。

江苏省苏州市高新区实验初中2023-2024学年上学期七年级数学现场作业(12月)(含解析)

江苏省苏州市高新区实验初中2023-2024学年上学期七年级数学现场作业(12月)(含解析)

2023-2024学年新区实验学校初一年级12月份月考数学试卷一、选择题(共10小题,每小题2分,都是单选题,请将答案涂到答题卡上相应位置)1.12的倒数是( )A .21B .C .D .2.下列运算正确的是( )A .B .C .D .3.经综合测算,2023年中秋国庆长假期间苏州市累计接待游客1781.5万人次,实现旅游收入约230.4亿元,较2019年分别增长和,其中纳入省文旅厅监测的级景区和省级以上乡村旅游重点村累计接待游客10920000人次,居全省第一.将10920000用科学记数法表示为( )A .B .C .D .4.已知与是同类项,则的值为( )A .B .1C .D .5.下列说法中,不一定成立的是( )A .如果,那么B .如果,那么C .如果,那么D .如果,那么6.已知是方程的解,则的值是( )A .1B .C .3D .7.要使多项式化简后不含的二次项,则的值是()A .0B .3C .6D .98.一批学生列队从学校到甲地去秋游,他们以每小时4千米的速度行进,走了1千米路时,一学生奉命回校取物,他以每小时5千米的速度回校取物后即以同样速度追赶队伍,结果同时到达甲地,求学校到甲地距离是多少?设学校到甲地距离为千米,则可列出方程是( )A .B .C .D .9.在如图的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,⋯,则第2023次输出的结果为()11212-112-321a a -=23a a a+=325a b ab +=76ab ba ab-=43.3%25.8%A 80.109210⨯71.09210⨯61.09210⨯610.9210⨯2na b -325m a b +nm 1-278278-a b >a c b c +>+a c b c +>+a b >a b >22ac bc>22ac bc >a b>3x =24x x m -=-m 1-3-()2223253x x x mx-+++x m x 1145x x +-=1145x x -+=1145x x-=+1145x x+=-A .3B .6C .1010D .202310.已知为互不相等的三个有理数,且,若式子的最小值为3,则的值为( )A .12B .9C .18D .15二、填空题(共8小题,每小题3分,请将答案填到答题卡上)11.______.12.比较大小:______(用“>”“<”或“=”表示).13.已知在数轴上的位置如图所示,化简的结果是______.14.如果关于的方程和的解相同,那么______.15.两地相距,慢车以的速度从地出发,同时一列快车以的速度从地出发相向而行,当两车相距时,两车行驶了______小时.16.关于的不等式的解集如图所示,则的值是______.17.已知,则的值等于______.18.如图,在长方形中,厘米,厘米,点在边上且,动点从点出发,先以每秒1厘米的速度沿运动,然后以每秒2厘米的速度沿运动,再以每秒1厘米的速度沿运动,最终到达点.设点运动的时间是秒,那么当______时,三角形的面积等于5平方厘米.,,x a b a b >x a x b -+-12a b +-()0.27-+=314-415-a b 、a b b a b +--+x 23x x =-4232x m x -=+m =A B 、1260km 50km /h A 70km /h B 60km x ()211a x a -≤+a 2225,23a ab ab b +=--=-2293332a ab b +++ABCD 4AB =6BC =E BC 2BE EC =P A A B →B C →C D →D P t t =APE三、解答题(共8小题,共56分,请将答案填到答题卡上)19.(6分)计算:(1);(2).20.(6分)解方程:(1);(2)21.(6分)已知:.(1)计算:;(2)若的值与字母的取值无关,求的值.22.(6分)一个旅游团共26人去参观一个景点,已知成人票每张120元,儿童票每张80元,经预算,共需要门票钱2640元.(1)求这个旅游团成人和儿童的数量各是多少人?(2)到了售票窗口得知,购买两张成人票将会赠送一张儿童票,请计算共需门票钱多少元?23.(8分)将一张等边三角形纸片剪成四个大小、形状一样的小等边三角形(如图所示),记为第一次操作,然后将其中右下角的等边三角形又按同样的方法剪成四小片,记为第二次操作,若每次都把右下角的等边三角形按此方法剪成四小片,如此循环进行下去.(1)如果剪次共能得到______个等边三角形,(2)若原等边三角形的边长为1,设表示第次所剪出的小等边三角形的边长,如;①试用含的式子表示______;13124243⎛⎫-⨯-+- ⎪⎝⎭42110.51(2)4⎡⎤--÷⨯+-⎣⎦()()2231413x x +=--()313122x xx x ⎧->⎪⎨--≤⎪⎩2,2A ab a B ab a b =-=-++52A B -52A B -b a n n a n 112a =n n a =②计算______;(3)运用(2)的结论,计算号的值24.(8分)现有三种边长分别为3,2,1的正方形卡片(如图1),分别记为Ⅰ,Ⅱ,Ⅲ.还有一个长为a ,宽为b 的长方形.(1)如图2①,将Ⅰ放入长方形中,试用含a ,b 的代数式表示阴影部分的面积,并求当,时阴影部分的面积.(2)将Ⅰ,Ⅱ两张卡片按图2②的方式,放置在长方形中,试用含a ,b 的代数式表示阴影部分的面积,并求当,时阴影部分的面积.(3)将Ⅰ,Ⅱ,Ⅲ三张卡片按图2③的方式,放置在长方形中,求右上角阴影部分与左下角阴影部分周长的差.图1图225.(8分)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“统一方程”.例如:方程和为“美好方程”.(1)方程与方程是“统一方程”吗?请说明理由;(2)若关于的方程与方程是“统一方程”,求的值;(3)若关于方程与是“统一方程”,求的值.26.(8分)如图,直线上有两点,,点是线段上的一点,.(1)____________;123n a a a a +++⋅⋅⋅+=1111111113612244896192384768++++++++ 4.5a =4b =4.5a =4b =213x -=10x +=()451x x -+=23y y =+x 02xm +=326x x -=+m x 230x n -+=351x n +=n l AB 36cm AB =O AB 2OA OB =OA =cm,OB =cm(2)若点是直线上一点,且满足,求的长;(3)若动点分别从同时出发,向右运动,点的速度为,点的速度为.设运动时间为,当点与点重合时,两点停止运动.问当为何值时,.C AB AC CO CB =+CO ,P Q ,A B P 3cm /s Q 1cm /s s t P Q ,P Q t 28cm OP OQ -=2023-2024学年新区实验学校初一年级12月份月考数学试卷参考答案与解析一、选择题(共10小题,每小题2分,都是单选题,请将答案涂到答题卡上相应位置)1.【答案】B 2.【答案】D 3.【答案】B 4.【答案】A【解析】解:故选:A 5.【答案】C解:将解:当时,不等号不成立,所以C 选项不满足。

