钢筋混凝土正截面受弯实验报告

合集下载

2016新编混凝土结构正截面抗弯实验(报告和教材修改)

2016新编混凝土结构正截面抗弯实验(报告和教材修改)

温州大学建筑与土木工程学院土木工程专业钢筋混凝土梁的正截面受弯性能试验(指导书和报告)班级学号学生姓名温州大学建筑与土木工程学院实验中心试 验 指 导 书一、试验的目的1.了解钢筋混凝土梁受力破坏的全过程,并验证正截面强度计算公式。

2.了解对钢筋混凝土结构进行试验研究的方法。

3.掌握进行钢筋混凝土结构试验的一些基本技能。

二、试验内容:1.了解试验方案的确定(由教师讲解)。

2.了解试验梁的设计和制作过程(由教师讲解)。

3.了解试验梁的加载装置及其性能(由教师讲解)。

4.试验梁上安装测量仪表。

5.在加载试验过程中测读量测数据。

观察试验梁外部的开裂,裂缝发展和变形情况。

6.整理试验数据,写出试验报告。

三、试验梁:1.试验梁混凝土强度等级为C20。

2.①号筋要留三根长500mm 的钢筋,用作测试其应力应变关系的试件。

3.在浇筑混凝土时,同时要浇筑三个150×150×150mm 的立方体试块。

作为梁试验时,测定混凝土的强度等级。

1-12-2四、试验梁的加载及仪表布置:五、试验量测数据内容:1.各级荷载下支座沉陷与跨中的挠度。

2.各级荷载下主筋跨中的拉应变及混凝土受压边缘的压应变。

3.各级荷载下梁跨中上边纤维,中间纤维,受拉筋处纤维的混凝土应变。

4.记录、观察梁的开裂荷载和开裂后在各级荷载下裂缝的发展情况(包括裂缝的W max )。

六、试验仪器及设备 1.YE2583A 程控静态应变仪 3.百分表或电子百分表5.手动液压泵全套设备7.工字钢分配梁(自重0.07kN/根) 2.千分表(备用)4.手持式引伸仪(标距10cm )6.千斤顶(P max =320kN ,自重0.01kN/只) 8.裂缝观察镜和裂缝宽度量测卡七、试验要求(一)参加部分试验准备工作: 1.试件的制作。

