低氮分级燃烧专业技术介绍

合集下载

低氮燃烧技术和燃烧烟气再循环工作原理

低氮燃烧技术和燃烧烟气再循环工作原理

低氮燃烧技术和燃烧烟气再循环工作原理一、低氮燃烧技术低氮燃烧技术是一种通过优化燃烧过程来减少氮氧化物排放的方法。

它主要包括三个方面的措施:燃烧器结构优化、燃烧过程控制和燃料改造。

燃烧器结构优化是通过改变燃烧器的设计和布局来提高燃烧效率和降低氮氧化物排放。

例如,采用分级燃烧技术可以使燃烧过程更加充分,减少未燃烧物质的产生。

此外,还可以采用内循环燃烧技术,将一部分烟气重新引入燃烧器中进行再燃烧,以提高燃烧效率和降低氮氧化物的生成。

燃烧过程控制是通过调节燃料和空气的配比、燃烧温度等参数来控制氮氧化物的生成。

例如,通过提高燃烧温度可以促进氮氧化物的还原,从而减少氮氧化物的排放。

此外,还可以采用燃烧过程分层控制技术,将燃烧过程分为预混燃烧和主燃烧两个阶段,以降低氮氧化物的生成。

燃料改造是通过改变燃料的组成和性质来减少氮氧化物的生成。

例如,采用低氮燃料可以降低氮氧化物的排放。

此外,还可以采用燃料添加剂,如氨水、尿素等,在燃烧过程中与氮氧化物发生反应,形成氮和水等无害物质。

二、燃烧烟气再循环工作原理燃烧烟气再循环是一种通过将一部分燃烧产生的烟气重新引入燃烧器中进行再燃烧的技术。

它主要包括两个步骤:烟气收集和再循环。

烟气收集是将燃烧产生的烟气通过烟囱或其他烟气排放装置收集起来。

在收集过程中,需要对烟气进行净化处理,以去除其中的颗粒物、氮氧化物等污染物,以免对环境造成污染。

再循环是将收集到的烟气重新引入燃烧器中进行再燃烧。

通过再燃烧,可以使燃烧过程更加充分,提高燃烧效率。

此外,再燃烧还可以降低燃烧过程中的氮氧化物生成,从而减少氮氧化物的排放。

燃烧烟气再循环的工作原理是利用再循环系统将部分烟气从烟囱中抽取回燃烧器,与新鲜空气和燃料进行混合燃烧。

再循环系统一般包括烟气收集装置、再循环风机、再循环管道和再循环口等组成部分。

通过控制再循环烟气的比例和再循环位置,可以实现对燃烧过程的调节,提高燃烧效率和降低氮氧化物排放。

总结起来,低氮燃烧技术和燃烧烟气再循环技术是两种常用的减少氮氧化物排放和提高燃烧效率的方法。

低氮燃烧介绍

低氮燃烧介绍

低氮燃烧介绍氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。

低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。

浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。

根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。

简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。

在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

关键字:燃烧条件NOx NOx燃烧技术低NOx燃烧器用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。

