氦氖激光器与谐振腔

合集下载

激光器件与技术简答题

激光器件与技术简答题

一.He-Ne激光器1.谱线竞争的原因:具有相同上能级或者相同下能级的谱线之间,当产生辐射跃迁时,对公有能级的粒子数发生影响,存在相互作用,这就是谱线竞争。

2.如何抑制3.39μm?①.谐振腔的作用:对于较短的氦氖激光器,靠谐振腔的选择性来抑制3.39μm谱线,谐振腔采用对632.8nm高反射率的多层介质膜,使谐振腔对632.8nm有高的增益,而对3.39μm经反射镜反射后损耗很大,单程增益很低,使之不能振荡,只产生632.8nm的谱线输出。

②.谐振腔中加色散元件:在谐振腔一个反射镜和布儒斯特窗之间放置一块三棱镜,由于棱镜对632.8nm和3.39μm的折射率不同,通过棱镜后就有不同的偏向角,调整谐振腔的位置,使得3.39μm的辐射偏离出腔外,只让632.8nm在腔内振荡。

③.甲烷吸收法:甲烷(CH4)气体对 3.39μm处有强烈吸收,而对832.8nm是完全透明的。

④.外加轴向非均匀磁场:非均匀磁场引起的增宽对632.8影响不大,对3.39μm影响很大。

由于增益与线宽成反比,所以非均匀磁场造成的谱线加宽使3.39μm的增益明显下降,而632.8nm变化不大,因此大大提高了它对3.39μm的竞争能力,使632.8nm的增益增大。

二、二氧化碳(CO2)激光器1.P支和R支:二氧化碳激光器的跃迁发生在振动能级(0001)—(1000)和(0001)—(0200)之间。

从一个振动能级到另一个振动能级跃迁时,也可能同时发生转动量子数的变化,对二氧化碳分子的激光跃迁,其选择定则为:1∆,,1-=0±=∆J的跃迁称为R∆J的跃迁称为P支,1+=支,0∆J的跃迁称为Q支,在二氧化碳分子中,Q支是不存在的。

=P支较R支先振荡的原因:由于P支跃迁的上能级的统计权重(2J+1)比下能级的(2J+1)要小,而R支跃迁的上能级的统计权重(2J+3)比下能级(2J+1)要大,这就使P支的跃迁比R支的跃迁容易建立起粒子数的反转分布,又由于P支的跃迁几率比R支大,因而P支的激光振荡就比较容易实现。

氦氖激光器与谐振腔

氦氖激光器与谐振腔

氮氛激光器与激光谐振腔电子科学与技术实验室激光器是一种利用物质的受激辐射现象来工作的光学器件,受激辐射最早是由爱因斯坦于1917年提出的,其基本意思为:当物质与光波相互作用时,将产生受澈辐射现象,有可能将物质中的一定能量加到入射的光波中去,其结果是光披的能量获得了放大。

如果光波在物质中传播时损耗足够的小,并同时引入适当的正反馈,就可以构成一个光学振荡器-激光器,就象我们在电学中使用的自澈振荡电路一样。

激光器的物理基础是光的受激辐射放大,激光的英文单词laser就是来自于light amplification by stimulHted cm i xs ion of rad i at iond 中的头几个字母。

光与物质的相互作用主要可以归结为三个方面:吸收、自发辐射和受激辐射。

1.受激吸收:吸收是激光工作物质从外界吸收能量的过程,在这里我们关心一种特殊的吸收过程-受激吸收。

受激吸收是一种与后面将要介绍的受激辐射相反的过程,既一个外界光子将使一个处于低能级原的粒子跃迁到一个较高能级E2上,且外来光子的频率u与粒子能级差E2-E1有如下关系:0 = (E2-E1) /h其中h为普朗克常数。

2・自发辐射:在没有外界干扰的情况下,处于高能级的粒子,可以自发地向低能级跃迁,同吋发射一个光子,这个光子的频率一般由下式决定:u - (Em-En) /hEnrEn为发生跃迁的上下能级能量差。

自发辐射过程与外界相互作用无关,各个原子的辐射都是自发的、随即的、独立的进行,因而各个粒子发出的光子的发射方向、偏振态和相位是不同的,随机的。

自发辐射是一种非相干光辐射。

3・受傲辐射:当存在外来光子时,光子与粒子相互作用,当外来光子的频率u正好满足o = (E2-E I) /h条件时,则处于E2能级的粒子就会输射出•个同频光子,井跃迁到□能级。

