低氮氧化物分级燃烧技术

合集下载

低NOx排放技术

低NOx排放技术

燃烧中脱硫是指在煤燃 烧过程中加入脱硫剂与 生成的二氧化硫反应从 而将其除去。主要有流 化床燃烧脱硫和炉内喷 钙脱硫两种方法。
燃烧中脱硝也就是低 NOX燃烧技术,主要是 是通过控制燃烧条件 (如减少燃料周围氧浓 度、降低燃烧温度峰值 等)来减少NOX的生成。 主要通过低氧燃烧、空 气分级燃烧、燃料分级 燃烧等。
如图:一次燃烧区是 氧化性气氛;在第 二燃烧区,将二次 燃料送入还原性气 氛,生成碳氢化合 物基团,这些基团 与一次燃烧区内生 成的NO反应,最终 生成N2,这个区域 通常称为再燃烧 区。;最后再送入 二次风,使燃料完 全燃烧,称为燃尽 区。
四、浓淡偏差燃烧技术
浓淡偏差燃烧技术的原理是依据NOX对过量空 气系数α的依赖关系,使部分燃料在空气不足 条件下燃烧,即燃料过浓燃烧;另一部分燃料 在空气过剩下燃烧,即燃料过淡燃烧。燃料过 浓部分因氧气不足,燃烧温度不高,所以燃料 型NOX和热力型NOX都很低。燃料过淡部分,因 空气量很大,燃烧温度降低,使热力型NOX降 低。该方法比较简单,NOX能明显降低。
六、低NONOX 绝大部分的燃料型NOX是在煤粉 的着火阶段生成。因此通过特 殊设计的燃烧器结构,以及通 过改变燃烧器的风煤比例,可 将空气分级,燃料分级和烟气 再循环降低NOX的原理用于燃烧 器,以尽可能降低着火区氧气 的浓度,适当降低着火温度, 达到最大可能抑制NOX的目的。 这样的燃烧器就是低NOX燃烧器。 如图
• 目前在我国应用较广的烟气脱硝技术是选 择性非催化还原法(SNCR),因为SNCR工 艺结构简单、造价便宜流程空气阻力也较 小,虽然SNCR脱硝效率(一般为30-70%) 和SCR脱硝效率(一般为80-90%)相比还 较低,但是目前我国对NOX的排放要求没有 发达国家那么低,且SCR技术要求及造价都 很高,因此SCR在欧美等国家应用普遍,在 我国仅北京,江苏等地有所应用。

低NOx燃烧技术原理及其技术性能分析

低NOx燃烧技术原理及其技术性能分析

低 NOx 燃烧技术原理及其技术性能分析摘要:简要介绍了燃煤电厂NOx产生机理以及目前主流的低NOx燃烧技术原理。

关键词:低NOx燃烧技术;燃烧调整;锅炉燃烧效率;1低NOx燃烧技术原理及技术性能分析1.1空气分级燃烧空气分级燃烧技术(Air Staging)最早是在美国发展起来的,是目前国内外普遍应用,比较成熟的低NOx燃烧技术。