苏州高新区实验初级中学(新实初中)必修二第二章《解析几何初步》测试题(答案解析)

苏州高新区实验初级中学(新实初中)必修二第二章《解析几何初步》测试题(答案解析)

一、选择题1.已知直线1l :10ax y -+=,2l :10x ay ++=,a R ∈,以下结论不正确的是( )A .不论a 为何值时,1l 与2l 都互相垂直B .当a 变化时,1l 与2l 分别经过定点()0,1A 和()1,0B -C .不论a 为何值时,1l 与2l 都关于直线0x y +=对称D .如果1l 与2l 交于点M ,则MO 2.已知圆22:1,O x y +=点()00,P x y 在直线20x y --=上,O 为坐标原点.若圆上存在点Q 使得30OPQ ∠=,则0x 的取值范围为( ) A .[]1,1-B .[]0,1C .[]0,2D .[]22-,3.由直线1y x =+上的点向圆()2231x y -+=作切线,则切线长的最小值为( )A .1B C .D .34.在坐标平面内,与点()1,2A 距离为1,且与点()3,1B 距离为2的直线共有( ) A .1条B .2条C .3条D .4条5.在平面直角坐标系xOy 中,若圆()()222x a y a -+-=与圆()2268x y +-=外切,则实数a 的值为( ) A .1B .2C .3D .46.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A .22(2)(2)1x y -++=B .22(2)(2)1x y ++-=C .22(2)(2)1x y -+-=D .22(2)(1)1x y -+-=7.已知正方体1111ABCD A BC D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .908.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π9.如图,在三棱锥P ABC -中,AB AC ⊥,AB AP =,D 是棱BC 上一点(不含端点)且PD BD =,记DAB ∠为α,直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,则( )A .,γβγα≤≤B .,βαβγ≤≤C .,βαγα≤≤D .,αβγβ≤≤10.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .1611.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为( )A .16B .13C .1D .212.如图,正方体1111ABCD A BC D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .1DC PC ⊥B .异面直线AD 与PC 不可能垂直 C .1D PC ∠不可能是直角或者钝角 D .1APD ∠的取值范围是,62ππ⎛⎫⎪⎝⎭ 二、填空题13.若圆:C 22243x y x y ++-=-关于直线260mx ny ++=对称,过点(,)m n 作圆C 的切线,则切线长的最小值是_____________.14.经过直线20x y -=与圆224240x y x y +-+-=的交点,且过点()1,0的圆的方程为______.15.已知圆22:1O x y +=,直线:30l mx y m -=与圆O 交于A 、B 两点,1AB =,分别过A 、B 两点作直线l 的垂线交x 轴于C 、D 两点,则CD =__________.16.在平面直角坐标系xOy 中,A 的坐标为(2,0),B 是第一象限内的一点,以C 为圆心的圆经过O 、A 、B 三点,且圆C 在点A ,B 处的切线相交于P ,若P 的坐标为(4,2),则直线PB 的方程为_____. 17.在平面上给定相异两点A ,B ,设P 点在同一平面上且满足PA PBλ=,当0λ>且1λ≠时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有双曲线22221x y a b-=(0a >,0b >),A ,B 为双曲线的左、右顶点,C ,D 为双曲线的虚轴端点,动点P 满足2PA PB=,PAB ∆面积的最大值为643,PCD ∆面积的最小值为4,则双曲线的离心率为______. 18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.已知正三棱锥A BCD -的四个顶点在球O 的球面上,2AB =,且π2BAC ∠=,则球O 的表面积为_______.20.如图,平面四边形ABCD 中,1AB AD ==,2,3,BD CD BD CD ==⊥将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则四面体A BCD '-的外接球的球心到平面ACD '的距离等于__________.21.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.22.在正三棱锥S ABC -中,23AB =,4SA =,E 、F 分别为AC 、SB 的中点,过点A 的平面α//平面SBC ,α平面=ABC l ,则异面直线l 和EF 所成角的余弦值为_________.23.已知某几何体的三视图如图所示,则该几何体的体积是__________.24.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.三、解答题25.设某几何体的三视图如图(尺寸的长度单位为cm ),(1)用斜二测画法画出该几何体的直观图(不写画法); (2)求该几何体最长的棱长.26.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1,2AB BC ==45ABC ∠=︒,AE PC ⊥垂足为E .(Ⅰ)求证:平面AEB ⊥平面PCD ;(Ⅱ)若二面角B AE D --的大小为150︒,求侧棱PA 的长.27.在棱长为2的正方体1111ABCD A BC D -中,O 是底面ABCD 的中心.(1)求证:1BO//平面11DA C ; (2)求点O 到平面11DA C 的距离.28.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE : (2)求四棱锥E ABCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用直线垂直,系数满足()110a a ⨯+-⨯=即可判断A ;根据直线过定点与系数无关即可判断B ; 在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---,代入2:10l x ay ++=,左边可得不恒为0,从而可判断C ;将两直线联立求出交点,在利用两点间的距离公式即可求解. 【详解】对于A ,()110a a ⨯+-⨯=恒成立,1l 与2l 都互相垂直恒成立,故A 正确;对于B ,直线1:10l ax y -+=, 当a 变化时,0x =,1y =恒成立, 所以1l 恒过定点(0,1)A ;2:10l x ay ++=,当a 变化时,1x =-,0y =恒成立, 所以2l 恒过定点(1,0)B -,故B 正确. 对于C ,在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---, 代入2:10l x ay ++=, 得20ax =,不满足不论a 为何值时,20ax =成立, 故C 不正确;对于D ,联立1010ax y x ay -+=⎧⎨++=⎩,解得221111a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩,即2211,11a a M a a ---+⎛⎫⎪++⎝⎭,所以MO ==≤所以MO D 正确. 故选:C. 【点睛】本题考查了直线垂直时系数之间的关系、直线过定点问题、直线关于直线对称问题、两直线的交点、两点间的距离公式,考查了考生的计算求解能力,综合性比较强,属于中档题.2.C解析:C 【分析】根据圆的切线的性质,可知当过P 点作圆的切线,切线与OP 所成角是圆上的点与OP 所成角的最大值,只需此角大于等于30即可,此时半径,切线与OP 构成直角三角形,由切线与OP 所成角大于等于30可得OP 小于等于半径的2倍,再用含0x 的式子表示OP ,即可求出0x 的取值范围.