而且,这个被诱发的光子与外來光了可能还会有相同的相位、偏振态和传播方向•受激辐射是一种相干辐射。

氦氖激光器模式分析

氦氖激光器模式分析

模式分析1.氦-氖(He-Ne)激光器简介氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。

二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。

由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。

如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。

内腔式激光器的腔镜封装在激光管两端。

二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。

在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。

这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。

因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。

这就产生了激光必须具备的基本条件。

在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。

因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。

3.He-Ne激光器结构及谐振腔He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。

激光管由放电管、电极和光学谐振腔组成。

放电管是氦一氖激光器的心脏,它是产生激光的地方。

放电管通常由毛细管和贮气室构成。

放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。

贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。

He-Ne激光器与激光谐振腔

He-Ne激光器与激光谐振腔

He-Ne激光器与激光谐振腔一.实验目的通过实验,掌握激光调谐的原理和技巧,验证谐振腔理论和有关增益的概念,全面、深入的了解激光器的结构、特性、工作条件和相关理论。

二.实验仪器1.光学实验导轨:1000毫米一根2.准直光源:二维可调半导体激光器,650纳米3.5mW 一个3.小孔光栏屏一个4.激光管调整架:由两个二维调整架组成,可完成4个自由度的调整。

一个5.半内腔氦氖激光管:波长633nm,最大输出功率≥2mW(硬封长寿命管)一个6.激光电源:稳流,电流可调,范围4.5-8毫安一个7.二维反射镜架:精密细牙调整螺钉(含硬膜半反射镜)。

一付8.二维可调扩束镜一付9.激光功率指示计:3位半数子表头,测量范围:200微瓦、2、20、200毫瓦、可调档,含半导体激光电源。

一套10.显示屏:80毫米×100毫米一块三.实验原理1、半导体发光原理a.我们知道,白炽灯是把被加热钨原子的一部分热激励能转变成光能,发出宽度为1 000 nm 以上的白色连续光谱。

b.发光二极管(LED)却是通过电子在能带之间的跃迁,发出频谱宽度在几百 nm 以下的光。

c.在构成半导体晶体的原子内部,存在着不同的能带。

如果占据高能带(导带)的电子跃迁到低能带(价带)上,就将其间的能量差(禁带能量)以光的形式放出。

这时发出的光,其波长基本上由能带差所决定。

光的自发辐射、受激发射和吸收补充知识与举例:1)自发辐射---LED工作原理a.如果把电流注入到半导体中的P-N结上,则原子中占据低能带的电子被激励到高能带后;射b.当电子从高能带跃迁到低能带时,将自发辐射出一个光子,其能量为 hv。

c.电子从高能带跃迁到低能带把电能转变成光能的器件叫 LED。

e.当电子返回低能级时,它们各自独立地分别发射一个一个的光子。

因此,这些光波可以有不同的相位和不同的偏振方向,它们可以向各自方向传播。

f.同时,高能带上的电子可能处于不同的能级,它们自发辐射到低能带的不同能级上,因而使发射光子的能量有一定的差别,使这些光波的波长并不完全一样。

10.21 He-Ne激光器实验

10.21 He-Ne激光器实验

实验报告课程名称: 指导老师: 成绩:__________________ 实验名称: He-Ne 激光器与激光谐振腔 同组学生姓名一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求本套实验装置的核心He-Ne 激光器,采用的是一种半内腔结构,激光器的一个全反射镜与毛细管、储气套等做成一体,并在出厂前将全反射镜与毛细管调至垂直。