在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

目前主要有以下几种:1.低过量空气燃烧使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。

这是一种最简单的降低NOx 排放的方法。

一般可降低NOx排放15-20%。

但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。

因此在锅炉设计和运行时,应选取最合理的过量空气系数。

2.空气分级燃烧基本原理是将燃料的燃烧过程分阶段完成。

在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。

此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。

低氮燃烧技术介绍

低氮燃烧技术介绍

低氮燃烧技术介绍
嘿,朋友们!今天咱来聊聊低氮燃烧技术。

你说这低氮燃烧技术啊,就像是一位默默守护环境的无名英雄。

它的任务呢,就是要把那些氮氧化物给“收拾”得服服帖帖,让它们别到处捣乱,污染咱们的空气。

想象一下,燃烧就像是一场热闹的派对,各种燃料在那里尽情狂欢。

但这一狂欢,氮氧化物就可能趁机冒出来啦。

这时候,低氮燃烧技术就闪亮登场啦!它就像一个厉害的派对管理员,告诉燃料们:“嘿,别闹太过分啦,注意点影响!”它通过一些巧妙的方法,让燃烧变得更有序,更环保。

比如说,它会调整燃烧的条件,让温度啊、氧气量啊都恰到好处,这样氮氧化物就没那么容易产生了。

就好像给派对加上了一些合适的规则,让大家既能玩得开心,又不会搞出乱子。

而且啊,它还会在燃烧的过程中进行精细的调控,就跟个细心的导演似的,让每一个环节都能达到最佳效果。

有了低氮燃烧技术,咱们的环境可就有福啦!天空会更蓝,空气会更清新,咱们呼吸起来也更舒服。

它让我们既能享受燃烧带来的便利,又不用担心对环境造成太大的伤害。

哎呀,真希望这低氮燃烧技术能越来越厉害,让我们的生活变得更加美好。

就像一个可靠的伙伴,一直陪伴着我们,保护着我们的环境家园。

总之呢,低氮燃烧技术虽然不那么起眼,但它的作用可大着呢!它就是我们环保事业中的一位小勇士,默默地为我们的蓝天白云而战斗。

让我们一起为它点赞吧!
好啦,关于低氮燃烧技术,我就说到这儿啦,相信大家也对它有了一定的了解咯!下次再聊别的有趣事儿哈,拜拜啦!。

低NOx燃烧技术专业资料

低NOx燃烧技术专业资料

燃煤锅炉的低NO x燃烧技术NOx是对N2O、NO2.NO、N2O5以及PAN等氮氧化物的统称。

在煤的燃烧过程中, NOx生成物重要是NO和NO2, 其中尤以NO是最为重要。

实验表白, 常规燃煤锅炉中NO生成量占NOx总量的90%以上, NO2只是在高温烟气在急速冷却时由部分NO转化生成的。

N2O之所以引起关注, 是由于其在低温燃烧的流化床锅炉中有较高的排放量, 同是与地球变暖现象有关, 对于N2O的生成和克制的内容我们将结合流化床燃烧技术进行介绍。

因此在本章的讨论中, NOx即可以理解为NO和NO2。

一、燃煤锅炉NO x的生成机理根据NOx中氮的来源及生成途径, 燃煤锅炉中NOx的生成机理可以分为三类: 即热力型、燃料型和快速型, 在这三者中, 又以燃料型为主。

它们各自的生成量和炉膛温度的关系如图3-1所示。

实验表白, 燃煤过程生成的NOx中NO占总量的90%, NO2只占5%~10%。

1.热力型NOx热力型NOx是参与燃烧的空气中的氮在高温下氧化产生的, 其生成过程是一个不分支的链式反映, 又称为捷里多维奇(Zeldovich)机理→(3-1)O2O2→+O+NONN(3-2)2→+N+NOOO(3-3)2如考虑下列反映→+(3-4)N+NOHOH则称为扩大的捷里多维奇机理。

由于N≡N三键键能很高, 因此空气中的氮非常稳定, 在室温下, 几乎没有NOx生成。

但随着温度的升高, 根据阿仑尼乌斯(Arrhenius)定律, 化学反映速率按指数规律迅速增长。

实验表白, 当温度超过1200℃时, 已有少量的NOx生成, 在超过1500℃后, 温度每增长100℃, 反映速率将增长6~7倍, NOx的生成量也有明显的增长, 如图3-1所示。

但总体上来说, 热力型NOx的反映速度要比燃烧反映慢, 并且温度对其生成起着决定性的影响。

对于煤的燃烧过程, 通常热力型NOx不是重要的, 可以不予考虑。

一般来说通过减少火焰温度、控制氧浓度以及缩短煤在高温区的停留时间可以克制热力型NOx的生成。

低NOX煤粉燃烧技术概述

低NOX煤粉燃烧技术概述

低NOX煤粉燃烧技术概述摘要:本文共分为四大部分:从当前火电厂脱氮的结设备构特点及组成~工作原理~燃烧方式~控制方法以及在火电厂中的应用前景等方面进行了浅显的描述。

其中重要是对该设备的主要原理和控制方法~控制性能及特点方面进行了阐述。

关键词:结构特点、工作原理、燃烧方式、控制方法。

Abstract: This paper is divided into four parts: from the current circulatingfluidized bed power plant characteristics of the structure and composition, working principle, and combustion of pulverized coal-fired boiler contrast, the control method and the application of thermal power plants in areas such as prospects forthe simple description. One important is the boiler control system for the maincontrol methods to control aspects of performance and features, and explainsKey words: current circulating、bed power plant、combustion of pulverized、boiler control system.一引言近年来能源利用造成的环境污染越来越严重~其中矿物燃料的燃烧所排放出来的氮氧化物(NOX)己成为环境污染的一个重要方面。