【详解】 设过P 的C 的切线切点为R ,根据圆的切线性质,有30OPR OPQ ∠∠=︒.反过来,如果30OPR ∠︒,则存在C 上点Q 使得30OPQ ∠=︒.∴若圆C 上存在点Q ,使30OPQ ∠=︒,则30OPR ∠︒||1OR =,||2OP ∴>时不成立,||2OP ∴.222222000000||(2)244OP x y x x x x =+=+-=-+200240x x ∴-,解得,0002x x ∴的取值范围是[0,2]故选:C . 【点睛】本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考查了学生的转化能力,计算能力.3.B解析:B 【分析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值. 【详解】切线长的最小值是当直线1y x =+上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =圆的半径为1,= 故选:B . 【点睛】本题考查圆的切线方程,点到直线的距离,是基础题.4.B解析:B 【详解】根据题意可知,所求直线斜率存在,可设直线方程为y =kx +b , 即kx -y +b =0,所以11d ==,22d ==,解之得k =0或43k =-, 所以所求直线方程为y =3或4x +3y -5=0, 所以符合题意的直线有两条,选B.5.C解析:C 【分析】根据题意,求出两个圆的圆心以及半径,由圆与圆的位置关系可得222(6)a a +-=,解可得a 的值,即可得答案.【详解】根据题意,圆22()()2x a y a -+-=的圆心为(,)a a,半径1r 22(6)8x y +-=的圆心为(0,6),半径2r =若圆22()()2x a y a -+-=与圆22(6)8x y +-=相外切,则有222(6)a a +-=, 解可得:3a =; 故选:C. 【点睛】本题考查圆与圆的位置关系,注意圆与圆外切的判断条件,属于基础题.6.A解析:A 【分析】设圆2C 的圆心为2(,)C a b ,解方程组111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩得22a b =⎧⎨=-⎩,即得解.【详解】圆1C 的圆心为1(1,1)C -,设圆2C 的圆心为2(,)C a b ,依题意得111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得22a b =⎧⎨=-⎩,又圆2C 的半径与圆1C 的半径相等, 所以圆2C 的方程为22(2)(2)1x y -++=. 故选:A. 【点睛】本题主要考查圆的方程的求法,考查点线点对称,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A BC D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A BC D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则223R =, 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.9.A解析:A 【分析】由AB AP =,PD BD =,可得ABD △≌APD △,从而得DAB DAP α∠=∠=,而直线PA 与平面ABC 所成角为γ,由最小角定理可得γα≤,再由P ABC B PAC V V --=,PACABCSS≤,进而可比较,βγ的大小【详解】解:因为AB AP =,PD BD =,所以ABD △≌APD △, 所以DAB DAP α∠=∠=,因为直线PA 与平面ABC 所成角为γ, 所以由最小角定理可得γα≤, 因为AB AC ⊥,所以12ABCS AB AC =⋅, 因为1sin 2PACS AC AP PAC =⋅∠,AB AP =, 所以PACABCSS≤,令点P 到平面ABC 的距离为1d ,点B 到平面PAC 的距离为2d , 因为P ABC B PAC V V --=,1211,33P ABC ABC B PACPACV S d V S d --=⋅=⋅所以12d d ≤,因为直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ, 所以21sin ,sin d d AB PAβγ== 因为AB AP =, 所以sin sin βγ≥ 因为,(0,]2πβγ∈所以βγ≥, 故选:A 【点睛】关键点点睛:此题考查直线与平面所成的角,考查推理能力,解题的关键是利用了等体积法转换,属于中档题10.C解析:C 【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法)且该长方体的长、宽、高分别为6、4、4,故该四棱锥的体积为1(64)4323V=⨯⨯⨯=.故选C.【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.11.B解析:B【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果.【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC-,如图所以:所以该几何体的体积为111121323 V=⨯⨯⨯⨯=.故选:B【点睛】关键点点睛:根据三视图还原出直观图是本题解题关键.12.D解析:D【分析】在正方体中根据线面垂直可判断A,根据异面直线所成角可判断B,由余弦定理可判断CD.【详解】如图,设正方体棱长为2,在正方体中易知1DC ⊥平面11A BCD ,P 为线段1A B 上的动点,则PC ⊂平面11ABCD ,所以 1DC PC ⊥,故A 正确;因为异面直线AD 与PC 所成的角即为BC 与PC 所成的角,在Rt PBC 中不可能BC 与PC 垂直,所以异面直线AD 与PC 不可能垂直,故B 正确;由正方体棱长为2,则222222211114480D P PC DC A P BP A P BP +-=+++-=+>, 所以由余弦定理知1cos 0D PC ∠>,即1D PC ∠不可能是直角或者钝角,故C 正确; 设1(022)A P x x =≤≤,则2214D P x =+,222422cos4224AP x x x x π=+-⨯=+-,由余弦定理,222211111222cos =22AP D P AD x xAP D P A PD P AP D ∠=+--⋅⋅,当2x <1cos 0APD ∠<,所以1APD ∠为钝角,故D 错误.故选:D 【点睛】关键点点睛:判断正方体中的角的范围时,可选择合适三角形,利用正方体中数量关系,位置关系,使用余弦定理,即可判断三角形形状或角的范围,属于中档题.二、填空题13.4【分析】先由圆的方程得到圆心坐标根据题意得到;记点则点在直线设切点为由得到最小时切线最小根据点到直线距离公式求出的最小值即可得出结果【详解】由得因为圆关于直线对称所以圆心在直线上因此即记点则点在直解析:4 【分析】先由圆的方程,得到圆心坐标,根据题意,得到30m n -+=;记点(,)P m n ,则点P 在直线30x y -+=,设切点为M ,由2222PM PC CM PC =-=-PC 最小时,切线PM 最小,根据点到直线距离公式,求出PC 的最小值,即可得出结果. 【详解】由22243x y x y ++-=-得22(1)(2)2x y ++-=,因为圆:C 22243x y x y ++-=-关于直线260mx ny ++=对称,所以圆心()1,2C -在直线260mx ny ++=上,因此2260m n -+=,即30m n -+=, 记点(,)P m n ,则点P 在直线30x y -+=上,设切点为M ,则PM ==所以,当PC 最小时,切线PM 最小,而PC 的最小值是圆心()1,2C -到直线30x y -+=的距离,因此min PC ==所以min4PM==.故答案为:4. 【点睛】本题主要考查圆的切线长的最值问题,熟记直线与圆的位置关系即可,属于常考题型.14.