其基本原理是将燃烧所需空气分成两级送入,一级送入过量空气系数小于1,对于燃煤锅炉一般为理论空气量的70%~75%。

其余空气经由布置在燃烧器上游的专门空气喷口OFA(Over Fire Air)送入炉膛继续完成燃烧。

人为地形成准双区燃烧,即主燃烧区和燃烧完全区[6]。

主燃烧区内由于缺氧使燃烧处于“富燃料燃烧(贫氧燃烧)”状态,燃烧速度和温度降低,抑制了热力型NOx的生成。

此外,燃烧过程中生成的CO、NO、以及燃料中氮分解产生的CO、NO、HCN和NH等化合物相互复合作用同样也抑制了3燃料型NOx的生成。

燃烧完全区内燃烧所需其余空气以二次空气输入,调整过量空气系数(过量空气系数大于1)使未燃尽燃料燃烧完全。

此时虽然送入空气量较多,同样会使一些中间产物被氧化成NO,但由于空气分级技术此时反应区已由温度高的主燃烧区转移到温度低的燃烧完全区,抑制了燃料型NOx的生成。

采用空气分级燃烧技术后可使NOx排放量降低30%~60%。

尽管空气分级燃烧弥补了简单的降低过量空气系数燃烧所导致的燃料未完全燃烧损失和飞灰含碳量增加的缺点,但是,若主燃烧区,燃烧完全区两级空气比例分配不合理,或者燃烧混合条件不好,则会增加不完全燃烧带来的损失。

同时,主燃烧区的还原性气氛将导致灰熔点降低从而引起锅炉结渣和受热面腐蚀。

1.2燃料分级燃烧燃料分级燃烧通常采用的形式是燃料再燃烧技术,将燃烧过程设在三个区(主燃区、再燃区和燃尽区)进行,也称为三级燃烧技术,如图2-3所示。

其所依据原理为主燃区形成的NOx会在次燃烧区和烃根CHi、未完全燃烧产物(CO、C、。

低氮氧化物燃烧技术

低氮氧化物燃烧技术

低氮氧化物燃烧技术:低氧燃烧技术,降低助燃空气预热温度,烟气循环燃烧,分段燃烧技术,再燃技术,浓淡燃烧技术。

选择性催化还原法脱硝:主要以氨做还原剂,通常催化剂安装在独立的反应器内,反应器位于省煤器之后,或者空气预热器之前。

4NH3+4NO+O2--4N2+6H2O 8NH3+6NO2--7N2+12H2O
选择性非催化还原法:尿素或氨基化合物注入烟气作为还原剂将NOX还原为N2。

4NH3+6NO--5N2+6H2O CO(NH2)2+2NO+0.5O2--2N2+CO2+2H2O
燃烧法控制VOCS污染,燃烧工艺:直接燃烧,热力燃烧,催化燃烧
生物法控制VOCS污染:是附着在滤料介质中的微生物在适宜的环境条件下,利用废气中的有机成分作为碳源和能源,维持其生命活动,并将有机物同化为CO2.H2O和细胞质的过程。