NOX是N2O、NO、NO2、N2O3、N2O4和N2O5的总称。

我国能源以煤为主。

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术燃煤锅炉是工业和生活生产中常用的一种设备,但由于其燃烧过程中会排放大量氮氧化物,会对环境和人体健康产生潜在的危害,因此,燃煤锅炉低氮燃烧技术的研究和应用十分重要。

燃煤锅炉低氮燃烧技术的目的就是降低燃烧过程中产生的氮氧化物(NOx)的排放量。

常见的低氮燃烧技术包括:炉内掺氧技术、分级燃烧技术、倾斜燃烧技术、再燃技术和SNCR(选择性非催化还原)技术。

炉内掺氧技术是一种将燃烧空气分为两部分,把其中一部分氧气引入燃烧室的距离火焰最近的区域(炉喉区),另一部分氧气在火焰上方进入燃烧室的技术。

这种方法可以使燃烧过程中氧气和燃料更充分地混合,促进燃料的完全燃烧,降低NOx的排放。

但是,这种技术需要加装掺氧设备,成本较高。

分级燃烧技术是将燃料在锅炉燃烧时分为两级进行,第一级在较低的燃烧条件下进行,生成的NOx较少;第二级在较高的燃烧条件下进行,此时可以用来燃烧一些难燃的燃料,燃烧效率更高,同时也可以降低NOx排放。

然而,这种技术需要增加炉墙的复杂设计,成本较高,并且需要对锅炉的操作要求更高。

倾斜燃烧技术是利用流体动力学的原理,使燃料在燃烧室内呈偏斜分布。

研究表明,当燃烧室内呈偏斜分布时,燃料和空气混合更加充分,可以使NOx排放减少。

然而,这种技术具有一定的局限性,适用于一些规模较小的锅炉,对于大型锅炉则难以实现。

再燃技术是一种在燃料燃烧室中注入少量的再燃料进行再燃的技术。

这种技术可以在极短的时间内使燃料完全燃烧,减少未完全燃烧产生的NOx。

此外,再燃气的产生还可提升锅炉燃烧室内流体的混合,也有助于提高燃烧效率。

SNCR技术则是通过给燃烧室注入一种还原剂(如氨水、尿素等),并加热使其分解,产生氢气和氨气,再与NOx进行反应,生成氮气和水。

这种技术可以有效地降低NOx的排放,但其降低效果与还原剂的添加量、反应室的温度、氨水尿素的纯度等因素有关。

总的来说,各种低氮燃烧技术都具有其各自的优缺点,燃煤锅炉低氮燃烧技术的选择需要根据具体的应用情况和经济效益来综合考虑。

低氮燃烧技术

低氮燃烧技术

低NOx燃烧技术简介一概述:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。

在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

二低NOx燃烧技术方法:1、空气分级燃烧空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。

在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。

2、燃料分级燃烧燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。

把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。

3、烟气再循环燃烧烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx 的排放。

将部分低温烟气直接送入炉内或与空气一次风或与二次风混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx。

三低NOx燃烧器根据上述低NOx燃烧技术,我公司引进开发出以下型号的低NOx燃烧器:1、HDRB型低NOx燃烧器;2、HHT-NR型低NOx燃烧器;3、HXCL型低NOx燃烧器;4、HWS型低NOx燃烧器;5、HDS型低NOx燃烧器;6、HSM型低NOx燃烧器;7、 HPM型低NOx燃烧器。

生物质锅炉低氮燃烧技术

生物质锅炉低氮燃烧技术

生物质锅炉低氮燃烧技术
生物质锅炉是一种以生物质能源为燃料的热能装置,具有安全环保、可再生等优点。

为了减少生物质锅炉的氮氧化物排放,提高其燃烧效率,低氮燃烧技术被广泛应用于生物质锅炉中。

生物质锅炉低氮燃烧技术的核心是通过控制燃烧过程中的氧气和燃料的混合比例,使燃烧温度下降,减少氮氧化物的形成。

常用的低氮燃烧技术有分级燃烧、燃尽再燃、SNCR 和SCR 等。

分级燃烧是将燃料分为两部分,先在较低温度区燃烧一个部分燃料,产生一定的热量,再将部分燃烧产生的一氧化碳和未燃的燃料气体引入高温区燃烧,利用高温氧化还原反应继续燃烧燃料,并降低氮氧化物的产生。