【分析】根据题意设出过直线和圆的交点的圆系方程代入已知点坐标可求出的值即可确定所求圆的方程【详解】设过已知直线和圆的交点的圆系方程为:∵所求圆过点∴解得所以圆的方程为化简得故答案为:【点睛】本题主要 解析:2231240x y x y ++--=【分析】根据题意设出过直线和圆的交点的圆系方程,代入已知点坐标,可求出λ的值,即可确定所求圆的方程. 【详解】设过已知直线和圆的交点的圆系方程为:()2242420x y x y x y λ+-+-+-=∵所求圆过点()1,0 ∴70λ-+= 解得7λ=所以圆的方程为()22424720x y x y x y +-+-+-=,化简得2231240x y x y ++--=.故答案为:2231240x y x y ++--=. 【点睛】本题主要考查求解圆的方程,设出过已知直线和圆的交点的圆系方程是解本题的关键.15.【分析】利用垂径定理可求得的值设则联立方程利用韦达定理可求【详解】由可得圆心半径设圆心到直线距离为则由垂径定理可得解得设联立直线与圆方程得∴∴∴故答案为:【点睛】本题考查利用垂径定理解决圆的弦长问题【分析】1AB =,利用垂径定理可求得m 的值,设()11A x y ,,()22B x y ,,则12CD x x =-=CD .【详解】由22:1O x y +=,可得圆心O ()00,,半径1R =,设圆心到直线:0l mx y -=距离为d ,则d ==,由垂径定理可得2222AB R d ⎛⎫=+ ⎪⎝⎭,222112⎛⎫=+⎝⎪⎭, 解得213m =, 设()11A x y ,,()22B x y ,,联立直线l与圆O 方程得221x y y mx ⎧+=⎪⎨=⎪⎩,∴()22221310m x x m +++-=,∴12131113x x m -+===++,212213131301113m x x m ⨯--===++,∴12CD x x =-===. 【点睛】本题考查利用垂径定理解决圆的弦长问题,联立方程利用韦达定理求线段长度,考查运算求解能力,是中档题.16.x+7y ﹣18=0【分析】先求出圆C (11)半径r=|AC|设PB 的方程为y ﹣2=k(x ﹣4)由题得解方程即得解【详解】根据题意A 的坐标为(20)以C 为圆心的圆经过O 、A 、B 三点则圆心C 在线段OA 的解析:x +7y ﹣18=0.【分析】先求出圆C (1,1),半径r =|AC|=设PB 的方程为y ﹣2=k (x ﹣4),由题得=.【详解】根据题意,A 的坐标为(2,0),以C 为圆心的圆经过O 、A 、B 三点, 则圆心C 在线段OA 的垂直平分线上, 设圆心C 的坐标为(1,b ),圆C 在点A ,B 处的切线相交于P ,若P 的坐标为(4,2),则k PA 2042-==-1,则k AC 012b -==--1, 解可得:b =1,即C (1,1),圆C 的半径r =|AC|=其圆C 的方程为(x ﹣1)2+(y ﹣1)2=2,直线PB 的斜率必定存在, 设PB 的方程为y ﹣2=k (x ﹣4),即kx ﹣y ﹣4k +2=0,=解可得k 17=-或1(舍);故PB 的方程为y ﹣217=-(x ﹣4),变形可得x +7y ﹣18=0; 故答案为:x +7y ﹣18=0. 【点睛】本题主要考查直线和圆的方程的求法,考查直线和圆方程的求法,意在考查学生对这些知识的理解掌握水平和计算能力.17.【分析】根据为双曲线的左右顶点可设由两点间距离公式并化简可得动点的轨迹方程由为双曲线的左右顶点可知当位于圆的最高点时的面积最大根据面积最大值求得当位于圆的最左端时的面积最小结合最小面积可求得即可求得解析:54【分析】根据,A B 为双曲线的左、右顶点可设(),0A a =-,(),0B a ,(),P x y ,由两点间距离公式并化简可得动点P 的轨迹方程.由,A B 为双曲线的左、右顶点可知当P 位于圆的最高点时PAB ∆的面积最大,根据面积最大值求得a .当P 位于圆的最左端时PCD ∆的面积最小,结合最小面积可求得b ,即可求得双曲线的离心率. 【详解】设(),0A a =-,(),0B a ,(),P x y , 依题意,得2PA PB =,=两边平方化简得2225433a x y a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,则圆心为5,03a ⎛⎫ ⎪⎝⎭,半径43a r =, 当P 位于圆的最高点时PAB ∆的面积最大,最大面积为14642233a a ⨯⨯=, 解得4a =;当P 位于圆的最左端时PCD ∆的面积最小,最小面积为154242333a b a a b ⎛⎫⨯⨯-=⨯= ⎪⎝⎭, 解得3b =,故双曲线的离心率为54e ==.故答案为: 54【点睛】本题考查了两点间距离公式的应用,轨迹方程的求法,圆与双曲线的综合应用,双曲线离心率的求法,属于中档题.18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为:解析:【分析】求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值. 【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的=P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM故答案为:【点睛】本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.【分析】经分析正三棱锥是以△BCD 底面的三棱锥可以把看出以AB 为边长的正方体切割下来的可借助于正方体的外接球求解【详解】正三棱锥中所以△BCD 为底面且所以正三棱锥是以AB 为边长的正方体切割下来的所以 解析:6π【分析】经分析,正三棱锥A BCD -是以△BCD 底面的三棱锥,可以把看出以AB 为边长的正方体切割下来的,可借助于正方体的外接球求解. 【详解】正三棱锥A BCD -中,π2BAC ∠=, 所以△BCD 为底面,且π2BAD DAC BAC ∠=∠=∠=, 所以正三棱锥A BCD -是以AB 为边长的正方体切割下来的, 所以正三棱锥A BCD -的外接球就是正方体的外接球. 设外接球的半径为R ,所以232R = 所以外接球的表面积为246S R ππ==. 故答案为:6π 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.20.【分析】取的中点为可证明为四面体外接球的球心利用等体积可得答案【详解】取的中点为连接因为平面平面平面平面平面故平面因为平面故因为故故又故平面因为平面故而为的中点故又所以故为四面体外接球的球心设球心到解析:12【分析】取BC 的中点为M ,可证明M 为四面体A BCD '-外接球的球心,利用等体积可得答案. 【详解】取BC 的中点为M ,连接,A M DM ',因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD'平面BCD BD =,CD ⊂平面BCD ,故CD ⊥平面A BD ', 因为BA '⊂平面A BD ',故CD BA '⊥,因为1A B A D ''==,2BD =,故222BD A B A D ''=+,故''⊥BA A D ,又A D DC D '⋂=,故'⊥BA 平面ACD ',因为A C '⊂平面ACD ',故A D A C ''⊥,而M 为BC 的中点,故MA MB MC '==,又BD DC ⊥,所以MD MB =,故M 为四面体A BCD '-外接球的球心.设球心M 到平面ACD '的距离为h ,因为2B A CD M A CD V V ''--=,所以11233A CDA CD S AB S h '''=⨯,即12h =. 故答案为:12. 【点睛】本题考查四面体的外接球,此类问题一般是先确定球心的位置,再把球的半径放置在可解的平面图形中处理,如果球心的位置不易确定,则可以通过补体的方法来处理.21.【分析】将正三棱柱的侧面沿棱展开成平面连接与的交点即为满足最小时的点可知点为棱的中点即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比【详解】将正三棱柱沿棱展开成平面连接与的交点即为满足最小时 解析:1:1【分析】将正三棱柱111ABC A B C -的侧面沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M ,可知点M 为棱1BB 的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比. 