VOCS从气相传递到液相,VOCS从液相扩散到生物膜表面,VOCS在生物膜内部的扩散,生物膜内的降解反应,代谢产物排出生物膜。

生物洗涤塔:悬浮生长,连续相。

经有机物驯化的循环液有洗涤塔顶部布液装置喷淋而下,与沿塔而上的气相主体逆流接触,使气相中的有机物和氧气转入液相,进入再生器,被微生物氧化分解,得以降解。

生物滴滤塔:附着生长,非连续相。

VOCS气体由塔底进入,在流动过程中与已接种挂膜的生物滤料接触而被净化。

生物过滤塔:附着生长,非连续相。

VOCS由塔顶进入过滤塔,在流动过程中与已接种挂膜的生物滤料接触而被净化,净化后的气体由塔底排出。

集气罩的基本形式:密闭罩,排气柜,外部集气罩,接受式集气罩。

低氮燃烧原理

低氮燃烧原理

低氮燃烧原理
低氮燃烧是一种减少燃烧产生的氮氧化物排放的技术,其原理主要包括三个方面:燃烧温度控制、空气分级燃烧和煤粉喷嘴调节。

首先,低氮燃烧通过控制燃烧温度来减少氮氧化物的生成。

燃烧温度是氮氧化物生成的主要因素之一,高温会导致燃烧气体中氮和氧的反应增强,产生更多的氮氧化物。

因此,降低燃烧温度可以有效减少氮氧化物的生成。

具体的控制方法包括调整燃料供给量、优化燃烧器结构和使用高效的燃烧调控技术等。

其次,低氮燃烧还采用了空气分级燃烧的技术。

在传统的燃烧方式中,燃烧过程中空气和燃料混合均匀,导致燃烧温度偏高,容易产生大量的氮氧化物。

而空气分级燃烧将燃料的氧化过程分成多个阶段,逐渐加入不同含氧量的空气,使燃烧过程更加充分,燃烧温度得到有效控制,从而减少氮氧化物的生成。

最后,低氮燃烧还通过调节煤粉喷嘴的结构和参数来实现氮氧化物的减排。

煤粉喷嘴是将煤粉喷入燃烧器内进行燃烧的重要设备,其结构和参数的合理设计可以影响燃烧过程中的气流和煤粉的混合情况。

通过优化煤粉喷嘴的设计,可以进一步改善燃烧效果,减少氮氧化物的生成。

综上所述,低氮燃烧通过控制燃烧温度、采用空气分级燃烧技术和优化煤粉喷嘴设计等方式,实现减少氮氧化物排放的目的。

这种技术在工业生产和能源利用领域具有重要的应用价值,能够有效改善大气环境质量,降低空气污染的程度。

低氮燃烧技术

低氮燃烧技术

低NOx燃烧技术简介一概述:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。

在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

二低NOx燃烧技术方法:1、空气分级燃烧空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。

在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。

2、燃料分级燃烧燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。

把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。

3、烟气再循环燃烧烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx 的排放。

将部分低温烟气直接送入炉内或与空气一次风或与二次风混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx。

三低NOx燃烧器根据上述低NOx燃烧技术,我公司引进开发出以下型号的低NOx燃烧器:1、HDRB型低NOx燃烧器;2、HHT-NR型低NOx燃烧器;3、HXCL型低NOx燃烧器;4、HWS型低NOx燃烧器;5、HDS型低NOx燃烧器;6、HSM型低NOx燃烧器;7、 HPM型低NOx燃烧器。

工业锅炉常用低氮燃烧技术解决方案

工业锅炉常用低氮燃烧技术解决方案

工业锅炉常用低氮燃烧技术解决方案
工业锅炉常用的低氮燃烧技术解决方案主要包括以下几种:
1. 空气分级燃烧:这种技术通过将空气分级为一次空气和二次空气,一次空气在预混区与燃料混合,二次空气在燃烧后期与燃料混合。