而另一个半反射镜则被安装在一个精密二维调整架上,可灵活移动。

通过一准直光源调整激光管和半反射镜,使之产生激光。

用激光功率计检测这束激光并进一步调整膜片使之达到最佳状态(功率最大)。

观察光斑大小和光强分布。

用扫描干涉仪观察其纵膜的频谱分布情况。

调整工作电流,观察输出功率的变化。

重复移动半反射镜并重新使之达到最佳状态,观察光斑大小和分布变化,记录功率,用干涉仪观察纵膜,比较前后变化,分析腔长对功率、纵膜、横膜、发散角、束腰、腔型的影响。

在激光管与半反射镜之间插入一可调损耗,使之与增益刚好达到平衡,通过对损耗的测量,求得 激光管的增益。

通过实验,掌握激光调谐的原理和技巧,验证谐振腔理论和有关增益的概念,全面、深入地了解激光器的结构、特性、工作条件和相关理论。

二、 实验内容和原理1.改变工作电流,观察电流与输出功率的关系。

(在超过5mA 的大电流时,工作时间不可过长。

) 2.腔长与激光功率、横模、纵模、束腰、发散角的关系1)设备调试完成后,用功率计测量其最大功率。

用显示屏在全反射端一定距离处(2-3米)观察光斑的大小和形状,光斑的大小反应了发散角的大小,光斑的形状即为激光的横模。

观察半反射镜上的光斑(束腰)大小。

在半反射镜端装上F-P 扫描干涉仪探头,观察纵模情况。

装订线专业: 姓名: 学号:日期: 10.21 地点:2)松开反射镜架滑块上的螺钉,移动反射镜,在适当位置上重新锁紧,以改变谐振腔的腔长和腔型。

氦氖激光器的配气及特性研究-中山大学物理学院2016

氦氖激光器的配气及特性研究-中山大学物理学院2016

N 1 n1
本实验中:K=12.26+0.06, N V2 / V1 =1.19+0.003。
二、实验仪器
He-Ne 气体激光管充排气真空系统、光功率计(最小量程 10mV、最小刻度 0.2mV) 、阴 极电离真空计、硅油 U 型压强计 He-Ne 气体激光器真空系统简介
图 2、He-Ne 气体激光器真空系统示意图
'
P ,其分压强应为 PHe 和 PNe 。根据波义耳—马略特定律,当气体纯度不变时,混合前气体
2/7
物理学院
ቤተ መጻሕፍቲ ባይዱ
近代物理实验 I
的压强和体积的乘积应等于混合后气体的压强和体积的乘积,即有如下关系式:
' N 1 PHe V2 PHe (V1 V2 ) ' 解以上方程组得: PHe nP ' N (n 1) PNe V1 PNe (V1 V2 )
三、实验步骤
l.关闭 l 阀,开机械泵,转动 2 阀通扩散泵,五分钟后开扩散泵加热电炉及冷却水龙 头,20 分钟后开 3 阀.开真空计,测量系统真空度 103 Pa 时,开 10 阀。 2.计算 PHe 和 PNe ,注意它们的单位换算关系,由于实验时间限制,只做气压比 n=7; 总压力 P=4Torr;3.5 Torr;3 Torr;2.5 Torr;2 Torr。 3. 充氦气前, 5 应关闭, 开 4 将 4, 5 之间的空气抽调, 然后关 4, 待系统真空度 103 Pa 时,关真空计,按以下步骤充气。 4.充氦,关 3 阀,开 5 关 5;开 4 关 4;开 5 关 5;开 4 关 4,反复进行,同时观测 油柱高度,在 (V1 V2 ) 体积内充入氦气的压强为计算值 PHe 。 5.关 10 开 3,将 V1 中的氦气慢慢抽调,反复充氖气前,7 应关闭,开 6 将 6,7 之 间的空气抽调,开真空计,待系统真空度 103 Pa 时,关真空计,关 6。开激光电源。 6.充氖:关阀门 3,在 V1 体积中充入氖气,开 7 关 7;开 6 关 6,同时观测油柱高 度,在 V1 体积内充入氖气的压强为计算值 PNe 。 7.开 10 阀使 V1 中的氖气与 V2 里的氦气充分混合,待 10 分钟后,调节激光管的放 电电流,观察激光功率的变化规律。 8.利用减压阀 9 减少 P (每次约减 0.5 Torr 至 1.5 Torr),列表记下实际的 P、Pw、I。 测出当 n=7, P=1.5 托,2 托,2.5 托, 3 托,4 托,5 托时的激光输出功率及最佳放电电流值。 9.待老师检查数据后,做关机的准备,按一定的程序关机。 A)先关活塞 13 和活塞 10,然后关闭活塞 3,导通活塞 8。 B)切断扩散泵加热电炉的电源,待油冷却后,关闭活塞 2 和冷却永, C)切断机械泵电源,打开活塞 1,使大气进入机械泵内。

He-Ne激光器谐振腔调整和激光特性的测量

He-Ne激光器谐振腔调整和激光特性的测量

实验一:He-Ne 激光器谐振腔调整和激光特性的测量一、实验目的:1.了解He-Ne 激光器的构造。

2. 观察并测量He-Ne 激光器的功率、发散角等特性参数。

3. 调整谐振腔一端的反射镜,观察谐振腔改变后He-Ne 激光器性能参数的变化。

4. 了解外腔He-Ne 激光器的偏振态。

5. 通过光栅方程来验证He-Ne 激光的波长。

二、实验内容:1. He-Ne 激光器发散角测量由于远场发散角实际是以光斑尺寸为轨迹的两条双曲线的渐近线间的夹角,所以我们应延长光路以保证其精确度,此时需要在前方放置反射镜。