2.试件两侧表面刷白并用墨线弹画40×100mm 的方格线(以便观测裂缝)。

3.试件安装及仪表、设备的调试。

钢筋混凝土梁正截面抗弯实验

钢筋混凝土梁正截面抗弯实验

钢筋混凝土梁正截面抗弯实验一、实验目的本实验旨在通过对钢筋混凝土梁正截面抗弯实验的进行,掌握梁的正截面抗弯性能及其影响因素。

二、实验原理1.受力分析当梁受到外力作用时,梁内部会产生内力,其中最重要的是弯矩。

在梁的中性轴处,弯矩为0,在上部纤维和下部纤维处则呈现相反的符号。

因此,在不同位置上的混凝土和钢筋所承受的应力也不同。

2.截面抗弯性能分析在梁受到外力作用时,由于混凝土与钢筋之间具有良好的黏结性能,因此混凝土与钢筋共同工作以形成一个整体。

当外力超过一定值时,由于混凝土本身脆性较大,容易产生裂缝,进而导致整个梁失效。

3.影响因素分析(1)截面形状:不同形状的截面对于抵抗外力有着不同的效果。

(2)材料特性:混凝土和钢筋材料特性的不同,会影响其受力性能。

(3)受力状态:梁在不同受力状态下的抗弯性能也不同。

(4)配筋率:钢筋的数量和分布方式对于梁的抗弯性能有着重要的影响。

三、实验步骤1.制作试件根据实验要求,制作出符合要求的试件。

一般而言,试件应该采用正方形或矩形截面,并且在试件中应该按照一定比例配筋。

2.实验测量将试件放置在测试机上,并加载到规定荷载值。

通过测试机上的传感器和测量仪器,可以得到试件在不同荷载下的变形情况和荷载值。

同时,还需要记录下试件断裂时所承受的最大荷载值。

3.数据处理根据测试结果,可以计算出试件在不同荷载下的应变、应力和变形等数据。

通过这些数据可以得到试件在正截面抗弯方面的性能表现。

四、实验注意事项1.制作试件时需要严格按照要求进行操作,以保证测试结果具有可靠性和可重复性。

2.在进行实验前需要对测试设备进行校准,以确保测量结果的准确性。

3.在进行实验时需要严格控制荷载值的大小和速率,以避免试件过早失效。

4.在记录测试数据时需要注意精度和准确性,以保证数据处理的准确性。

五、实验结果分析通过对正截面抗弯实验的进行,可以得到试件在不同荷载下的应变、应力和变形等数据。

通过这些数据可以计算出试件在不同荷载下的截面抗弯性能表现。

钢筋混凝土受弯梁实验报告.docx

钢筋混凝土受弯梁实验报告.docx

钢筋混凝土受弯梁实验报告.docx1、实验目的本实验旨在通过对钢筋混凝土受弯梁的试验研究,分析其受力性能,验证相关理论计算方法,并探究钢筋混凝土结构的应用范围和性能。