【详解】将正三棱柱111ABC A B C -沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M .由于2AB =,13AA =,再结合棱柱的性质,可得,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径, M ∴为1BB 的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:1111:1:1C AMB A A CBMC V V --=.故答案为:1:1.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.22.【分析】取中点连结根据题意得故所以为异面直线和所成角再根据几何关系求得在中故进而得答案【详解】取中点连结依题意:所以所以为异面直线和所成角在正三棱锥中是中点所以又因为平面平面所以平面所以因为分别是的 解析:217 【分析】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,根据题意得//l BC ,//DE BC ,故//l DE ,所以DEF ∠为异面直线l 和EF 所成角,再根据几何关系求得在Rt DEF ∆中,122DF SA ==,11322DE BC AB ===,227EF DE DF =+321cos 77DE DEF EF ∠===,进而得答案. 【详解】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,依题意://l BC ,//DE BC ,所以//l DE ,所以DEF ∠为异面直线l 和EF 所成角.在正三棱锥S ABC -中,G 是BC 中点,所以SG BC ⊥,AG BC ⊥,又因为SG AG G ⋂=,SG ⊂平面SAG ,AG ⊂平面SAG ,所以BC ⊥平面SAG ,所以BC SA ⊥.因为F 、D 分别是SB 、AB 的中点,所以//DF SA .所以DE DF ⊥.Rt DEF ∆中,122DF SA ==,11322DE BC AB ===, 所以227EF DE DF +. 所以321cos 7DE DEF EF ∠===. 故异面直线l 和EF 21 21 【点睛】 本题考查异面直线所成角的求解,考查空间思维能力与运算能力,是中档题.23.【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥再根据锥体的体积计算公式求解即可【详解】利用正方体法还原三视图如图所示根据三视图可知该几何体是底面直角边为2的等腰直角三角形高为2的三棱锥解析:43. 【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥,再根据锥体的体积计算公式求解即可. 【详解】 利用正方体法还原三视图,如图所示,根据三视图,可知该几何体是底面直角边为2的等腰直角三角形,高为2的三棱锥S-ABC ,故其体积114222323V =⨯⨯⨯⨯=. 故答案为:43. 【点睛】本题主要考查三视图还原几何体,锥体的体积公式,考查考生的观察分析能力与空间想象能力及运算能力,属于中档题. 24.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫- ⎪⎝⎭【分析】当点P 从点A 运动到点B 时,二面角D PC B --的平面角逐渐增大,二面角D PC B --的平面角最小趋于二面角D AC B --的平面角,最大趋于二面角D BC A --的平面角的补角,求出二面角D AC B --的平面角和二面角D BC A --的平面角即可.【详解】当点P 从点A 运动到点B 时,二面角D PC B --的平面角逐渐增大,二面角D PC B --的平面角最小趋于D AC B --的平面角,最大趋于二面角D BC A --的平面角的补角,设正四面体的棱长为2a ,如图所示,取AC 的中点E ,连接DE 、BE ,易知DEB ∠为二面角D AC B --的平面角,3DE BE a ==,所以((()()()2223321cos 3233a a a DEB a a +-∠==⨯⨯, 同理可得:二面角D BC A --的平面角的补角的余弦值为13-, 故二面角D PC B --的平面角的余弦值的取值范围是11,33⎛⎫- ⎪⎝⎭, 故答案为:11,33⎛⎫- ⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.三、解答题25.(1)答案见解析;(2)4cm .【分析】(1)直接画出三棱锥S ABC -即可;(2)作SE ⊥面ABC ,取线段AC 中点为D ,分别在等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △中,求出线段长度,得到该几何体最长的棱长.【详解】(1)(2)如下图,SE ⊥面ABC ,线段AC 中点为D 2,3,1,4,2,=1SE cm AE cm CE cm AC cm AD DC cm DE cm ======,BD AC ⊥,3BD cm =,在等腰ABC 中,222313cm AB AC ==+=在Rt SEA △中,22222313cm SA SE AE +=+=在Rt SEC △中,2222215cm SC SE CE =++=在Rt BDE △中,22223110cm BE BD DE ++=SE ⊥面ABC ,SE BE ∴⊥ 在Rt SEB △中,22222(10)14cm SB SE BE =+=+ 在三梭锥S-ABC 中,SC AB AC SA SB AC <==<<,所以最长的棱为AC ,长为4cm【点睛】关键点点睛:本题考查几何体的三视图,以及棱锥的性质,解决本题的关键点是作出SE ⊥面ABC ,取线段AC 中点为D ,由三视图得出等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △,分别求出线段长度,得出答案,考查学生空间想象能力与计算能力,属于中档题.26.(Ⅰ)证明见解析;(Ⅱ2【分析】(Ⅰ)推导出AB AC ⊥,CD AC ⊥,PA CD ⊥,从而CD ⊥平面PAC ,进而CD AE ⊥,AE PC ⊥,由此能证明平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系,利用向量法能求出侧棱PA 的长.【详解】证明:(Ⅰ)1,2,45AB BC ABC =∠=︒,AB AC ∴⊥ 又//AB CD ,CD AC ∴⊥,PA ⊥平面ABCD ,PA CD ∴⊥,又AC AP A =,,AC AP ⊂平面PAC , CD平面PAC , AE ⊂平面PAC ,CD AE ∴⊥, 又AE PC ⊥,PC CD C =,,PC CD ⊂平面PCD ,AE ∴⊥平面PCD ,又AE ⊂平面AEB ,∴平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系.设AP t =,则(0A ,0,0),(1B ,0,0),(0C ,1,0),(1,10)D -,(0P ,0,)t , AB PC ⊥,AE PC ⊥,PC ∴⊥平面ABE ,∴平面ABE 的一个法向量为(0,1,)n PC t ==-在Rt PAC △中,PA t =,211AC PC t =∴=+,又AE PC ⊥,21AE t =+,得222(0,,)11t t E t t ++ 设平面ADE 的一个法向量为(,,)m x y z =由m AD m AE ⎧⊥⎨⊥⎩,得222··0110t t y z t t x y ⎧+=⎪++⎨⎪-+=⎩,解得(1,1,)m t =- 二面角B AE D --的大小为150︒,∴222||3|cos ,||cos150|||||12m n m n m n t t 〈〉===︒=++, 解得2t =,故侧棱PA 的长为2.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。