可以证明当距离大于λωπ207时所测的全发散角与理论上的远场发散角相比误差仅在1%以内。

(1)确定和调整激光束的出射方向,放置一个反射镜来延长光路。

(2)在光源前方L1处用光功率计检测,在与光轴垂直的某方向延正负轴测量并绘出光功率/位移曲线。

(3)由于光功率/位移曲线是高斯分布的,定义Pmax/e2为光斑边界,测量出L1位置的光斑直径D1。

(4)在后方L2处用光功率计同样测绘光强/位移曲线,并算出光斑直径D2。

(5)由于发散角度较小,可做近似计算,θ2=D2-D1/L2-L1,便可以算出全发散角2θ。

2 .利用光栅方程验证波长。

He-Ne 激光器的波长是623.8nm, 通过光栅方程可以验证激光器的波长值。

观察衍射图样,统计出衍射级数j 。

根据三角公式,计算出衍射角θ。

由于光栅常数d 已知,根据光栅方程可以计算出激光波长。

),2,1,0(sin ±±==j j d λθ1. 观察He-Ne 外腔激光器模型,了解各部分构造及工作原理。

He-Ne 激光器的组成包括有:共振腔(由放电毛细管和反射镜组成)、工作物质(有氦氖气体按一定比例组成)、放电电源(通常多采用直流高压电源)。

当氦氖激光器的电极上加上几千伏的直流高压后,管内就产生辉光发电,对工作物质进行激励从而引起受激辐射,经共振腔进行光放大以后,即产生激光输出。

100312 实验一 He-Ne激光器与激光谐振腔

100312 实验一 He-Ne激光器与激光谐振腔

He-Ne激光器与激光谐振腔实验指导书浙江大学光电系特别提示!!!1.He-Ne激光器的阳带有几千伏的高压,请注意安全!!!2.激光管为玻璃结构,易碎,特别是布氏窗结构,由多种玻璃构成,应避免受力和碰撞。

激光膜片是非常易损的光学元件,应绝对避免人手的触摸和剐蹭,必要的清洁请使用专用长丝棉或脱脂棉结合干净的乙醚或丙酮轻轻擦拭。

一.实验内容与目的本套实验装置的核心He-Ne激光器,采用的是一种半内腔结构,激光器的一个全反射镜与毛细管、储气套等做成一体,并在出厂前将全反射镜与毛细管调至垂直。

而另一个半反射镜则被安装在一个精密二维调整架上,可灵活移动。

通过一准直光源调整激光管和半反射镜,使之产生激光。

用激光功率计检测这束激光并进一步调整膜片使之达到最佳状态(功率最大)。

观察光斑大小和光强分布。

用扫描干涉仪观察其纵膜的频谱分布情况。

调整工作电流,观察输出功率的变化。

重复移动半反射镜并重新使之达到最佳状态,观察光斑大小和分布变化,记录功率,用干涉仪观察纵膜,比较前后变化,分析腔长对功率、纵膜、横膜、发散角、束腰、腔型的影响。

在激光管与半反射镜之间插入一可调损耗,使之与增益刚好达到平衡,通过对损耗的测量,求得激光管的增益。

通过实验,掌握激光调谐的原理和技巧,验证谐振腔理论和有关增益的概念,全面、深入地了解激光器的结构、特性、工作条件和相关理论。

二.实验设备光学导轨、准直光源(650nm 3.5mW半导体激光器),二维可调架,小孔光栏屏,激光管调整架(由两个二维调整架组成,可完成4个自由度的调整),半内腔氦氖激光管:波长6328nm,最大输出功率≥2mW,激光电源:稳流,电流可调,范围4.5-8毫安二维反射镜架:精密细牙调整螺钉(含硬膜半反射镜)二维可调扩束镜:激光功率计:3-1/2位数字表头,测量范围:200微瓦、2、20、200毫瓦、可调档, 含半导体激光电源。

显示屏:80毫米×100毫米增益测量组件:三维可调扫描干涉仪示波器三.实验装置的设置1)将导轨放置在稳定的平台上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档