这种方式可降低炉膛温度,从而减少氮氧化物的生成。

2. 燃料分级燃烧:这种技术使用低氮氧化物产生能力的燃料,如生物质锅炉,或者使用催化剂促进氮氧化物的还原反应。

3. 低氧燃烧技术:这种方式可以减少氮氧化物的生成量,但需要注意氧浓度过低会导致碳不完全燃烧产生,可能导致有毒气体排放超标。

4. 烟气再循环技术:这种技术将一部分高温烟气回流到燃烧器,可以降低炉膛温度,从而减少氮氧化物的生成。

5. 燃料与空气预混合燃烧:采用这种技术可以减少燃烧过程中空气的总体需求量,同时燃料和空气的预先混合有助于控制火焰的传播,从而减少氮氧化物的生成。

6. 选择合适的锅炉类型:对于特定的工业应用,选择低氮锅炉或生物质锅炉等可以降低氮氧化物排放的设备,也是一种可行的低氮燃烧技术解决方案。

以上解决方案需要根据你的具体需求和锅炉的实际情况来选择和实施。

同时,低氮燃烧技术并不能完全消除氮氧化物的生成,还需要其他措施如改进燃烧设计、优化运行管理等来进一步降低氮氧化物的排放。

在实施这些技术时,应遵循相关环保法规,确保排放达标。

低氮燃烧烟气循环比率

低氮燃烧烟气循环比率

低氮燃烧烟气循环比率一、低氮燃烧技术低氮燃烧技术是一种能够减少氮氧化物排放的燃烧技术。

在燃煤过程中,通过控制燃烧条件和反应温度等参数,可以减少氮氧化物的生成和排放。

低氮燃烧技术主要包括以下几种:1.空气分级燃烧技术:通过将燃料与空气的接触方式进行改变,降低燃烧区的氧含量,从而使燃烧温度降低,减少氮氧化物的生成和排放。

2.燃料分级燃烧技术:将燃料分为多段进行燃烧,减少初始燃烧区的燃料含量,从而降低燃烧温度和氮氧化物的生成。

3.烟气再循环技术:将部分烟气回流到燃烧区域,降低氧含量和燃烧温度,从而减少氮氧化物的生成和排放。

二、烟气循环比率的计算烟气循环比率是烟气再循环技术中的重要参数,它表示回流的烟气量与总烟气量的比值。

烟气循环比率的计算公式为:循环比率 = (回流烟气量 / 总烟气量) × 100%在实际操作中,需要根据不同的燃烧条件和设备参数来确定烟气循环比率的具体数值。

三、烟气循环对NOx排放的影响烟气循环对NOx排放的影响主要体现在以下几个方面:1.降低燃烧温度:回流的烟气会降低燃烧区的温度,从而减少高温条件下NOx的生成和排放。

2.改变燃料和空气的混合方式:回流的烟气会改变燃料和空气的混合方式,从而影响NOx的生成和排放。

3.增加燃料在燃烧区的停留时间:回流的烟气会增加燃料在燃烧区的停留时间,从而增加燃料与空气的接触机会,减少NOx的生成和排放。

四、低氮燃烧技术的发展趋势随着环保要求的不断提高,低氮燃烧技术的研究和应用也越来越受到关注。

未来低氮燃烧技术的发展趋势主要包括以下几个方面:1.多种低氮燃烧技术的联合应用:将不同的低氮燃烧技术进行组合应用,可以更好地降低NOx的排放。

2.增加烟气循环比率的控制精度:通过对烟气循环比率的精确控制,可以实现NOx排放的精确调控。

3.开发新型的低氮燃烧器:通过对燃烧器的优化设计,可以进一步降低NOx的排放。

五、结论低氮燃烧技术是减少氮氧化物排放的重要手段之一。

低氮氧化物燃烧技术

低氮氧化物燃烧技术

先进低氮氧化物燃烧技术
3、浓淡偏差型低NOx燃烧器 u 富粉流的空气量少,抑制燃料型NOx的生成 u 贫粉流因空气量多,燃料型NOx生成增多,但因温度低,热力
型NOx减少
先进低氮氧化物燃烧技术
4、空气/燃料分级的低NOx燃烧器 u 接近理论空燃比的空气和燃料
形成稳定的一次火焰 u 一次火焰区下游形成低氧还原
传统低氮氧化物燃烧技术
3、烟气循环燃烧 u 适合液态排渣炉、燃油和燃气锅炉
降低氧浓度和燃烧区温度-主要减少 热力型NOx
锅 炉


空气烟气
预 热
混合器

去引风机 送风机
再循环风机
传统低氮氧化物燃烧技术
3、烟气循环燃烧 u 不适于固态排渣炉
传统低氮氧化物燃烧技术
4、分段燃烧技术
u 第一段:氧气不足,烟气温度低,抑制燃料型和热力型
可能需要第二种燃料, 可能导致飞灰含碳量增加
低NOx燃烧器
与空气分级燃烧 合用时超过60%
适用于新的和改造的 锅炉,中等投资 有运行经验
结构比常规燃烧器复杂, 有可能引起炉膛结渣和腐蚀,
并降低燃烧效率
低氮氧化物燃烧技术
思考题 1. 控制燃烧过程中氮氧化物排放的主要因
素有哪些? 2. 燃料种类是否会显著影响燃烧过程产生
2 氧浓度:空气-燃料比
3 反应时间:燃料及燃烧产物在火焰 高温区和炉膛内的停留时间
4 后燃烧区的冷却程度
低氮氧化物燃烧技术概述
主要低NOx 燃烧技术
主要低NOx 燃烧技术
传统低NOx
燃烧技术
低氧燃烧
降低助燃空气预热温度
烟气循环燃烧
先进低NOx
燃烧技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低氮氧化物分级燃烧技术一、氮氧化物的危害及排放标准1.1、氮氧化物的危害在燃料的燃烧过程中,氮氧化物的生成是燃烧反应的一部份:燃烧生成的氮氧化物主要是NO和NO2,统称为NOx。