2、试验装置和材料2.1 试验装置:包括加载装置、测量装置、支承装置等。

装置要求稳定、准确、易于操作和安装。

2.2 试验材料:主要包括混凝土、钢筋等。

混凝土要求强度符合要求,钢筋要求符合标准规定。

3、试验步骤3.1 预备工作:包括试验准备、试验装置调整等。

3.2 试验前的准备工作:包括试验样件的制备、试验环境的调整等。

3.3 试验过程:分为加载试验和卸载试验。

加载试验要求按照规定荷载进行加载,卸载试验要求按照规定步骤进行。

3.4 试验数据记录:对试验过程中的数据进行记录和处理,包括力、位移等参数。

4、试验结果与分析4.1 实测数值:对试验过程中获得的数据进行整理和统计,得到实测数值。

4.2 结果分析:根据实测数据进行分析,计算弯曲应力、延性系数等相关参数,分析试验结果的合理性和可靠性。

5、结论通过对钢筋混凝土受弯梁的实验研究,得出以下结论:5.1 钢筋混凝土受弯梁的受力性能良好,能够满足一定的工程要求。

5.2 相关理论计算方法与试验结果吻合度较高,验证了其可行性和准确性。

5.3 钢筋混凝土结构具有一定的应用范围和性能,可以广泛应用于建筑工程中。

附件:实验数据记录表、实验图片等相关附件。

法律名词及注释:1、民法:指民事法律制度,用于调整个人、团体、社会组织等之间关系的法律规范。

2、合同法:指用于调整合同订立、履行、变更等事项的法律规范。

3、建筑法:指用于调整建筑工程活动的法律规范,包括建筑工程的规划、设计、施工、验收等方面。

1、实验目的本实验旨在通过对钢筋混凝土受弯梁的试验研究,分析其受力性能和破坏模式,探究钢筋混凝土结构的受力机理和应用范围。

2、试验装置和材料2.1 试验装置:包括加载装置、测量装置、支承装置等。

装置要求稳定、准确、易于操作和安装。

钢筋混凝土梁正截面受弯性能实验报告

钢筋混凝土梁正截面受弯性能实验报告

钢筋混凝土梁正截面受弯性能实验报告一、实验记录结果表应变与挠度记录表测点荷载钢筋应变混凝土应变με挠度mm荷载级数荷载值1 2 1 2 3 4 1 2 3 4 5 KN με预载0 -1 1 0 1 0 0 0.0030000.003 4 13 13 21 6 -3 -12 0.0030.1770.007-0.230.017 8 41 41 64 19 -8 -32 -0.060.3630.007-0.06012 98 83 141 46 -10 -59 -0.1530.5570.0070.10.017标准加载14 129 107 190 65 -9 -72 -0.1970.680.0070.20.013 16 162 130 224 89 -5 -83 -0.2370.80.0070.310.023 18 195 156 289 116 -3 -98 -0.2530.920.0070.4270.023 20 232 183 351 144 2 -112 -0.273 1.040.0130.5270.023 22 270 214 417 179 9 -127 -0.283 1.1630.0130.7670.017 24 311 245 497 224 19 -147 -0.31 1.30.090.7870.02 26 349 275 570 263 30 -155 -0.333 1.4370.2170.9730.023 28 386 305 643 300 37 -169 -0.36 1.5570.34 1.0270.017 32 450 368 769 361 51 -198 -0.38 1.820.583 1.270.017 34 487 401 838 395 56 -215 -0.37 1.940.727 1.407-0.007破坏加载38 552 475 964 459 68 -245 -0.38 2.217 1.043 1.68-0.013 42 618 540 1078 524 80 -275 -0.383 2.547 1.327 1.937-0.01 46 685 584 1208 610 96 -306 -0.38 2.783 1.637 2.237-0.007 50 750 655 1386 687 115 -335 -0.38 3.393 1.943 2.543-0.007 54 817 714 1510 776 139 -367 -0.38 3.403 2.273 2.88058 886 783 1645 853 153 -405 -0.38 4.2 2.74 3.413-0.00362 949 864 1781 928 164 -439 -0.39 4.757 3.42 3.973-0.003 66 1011 914 1895 991 172 -475 -0.3979.373 3.913 4.503-0.00370 1180 2487 2113 1133 273 -500 -0.4037.057 4.51 5.230.003二、实验现象描述及裂缝分布图如图,随着荷载的逐渐增大,梁逐渐出现裂缝并变大,且裂缝成斜向分布。

钢筋混凝土梁试验报告

钢筋混凝土梁试验报告
3).继续利用荷载传感器进行控制,按估算破坏荷载值的五分之一左右试验梁分级加载,相邻两次加载的间隔时间为5~10分钟。在每级加载后的间歇时间内,认真观察试验梁上原有裂缝的发展和新裂缝的出现等情况并进行标记,记录电阻应变仪、百分表和千分表读数。
4).继续加载,当所加荷载约为破坏荷载值的60%~70%时,用读数放大镜测读最大裂缝宽度和用直尺量测裂缝间距并记录。
1.了解钢筋混凝土梁受力的全过程。
2.了解对钢筋混凝土结构进行试验研究的方法。
3.得到进行钢筋混凝土结构试验的一些基本技能的训练。
4.通过试验验证混凝土梁的正截面受弯性能。
三、试验梁加载简图;
四、试验量测数据内容;
1.各级荷载下支座沉陷与跨中的挠度。
2.各级荷载下主筋跨中的拉应变及混凝土受压边缘的压应变。
当试件达到承载能力极限状态时,注意观察试件的破坏特征并确定其破坏荷载值。规定:当发现下列情况之一时,即认为该构件已经达承载能力极限状态(破坏)。(3)测量梁实际跨度、截面尺寸、加载点位置、混凝土应变片位置等。(4)预加载实验(按破坏荷载的20%考虑,)。按1~3级预加载(0-2kN-3kN-4kN),测读数据,观察试件、装置和仪表工作是否正常并及时排除故障。预载值的大小,必须小于构件的开裂荷载值。然后卸载至0。(5)仪表调零或读仪表初值并记录。画记录图、表,作好记录准备。(6)正式加载实验。
3.各级荷载下梁跨中上边纤维,中间纤维,受拉筋处纤维的混凝土应变。
4.记录、观察梁的开裂荷载和开裂后在各级荷载下裂缝的发展情况(包括裂缝的Wmax)。
五、试验仪器及设备;
1.TS3860静态电阻应变仪2.百分表或电子百分表
3.千分表(备用)4.手持式引伸仪(标距25cm)
5.千斤顶(Pmax=320kN,自重0.3kN/只)

钢筋混凝土梁受弯构件 正截面承载力实验

钢筋混凝土梁受弯构件 正截面承载力实验

有技术、技术秘密、软件、算法及各种新的产品、工程、技术、系统的应用示范等。

第三条本办法所称科技成果转化,是指为提高生产力水平而对科学研究与技术开发所产生的具有实用价值的科技成果所进行的后续试验、开发、应用、推广直至形成新技术、新工艺、新材料、新产品,发展新产业等活动。