苏州高新区实验初级中学(新实初中)小升初数学期末试卷(篇)(Word版 含解析) (3)

苏州高新区实验初级中学(新实初中)小升初数学期末试卷(篇)(Word版 含解析) (3)

苏州高新区实验初级中学(新实初中)小升初数学期末试卷(篇)(Word版含解析)一、选择题1.钟面上5时整,时针与分针形成的角是()。

A.钝角B.直角C.平角2.一堆石子,用去60%后还剩13吨,求这堆石子原来共有多少吨,正确的算式是()A.60%+13B.13÷60% C.13÷(1﹣60%)3.一个三角形三个内角度数的比是1∶2∶1,这个三角形是()。

A.等边三角形B.等腰直角三角形C.钝角三角形4.小胖有88枚邮票,比小亚邮票枚数的一半多2枚。

小亚有多少枚邮票?解:设小亚有x枚邮票。

下列方程错误的是()。

A.x÷2-2=88 B.x÷2+2=88 C.88-x÷2=2 D.x÷2=88-25.下图是一个正方体表面展开图,每个面上标有一个数字,与标有数字“2”的面相对的面上标的是数字()。

A.3 B.4 C.5 D.66.下列陈述中,错误的是()。

A.直径是圆内最长的线段B.31名生日在7月的学生中一定有2人的生日是同一天C.同一钟表上时针与分针的速度比是1:127.如图将一个圆柱转化成一个长方体、体积()。

A.不变B.增加C.减少8.某地出租车行S千米收费3S元。

甲、乙、丙三人约定:由甲在A地租一辆出租车,途中乙在B地上车,丙在其后的C地上车,三人同时在D地下车。

已知AB=BC=CD=10千米,出租车按规定收费90元,那么这笔车费由甲、乙、丙三人按乘车的路程合理分摊,顺次应付()元。

A.40,30,20 B.50,30,10 C.45,30,15 D.55,25、109.按如图所示3×3方格中的规律,在下面4个符号中选择一个,填入第三行的空格内,你选的是()A.B.C.D.二、填空题10.2小时35分=____小时; 3.8m3=_____m3_____dm3.11.179的分数单位是(________),加上(________)个这个分数单位是最小合数。

江苏省苏州市苏州高新区实验初级中学2022-2023学年七年级下学期期中数学试题(含答案解析)

江苏省苏州市苏州高新区实验初级中学2022-2023学年七年级下学期期中数学试题(含答案解析)