大气中的NOx溶于水后会生成为硝酸雨,酸雨会对环境带来广泛的危害,造成巨大的经济损失,如:腐蚀建筑物和工业设备;破坏露天的文物古迹;损坏植物叶面,导致森林死亡;使湖泊中鱼虾死亡;破坏土壤成分,使农作物减产甚至死亡;饮用酸化物造成的地下水,对人体有害。

同样的酸浓度下硝酸雨对树木和农作物的损害是硫酸雨的1倍。

NOx还对人的身体健康有直接损害,NOx浓度越大其毒性越强,因为它易于动物血液中的血色素结合,造成血液缺氧而引起中枢神经麻痹。

NOx经太阳紫外线照射与汽车尾气中的碳氢化合物同时存在时,能生成一种浅蓝色的有毒物质硝基化合物会形成光化学烟雾。

城市光化学烟雾是指含有碳氢化合物和氮氧化物等一次污染物的城市大气,由于阳光辐射则发生化学反应所产生的生成物与反应物的特殊混合雾。

光化学烟雾对人体有很大的刺激性和毒害作用。

它刺激人的眼、鼻、气管和肺等器官,产生眼红流泪、气喘咳嗽等症状,长期慢性危害使肺机能减退、支气管发炎,甚至发展成癌。

严重时可使人头晕胸痛,恶心呕吐,手足抽搐,血压下降,昏迷致死。

光化学烟雾可导致成千上万人受害或死亡,还可使植物褪掉绿色、改变颜色,造成叶伤、叶落、花落和果落,直到减产或绝收。

此外,还可使家畜发病率增高,使橡胶制品龟裂老化、腐蚀金属、损坏各种器物、材料和建筑物等。

由于城市里氮氧化物和烃类排放量较大以及特有的气候条件,所以容易形成光化学烟雾。

1.2、氮氧化物的排放标准2000年,我国氮氧化物排放量约为1177万吨,其中约63%源于燃煤。

按照目前的排放控制水平,到2020年我国氮氧化物排放量将达到2363一2914万吨,超过美国成为第一大氮氧化物排放国。

控制氮氧化物排放的问题已是刻不容缓。

2011年7月29日,国家环保总局发布新版《火电厂大气污染物排放标准》,以下简称“新标准”。

新标准适用于使用单台出力65t/h 以上除层燃炉、抛煤机炉外的燃煤发电锅炉;各种容量的煤粉发电锅炉;单台出力65t/h 以上燃油、燃气发电锅炉;各种容量的燃气轮机组的火电厂;单台出力65t/h 以上采用煤矸石、生物质、油页岩、石油焦等燃料的发电锅炉。

新标准中污染物排放控制要求:(1)自2014 年7 月 1 日起,现有火力发电锅炉及燃气轮机组执行表 1 规定的烟尘、二氧化硫、氮氧化物和烟气黑度排放限值。

(2)自2012 年 1 月 1 日起,新建火力发电锅炉及燃气轮机组执行表 1 规定的烟尘、二氧化硫、氮氧化物和烟气黑度排放限值。

表1:火力发电锅炉及燃气轮机组大气污染物排放浓度限值单位:mg/m3(烟气黑度除外)二、低NOx优化燃烧技术的分类及比较为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。

2.1、炉内脱氮炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NOx的生成,又称低NOx燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。

表2:2.2、尾部脱氮尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NOx排放。

烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。

催化还原法是在催化剂作用下,利用还原剂将NOx还原为无害的N2。

这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NOx效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。