燃尽再燃技术是在燃烧过程中注入少量燃料和空气,形成富油燃烧区,使未燃的烟气在富油燃烧区中燃烧,减少氮氧化物的产生。

SNCR 技术是在燃烧过程中向烟气中喷入氨水或尿素溶液,使氨水和尿素在高温下分解,产生氨和异氰酸酯,再和烟气中的氮氧化物发生反应,使其减少。

SCR 技术是在烟气中喷入选择性催化还原剂,使烟气中的氮氧化物发生选择性催化还原反应,将氮氧化物还原成氮气,减少氮氧化物的排放。

在采用低氮燃烧技术的同时,生物质锅炉还应注意燃料的选用和燃烧参数的调节。

燃料的质量、含氧量以及粒度都会影响到燃烧过程中氮氧化物的产生。

而燃烧参数如燃烧温度、燃料适宜比例等也需要根据实际情况进行调整和优化。

总之,生物质锅炉低氮燃烧技术的应用可以有效降低其氮氧化物排放量,减少对环境的污染。

随着技术的不断发展和应用的推广,相信生物质锅炉低氮燃烧技术会在未来得到更加广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液体吸收法是用水或者其他溶液吸收烟气中的NOx。该法工艺简单,能够以硝酸盐等形式回收N进行综合利用,但是吸收效率不高。
吸附法是用吸附剂对烟气中的NOx进行吸附,然后在一定条件下使被吸附的NOx脱附回收,同时吸附剂再生。此法的NOx脱除率非常高,并且能回收利用。但一次性投资很高。
炉内脱氮与尾部脱氮相比,具有应用广泛、结构简单、经济有效等优点。表2中各种低NOx燃烧技术是降低燃煤锅炉NOx排放最主要也是比较成熟的技术措施。一般情况下,这些措施最多能达到50%的脱除率。当要进一步提高脱除率时,就要考虑采用尾部烟气脱氮的技术措施,SCR和SNCR法能大幅度地把NOx排放量降低到200mg/m3,但它的设备昂贵、运行费用很高。
二.分级燃烧原理
抑制NOx的生成可采取的措施有:
1.降低锅炉峰值温度,将燃烧区的煤粉量降低。
2.降低氧浓度(即降低过量空气系数),将部分二次风管堵住。
3.由于要保证锅炉的出力,可将部分煤粉和空气从锅炉上部投入,这样就控制了燃烧火焰中心区域助燃空气的数量,缩短燃烧产物在高温火焰区的停留时间,避免了高温和高氧浓度的同时存在。
4.在炉膛中设立再燃区,利用在主燃区中燃烧生成的烃根CHi和未完全燃烧产物CO、H2、C和CnHm等,将NO的还原成N2。
如示意图1所示。
图1分级燃烧原理图
将80%~85%的燃料送入主燃区,燃料在主燃区燃烧生成NOx,15%~20%的燃料送入再燃区,再燃区过量空气系数小于1.0(α<1.0),具有很强的还原性气氛,在主燃区生成的NOx被还原;再燃区不仅能够还原已经生成的NOx,而且还抑制了新的NOx生成;在燃尽区供给一定量的空气(称为燃尽风),保证从再燃区出来的未完全燃烧产物燃尽。根据超细煤粉再燃低NOx燃烧技术原理和前期的研究结果,将整个炉膛燃烧区划分为主燃区、再燃区和燃尽区。各区域出口过量空气系数目标值为:主燃区出口α=0.9~1.0,再燃区出口α=0.8~0.9,燃尽区出口α=1.167。锅炉主、再燃区均以锅炉实际燃用煤为燃料,主燃区燃烧80%~90%的浓煤粉,再燃区喷入10%~20%的超细化煤粉作为再燃燃料。
达到50%
适用于新的和改造现有锅炉,可减少已形成的NOX,中等投资
可能需要增加第二种燃料,可能导致飞灰含碳量增加,运行经验较少
1.2尾部脱氮
尾部脱氮又称烟气净化技术,即把尾部烟气中已经生成的氮氧化物还原或吸附,从而降低NOx排放。烟气脱氮的处理方法可分为:催化还原法、液体吸收法和吸附法三大类。
催化还原法是在催化剂作用下,利用还原剂将NOx还原为无害的N2。这种方法虽然投资和运转费用高,且需消耗氨和燃料,但由于对NOx效率很高,设备紧凑,故在国外得到了广泛应用,催化还原法可分为选择性非催化还原法和选择性催化还原法相比,设备简单、运转资金少,是一种有吸引力的技术。
低氮分级燃烧技术介绍
———————————————————————————————— 作者:
———————————————————————————————— 日期:

低氮分级燃烧技术
一.低NOx优化燃烧技术的分类及比较
为了实现清洁燃烧,目前降低燃烧中NO、排放污染的技术措施可分为两大类:一类是炉内脱氮,另一类是尾部脱氮。
1.1炉内脱氮
炉内脱氮就是采用各种燃烧技术手段来控制燃烧过程中NOx的生成,又称低NOx燃烧技术,下表给出了现有几种典型炉内脱氮技术的比较。
表2
技术名称
效果
优点
缺点
低氧燃烧
根据原来运行条件,最多降低20%
投资最少
导致飞灰含碳量增加
降低投入运行的燃烧器数目
15%—30%
投资低,易于锅炉改装
有引起炉内腐蚀和结渣的可能,并导致飞灰含碳量增加
超细煤粉是指粒径小于43μm的煤粉,根据有关研究,这个尺度的煤粉有与雾化燃油相同的燃烧特性。在工程应用中,可以用浓淡分离器从常规煤粉中分离。
三.分级燃烧的技术特点
1.优异的Leabharlann 负荷不投油稳燃能力。该设计的理念之一是建立煤粉早期浓缩着火,为此公司开发了高效浓淡分离装置、两层浓浓、淡淡一次风合用一层一次风室,中间完全分隔的一次风煤粉燃烧器、周界齿形的煤粉燃烧喷嘴,同时一次风煤粉反切射流技术,极大地提高锅炉的不投油低负荷稳燃能力。根据设计和校核煤种的着火特性,选用合适的煤粉浓缩比、煤粉喷嘴、和浓一次风反切角度,在煤种允许的变化范围内确保煤粉及时着火稳燃,并且燃烧器状态良好。
空气分级燃烧(OFA)
最多30%
投资低
并不是对所有炉膛都适用,有可能引起炉内腐蚀和结渣,并降低燃烧效率
低NOx燃烧器
与空气分级燃烧相结合时可达60%
用于新的和改装的锅炉,中等投资,有运行经验
结构比常规燃烧器复杂.
烟气再循环(FGR)
最多20%
能改善混合燃烧,中等投资
增加再循环风机,使用不广泛
燃料分级(再燃)
根据我国发展现状和当前经济实力还不雄厚的国情,以及相对宽松的国家标准CB13223一2003,在今后相当长一段时间内,我国更适合发展投资少、效果也比较显著的炉内脱氮技术。即使采用烟气净化技术,同时采用低NOx燃煤技术来控制燃烧过程NOx的产生,以尽可能降低化设备的运行和维护费用。
表2中各炉内脱氮技术又以燃料分级效率较高。燃料再燃技术是有效的降低NOx排放的措施,早在1980年日本的三菱公司就将天然气再燃技术应用于实际锅炉,NOx排放减少50%以上。美国能源部的“洁净煤技术”计划也包括再燃技术,其示范项目分别采用煤或天然气作为再燃燃料,NOx排放减少30%到70%。在日本、美国、欧洲再燃技术大量应用于新建电站锅炉和已有电站锅炉的改造,在商业运行中取得良好的环境效益和经济效益。在我国燃料再燃烧技术研究和应用起步较晚,主要是因为我国过去对环保的要求较低,另一方面则是出于技术经济上的考虑。进入90年代,我国严重缺电局面开始缓和,大气污染日益严重,1994年全国85个大中城市中NOx超标的城市就有30个,占35%。1998年对全国322个省控城市量监测结果分析,NOx年日平均值范围在0.006一0.152mg/m3,全国平均为0.037mg/m3,治理大气污染成为十分迫切的任务。随着环保要求的不断提高,研究适应我国国情的低成本的再燃低NOx燃烧技术具有良好的前景。
相关文档
最新文档