江苏省苏州市苏州高新区实验初级中学2022-2023学年七年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .2cm 4.如图,为了估计一池塘岸边两点点P ,测得PA =5m ,A .6.5m 5.下列式子从左到右的变形,属于因式分解的是(A .()()21+-=x x C .21y xy y ++=A .45°B .28°C .25°D .30°8.如图,一辆超市购物车放置在水平地面上,其侧面四边形ABCD 与地面某条水平线l 在同一平面内,且AB ∥l .若∠A =93°,∠D =111°,则直线CD 与l 所夹锐角的度数为()A .24°B .34°C .39°D .83°9.4张长为a 、宽为()b a b >的长方形纸片,按如图的方式拼成一个边长为()a b +的正方形,图中空白部分的面积为1S ,阴影部分的面积为2S .若122S S =,则a 、b 满足()A .25a b =B .23a b =C .3a b =D .2a b=10.如图2是从图1的时钟抽象出来的图形,已知三角形ABC 是等边三角形,60A ∠=︒,当时针OP 正对点A 时恰好是12:00.若时针OP 与三角形ABC 一边平行时,时针所指的时间不可能是()A .1:00B .3:00C .5:00D .8:00二、填空题11.若正多边形的一个内角等于144︒,则这个正多边形的边数是______.12.计算:3a a ÷=__________.13.已知7a b +=,11ab =,则22a b +=________.14.如图,已知180ABC C ∠+∠=︒,BD 平分ABC ∠,若50D ∠=︒,则C ∠=______度.15.若x 2+mx ﹣15=(x +3)(x +n ),则mn 的值为_____.16.若3a b +=,则226a b b -+的值为________.17.聪聪想借助学过的几何图形设计图案,首先她将如图1的小长方形和如图2的小正方形组合成如图3的大正方形图案,已知小长方形的长为()cm a ,宽为()cm b ,则图2的小正方形的边长可用关于a 和b 的代数式表示为a b -;聪聪随后用3个如图3的完全相同的图案和8个如图1的小长方形,组合成如图4的大长方形图案,则图4中阴影部分面积与整个图形的面积之比为________.∥,将纸片沿EF折叠,点A、D分别落在18.如图,在四边形纸片ABCD中,AB CDA'、D¢处,且A D''经过点B,FD'交BC于点G,连接EG,EG平分BEF∥,∠,EG A D''∠的度数是________.A DFE130∠+∠=︒,则CFE三、解答题∥;(1)求证:CD FG(2)若∠A=60°,∠B=50°,⨯的网格中,23.如图,在710顶点都在格点上(格点是指每个小正方形的顶点)B、C的对应点是分别是A'(1)求出ABC 的面积,并利用无刻度的真尺画出(2)如图,直线l 经过点C ',请在直线四点围成的四边形的面积为24.阅读:一个三位数,百位数字是表示,而要表示为10010x +10010xyz x y z =++.(1)类比:ab =______________(2)观察下列等式2151001225=⨯⨯+2252451004525=⨯⨯+猜想:①255=___________②25a =______________;(3)验证:利用所学知识证明猜想②.25.小明和小红在计算1⎛- ⎝小明的解法:100101133⎛⎫-⨯ ⎪⎝⎭小红的解法:100101133⎛⎫-⨯ ⎪⎝⎭例如:分解因式:()()()()()()2222321414121231x x x x x x x x x +-=++-=+-=+++-=+-;求代数式2246x x +-的最小值;()()222246226218x x x x x +-=+-=+-,可知当=1x -时,2246x x +-有最小值,最小值是8-.根据阅读材料,用配方法解决下列问题:(1)分解因式:245m m --=________;(2)求代数式281a a -++的最大值;(3)将一根长为24cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,那么这两个正方形面积之和有最小值吗?若有,求此时这根铁丝剪成两段后做成两个正方形面积的和;若没有,请说明理由.27.如图1,已知两条直线AB 、CD 被直线EF 所截,分别交于点E 、点F ,EM 平分AEF ∠交CD 于点M ,且FEM FME ∠=∠.(1)判断直线AB 与直线CD 是否平行,并说明理由;(2)点G 是射线MD 上一动点(不与点M 、F 重合),EH 平分FEG ∠交CD 于点H ,过点H 作HN EM ⊥于点N ,设EHN α∠=,EGF β∠=.①如图2,若40β=︒,求α的度数;②当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并说明理由.参考答案:【点睛】本题考查了三角形外角的性质和平行线的性质,结合的思想解答.9.D【分析】先用a、b的代数式分别表示∴22222(2)a b ab b +=-,整理,得2(2)0a b -=,∴20a b -=,∴2a b =.故选D .【点睛】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.10.D【分析】根据题意可知,需要分三种情况,分别画出图形,可根据时钟得出结论.【详解】解:根据题意可知,需要分三种情况,如下图所示:当OP AB ∥时,如图2(1),此时对应的时间为1:00或7:00;当OP AC 时,如图2(2),此时对应的时间为5:00或11:00;当OP BC ∥时,如图2(3),此时对应的时间为3:00或9:00;故选:D .【点睛】本题主要考查分类讨论思想,对于时钟的认识,找到每种情况是解题关键.11.10/十【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n 边形,根据题意得:()2180144n n -⨯︒÷=︒,解得:10n =.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.12.2a .【分析】同底数幂相除,底数不变,指数相减【详解】解:原式=312a a -=.故答案为2a .13.27【分析】根据完全平方公式变形可得222()2a b a b ab +=+-,代入求解即可.【详解】222()2a b a b ab +=+- ,7a b +=,11ab =,2227211492227a b ∴+=-⨯=-=,故答案为:27.【点睛】本题考查了完全平方公式的运用,代入求值,熟练掌握知识点是解题的关键.14.80【分析】根据平行线的判定与性质及角平分线的定义进行解答即可.【详解】解:∵180ABC C ∠+∠=︒,∴AB DC ,∴∠ABD =50D ∠=︒,∵BD 平分ABC ∠,∴2100ABC ABD ∠=∠=︒,∴18010080C ∠=︒-︒=︒.故答案为:80.【点睛】本题考查平行线的判定与性质,角平分线的定义,解题关键掌握平行线的判定与性质定理.15.10【分析】根据整式的乘法即可化简求出m ,n ,即可求解.【详解】∵(x +3)(x +n )=x 2+nx +3x +3n =x 2+mx ﹣15∴n +3=m ,3n =-15,∴m =-2,n =-5∴mn =10.故答案为∶10(2)由(1)可得''A B C S '= 当Q 在C '左边时,由点A '、B '、C '、Q 四点围成的四边形的面积为由122B C Q S C Q '''=⨯⨯△可得当Q 在C '右边时,由点A '、B '、C '、Q 四点围成的四边形的面积为由142C QA S C Q '''=⨯⨯△可得【点睛】此题考查了平移作图,三角形面积的求解,解题的关键是掌握平移的性质,正确求得对应三角形的面积.24.(1)10a b+(2)①1005625⨯⨯+;②100(3)证明见解析【分析】(1)参照阅读材料中的表示方法即可得;(2)①观察等式的规律:由此即可得;②5a 表示的一个两位数,这个两位数的十位上的数字为等式的规律即可得;(3)根据()225105a a =+,先利用完全平方公式进行计算,再利用单项式乘以多项式法则②分两种情况讨论:如图2,当点G 在点F 的右侧时,证明:AB CD ∥ ,答案第15页,共15页证明:AB CD ∥ ,AEG EGF β∴∠=∠=,又EH 平分FEG ∠,EM 平分∠12HEF FEG ∴∠=∠,12MEF AEF ∠=∠。

专题23 圆(解析版)