液体吸收法是用水或者其他溶液吸收烟气中的NOx。

该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。

吸附法是用吸附剂对烟气中的NOx进行吸附,然后在一定条件下使被吸附的NOx脱附回收,同时吸附剂再生。

此法的NOx脱除率非常高,并且能回收利用。

但一次性投资很高。

炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。

表2中各种低NOx燃烧技术是降低燃煤锅炉NOx排放最主要也是比较成熟的技术措施。

一般情况下,这些措施最多能达到50%的脱除率。

当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NOx排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。

根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效果也比较显著的炉内脱氮技术。

即使采用烟气净化技术,同时采用低NOx燃煤技术来控制燃烧过程NOx的产生,以尽可能降低化设备的运行和维护费用。

表2中各炉内脱氮技术又以燃料分级效率较高。

燃料再燃技术是有效的降低NOx排放的措施,早在1980年日本的三菱公司就将天然气再燃技术应用于实际锅炉,NOx排放减少50%以上。

美国能源部的“洁净煤技术”计划也包括再燃技术,其示范项目分别采用煤或天然气作为再燃燃料,NOx排放减少30%到70%。

在日本、美国、欧洲再燃技术大量应用于新建电站锅炉和已有电站锅炉的改造,在商业运行中取得良好的环境效益和经济效益。

在我国燃料再燃烧技术研究和应用起步较晚,主要是因为我国过去对环保的要求较低,另一方面则是出于技术经济上的考虑。

进入90年代,我国严重缺电局面开始缓和,大气污染日益严重,1994年全国85个大中城市中NOx超标的城市就有30个,占35%。

1998年对全国322个省控城市量监测结果分析,NOx年日平均值范围在0.006一0.152mg/m3,全国平均为0.037mg/m3,治理大气污染成为十分迫切的任务。

随着环保要求的不断提高,研究适应我国国情的低成本的再燃低NOx燃烧技术具有良好的前景。

三、分级燃烧原理抑制NOx 的生成可采取的措施有:1、降低锅炉峰值温度,将燃烧区的煤粉量降低。

2、降低氧浓度(即降低过量空气系数),将部分二次风管堵住。

3、由于要保证锅炉的出力,可将部分煤粉和空气从锅炉上部投入,这样就控制了燃烧火焰中心区域助燃空气的数量,缩短燃烧产物在高温火焰区的停留时间,避免了高温和高氧浓度的同时存在。

4、在炉膛中设立再燃区,利用在主燃区中燃烧生成的烃根CHi和未完全燃烧产物CO、H2、C和CnHm等,将NO的还原成N2。

如示意图1所示。

图1 分级燃烧原理图将80%~85%的燃料送入主燃区,燃料在主燃区燃烧生成NOx ,15%~20%的燃料送入再燃区,再燃区过量空气系数小于 1.0(α<1.0),具有很强的还原性气氛,在主燃区生成的NOx被还原;再燃区不仅能够还原已经生成的NOx,而且还抑制了新的NOx 生成;在燃尽区供给一定量的空气(称为燃尽风),保证从再燃区出来的未完全燃烧产物燃尽。

根据超细煤粉再燃低NOx燃烧技术原理和前期的研究结果,将整个炉膛燃烧区划分为主燃区、再燃区和燃尽区。

各区域出口过量空气系数目标值为:主燃区出口α=0.9~1.0,再燃区出口α=0.8~0.9,燃尽区出口α=1.167。

锅炉主、再燃区均以锅炉实际燃用煤为燃料,主燃区燃烧80%~90%的浓煤粉,再燃区喷入10%~20%的超细化煤粉作为再燃燃料。

超细煤粉是指粒径小于43μm的煤粉,根据有关研究,这个尺度的煤粉有与雾化燃油相同的燃烧特性。

在工程应用中,可以用浓淡分离器从常规煤粉中分离。

四、分级燃烧的技术特点1、优异的低负荷不投油稳燃能力该设计的理念之一是建立煤粉早期浓缩着火,为此公司开发了高效浓淡分离装置、两层浓浓、淡淡一次风合用一层一次风室,中间完全分隔的一次风煤粉燃烧器、周界齿形的煤粉燃烧喷嘴,同时一次风煤粉反切射流技术,极大地提高锅炉的不投油低负荷稳燃能力。

根据设计和校核煤种的着火特性,选用合适的煤粉浓缩比、煤粉喷嘴、和浓一次风反切角度,在煤种允许的变化范围内确保煤粉及时着火稳燃,并且燃烧器状态良好。

2、优异的煤粉高效燃尽、防结渣及高温腐蚀的特性首先,高浓度煤粉的早期着火提高了燃烧效率;同时通过在炉膛的不同高度布置底部二次风、偏置二次风、上部OFA 和空间分离的S-OFA,将炉膛分成三个相对独立的部分:燃烧区,NOx还原区和燃尽区。

在每个区域合理的控制各自的过量空气系数,这种改进的空气分级方法通过优化每个区域的过量空气系数,在有效降低NOx 排放的同时能最大限度地提高燃烧效率;第三,通过燃烧器区域的刚性偏置二次风,在炉膛壁面附近形成低煤粉浓度的氧化区,避免了炉膛结渣和高温腐蚀的发生。

第四,本技术将煤粉浓淡分离,所有浓一次风煤粉都布置在了燃烧区域下部,相当于提高了煤粉燃尽高度及NOx还原高度,有利于提高锅炉燃烧效率及降低NOx 的排放水平。

3、超低的NOx燃烧排放特性分级燃烧技术的最突出特点是超低NOx燃烧特性,在保证稳燃高效的前提下,通过采用高效浓淡分离技术、空间燃烧分级技术、一次风逆向射流等手段不仅保证煤粉早着火,稳定燃烧,通过采用上下、左右可调燃尽风喷口技术,实现炉内按需供风和降低炉膛出口烟温偏差,更重要的是实现了锅炉超低NOx的燃烧排放。

4、优异的小油点火稳燃能力。

该设计采用公司经过了大量工业应用的煤粉气化小油燃烧点火技术,在第一层的浓、淡一次风的煤粉燃烧器中布置了小油点火装置,可以在锅炉冷态以及热态启动时完全不投入大油枪,极大地降低了锅炉的启动和在更低负荷下的稳燃油耗。

5、分离燃尽风SOAF还具有较好的降低炉膛出口烟温偏差特性采用空间空气的分级燃烧技术不仅是降低NOx排放、提高煤粉燃尽率的重要手段,同时采用对SOFA的水平摆动调整,更有助于降低炉膛出口两侧烟温偏差而导致的过热器及再热器壁温偏差的作用6、五大技术特点保证锅炉改造后大幅提高锅炉运行经济性CEE超低NOx燃烧技术无任何运行成本,它不仅实现锅炉的超低NOx排放,同时实现了锅炉高效稳燃、防结渣、防高温腐蚀、低负荷不投油稳燃、锅炉小油点火稳燃的特性,扩大了锅炉的煤种适应性等功能,在工业化应用中取得了优异的效果。

五、改造方案(烟煤)下面以典型的300MW四角切圆燃烧锅炉为例介绍基于分级燃烧技术的CEE低氮燃烧技术:整个燃烧系统的各喷嘴布置示意见图2所示。

图2. 锅炉燃烧系统各喷嘴布置示图3 CEE 燃烧技术的炉膛纵向空间燃烧组织示意图首先,采用在各煤粉管道中布置的的旋风分离器对一次风煤粉进行浓淡分离,两个浓浓、淡淡的一次风煤粉进入一个一次风室,构成一个一室两层的煤粉燃烧器。

从下往上,一次风煤粉喷嘴依次为:两室四层浓浓一次风、一层浓淡一次风、两层淡淡一次风,见图2所示。

第二,将燃烧区域分成上下三个区域,下部为由两层四室浓一次风构成的主燃烧稳燃区,中部为两层四室的淡一次风构成的NOx 还原区,顶部为由在主燃烧区上部布置的两层分离SOFA 构成的燃尽区,见图3所示。

相关文档
最新文档