专题23 圆(解析版)
(2) ∵ BE是⊙ 的直径,
∴ ∠ECB = 90∘,
̂ =
̂

∴ ∠AEC = ∠BEA,
∵ ∠BEA = ∠,
∴ ∠ = ∠AEB = ∠AEC
∵ ∠ + ∠AEB + ∠AEC = 180∘ ,
∴ ∠ = ∠AEB = ∠AEC = 30∘ ,
∵ EC = 3,
∴ EB = 2EC = 6,
由已知条件无法得出∠C=∠D,故 C 选项错误,
故选 C.
2.
(2018·北京中考模拟)有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的
说法有(
A.1 种

B.2 种
C.3 种
D.4 种
【答案】B
【详解】
圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
【答案】C
【详解】
(1)一个三角形只有一个外接圆,正确;
(2)圆既是轴对称图形,又是中心对称图形,正确;
(3)在同圆中,相等的圆心角所对的弧相等,正确;
(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;
故选:C.
4.
(2018·湖北中考模拟)有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的
弧相等;④圆中 90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有(
A.1 个
B.2 个
C.3 个

D.4 个
【答案】B
【解析】试题解析:
同圆或等圆中,能够相互重合的弧叫等弧,所以长度相等,故正确;
连接圆上任意两点的线段叫做弦,所以直径是最长的弦,故正确;

江苏省苏州市苏州高新区实验初级中学2023-2024学年八年级上学期12月月考数学试题

江苏省苏州市苏州高新区实验初级中学2023-2024学年八年级上学期12月月考数学试题

江苏省苏州市苏州高新区实验初级中学2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....24y y6A.50︒中,6.如图,在ABCEF=,则AC的长是(3A .3B .47.如图,在平面直角坐标系中,接AB ,将线段AB 先向上平移论:①3CD =;②OBA OCD ∠+∠标为()0,3或()0,5-;④若P 点不在直线四边形ABDC 面积为z ,则x A .①②④B .①③④8.如图,在ABC 中,ACB ∠DE 的对称点分别是G ,F ,若A .3632-B .326-二、填空题9.近似数42.810⨯精确到位.10.已知分式3x n x m++,当3x =时,分式的值不存在:当15.如图,四边形ABCD 中,=60B ∠到线段DE ,过点E 作EF BC ⊥,垂足为16.如图,在ABC 中,90C ∠=︒,∠与点A 重合),AED △为等边三角形,过点接EF ,G 为EF 的中点,连接BG ,则(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠23.如图,在平面直角坐标系中,(1)在图中作出ABC 关于x 轴的对称图形(2)ABC 的面积=______;(3)点(),2P a a -与点Q 关于x 轴对称,若24.如图,函数23y x =-+与12y =-(,2)P n -.(1)m =______,n =______;(2)直接写出不等式1232x m x -+>-+的解集;(3)若点C 在x 轴上,且满足13BCP S S =△△25.学校需要添置教师办公桌椅A B 、两型共共需2000元,1套A 型桌椅和3套B 型桌椅共需(1)求A ,B 两型桌椅的单价;(2)若需要A 型桌椅不少于120套,B 型桌椅不少于元.求出总费用最少的购置方案.26.我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图△ABC 中,AB =AC ,AB BC的值为△ABC 已知:在△ABC 中,AB =AC ,若D 是△(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△保留作图痕迹;若△ACD的正度是22,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为35,△ABC使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.27.如图1,直线AB与x轴、y轴分别交于点()1,0A和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州高新区实验初级中学(新实初中)数学圆几何综合(篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.【答案】(1)见解析;(2)∠ADF=45°;(3)18105.【解析】【分析】(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】解:(1)证明:∵DE⊥AB∴∠BED=90°∴∠A+∠ADE=90°∵∠ADC=90°∴∠GDF+∠ADE=90°∴∠A=∠GDF∵BD BD∴∠A =∠GFD∴∠GDF =∠GFD∴GD =GF(2)连接OD 、OF∵OD =OF ,GD =GF∴OG ⊥DF ,PD =PF在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS )∴∠FBP =∠DHP =90°∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90°∴∠GDF =∠DFG =45°∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12∴PH =PB =6∵∠HDP =∠HPD =45°∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD =∵∠BFE =∠EBF =45°∴EF =BE∵∠DAE =∠ADE =45°∴DE =AE∴DF =AB =∵四边形ABCD 内接于⊙O∴∠DAB +∠BCD =180°∴∠BCD =135°∴∠BCG =45°=∠CBG∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP∴△GCP ≌△GBP (SAS )∴∠PCG =∠PBG =90°∴∠PCD =∠CDH =∠DHP =90°∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90° 令CN =m ,则PN =6﹣m ,MN =m +3在Rt △PMN 中,∵PM 2+PN 2=MN 2∴32+(6﹣m )2=(m +3)2,解得m =2∴PN =4过点N 作NS ⊥DP 于S ,在Rt △PSN 中,PS =SN =22DS =62﹣22=42SN 221tan DS 242SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12∴AQ =18﹣12=6∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O ,∴∠DAF +∠DKF =180°∴∠DAF =180°﹣∠DKF =∠FKR在Rt △DFR 中,∵DF =1122,tan 2FDR ∠= ∴12102410,55FR DR == 在Rt △FKR 中,∵FR =1210 tan ∠FKR =2 ∴KR =610 ∴DK =DR ﹣KR =24106101810=-= .【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.2.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH-DH+DB=12,DB=t,∴-+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.3.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=22,∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42,CP=222-,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.4.已知:在△ABC 中,AB=6,BC=8,AC=10,O 为AB 边上的一点,以O 为圆心,OA 长为半径作圆交AC 于D 点,过D 作⊙O 的切线交BC 于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.5.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.6.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.7.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;试题解析:(1)∵C(0,8),D(-4,0),∴OC=8,OD=4,设OB=a,则BC=8-a,由折叠的性质可得:BD=BC=8-a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8-a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB=34OBOD=,在Rt△AOC中,∠AOC=90°,tan∠ACB=34OAOC=,则OA=6,则A(6,0),设直线AB的解析式为:y=kx+b,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12 AQ=5t, 即d=5t;(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,∴四边形NTOS 是正方形, 则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ;若点N 在第一象限,设N (N ,N ), 可得:132n n =-+ , 解得:n=2, 故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t=85,或815,时,QR=EF,N(-6,6)或(2,2)。

相关文档
最新文档