第四条科技成果转化应遵守国家法律法规,尊重市场规律,遵循自愿、互利、公平、诚实信用的厚则,依照合同的约定,享受利益,承担风险,不得侵害学校合法权益。

第二章组织与实施第五条学校对科技成果转化实行统一管理。

合同的签订必须是学校或具有独立法人资格的校内研究机构,否则科技成果转化合同的签订均是侵权行为,由行为人承担相应的法律责任。

第六条各学院应高度重视和积极推动科技成果转化工作,并在领导班子中明确分管本单位科技成果转化工作的负责人。

第七条学校科学技术处是学校科技成果转化的归口管理部门,是科技成果的申报登记和认定的管理机构,负责确认成果的权属并报批科技成果转化合同。

第八条学校科技成果可以采用下列方式进行转化:(一)自行投资实施转化;(二)向他人转让;(三)有偿许可他人使用;(四)以该科技成果作为合作条件,与他人共同实施转化;(五)以该科技成果作价投资,折算股份或者出资比例;(六)其它协商确定的方式。

第九条不论以何种方式实施科技成果转化,都应依法签订合同,明确各方享有的权益和各自承担的责任,并在合同中约定在科技成果转化过程中产生的后续改进技术成果的权属。

第十条对重大科研项目所形成的成果,或拟转让的、作价入股企业的、金额达到100万元的科技成果,应先到科学技术处申请、登记备案,并报请学校校长办公会审核、批准、公示后才能进行。

第十一条科技成果转让的定价主要采取协议定价方式,实行协议定价的,学校对科技成果名称、简介、拟交易价格等内容进行公示,公示期15天。

第十二条对于公示期间实名提出的异议,学校科学技术处组织不少于3人的行业专家进行论证,并将论证结果反馈至科技成果完成人和异议提出者,如任何一方仍有异议,则应提交第三方评估机构进行评估,并以评估结论为准。

混凝土正截面受弯试验报告

混凝土正截面受弯试验报告

目录一、实验目的: (1)二、实验设备: (1)三、实验成果与分析,包括原始数据、实验结果数据与曲线、根据实验数据绘制曲线 (1)3.1实验简图 (1)3.2少筋破坏: (2)3.3超筋破坏: (3)3.4适筋破坏: (4)四、实验结果讨论与实验小结。

(6)仲恺农业工程学院实验报告纸(院、系)专业班组课学号姓名实验日期教师评定实验一钢筋混凝土受弯构件正截面试验一、实验目的:1、了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程;2、观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征;3、测定或计算受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。

二、实验设备:1、试件特征1)梁的混凝土强度等级为C30(=14.3N/mm2,=1.43N/mm2,=3.0×104N/mm2,f tk=2.01N/mm2),纵向受力钢筋强度等级HRB335级(=300N/mm2,=2.0×105N/mm2),箍筋与架立筋强度等级HPB235级(=210N/mm2,=2.1×105N/mm2)。

2)纵向钢筋的混凝土保护层厚度为25mm,试件尺寸及配筋如下图所示。

3)少筋、适筋、超筋的箍筋分别为φ8@200、φ10@200、φ10@100,保证不发生斜截面破坏。

4)梁的受压区配有两根架立筋,通过箍筋与受力钢筋扎在一起,形成骨架,保证受力钢筋处在正确的位置。

2、实验仪器设备1)静力试验台座、反力架、支座及支墩2)20T手动式液压千斤顶3)20T荷载传感器4)YD-21型动态电阻应变仪5)X-Y函数记录仪6)YJ-26型静态电阻应变仪及平衡箱7)读数显微镜及放大镜8)位移计(百分表)及磁性表座9)电阻应变片、导线等三、实验成果与分析,包括原始数据、实验结果数据与曲线、根据实验数据绘制曲线3.1实验简图少筋破坏-配筋截面:加载:=13.3kN=16.8kN适筋破坏-配筋截面加载:=15.3kN=91.7kN =99.6kN超筋破坏-配筋截面加载:=35.5kN=224.9kN 3.2少筋破坏:(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因理论计算:=440-30=410mm =0.0033=0.0033×3.00×=99.00N/mm x===4.348mm =x(-0.5x)=1.0×14.3×250×4.348×(410-0.5×4.348)=6.339kN·m开裂荷载:F cr ===5.283kNx===13.17mm =x(-0.5x)=1.0×14.3×250×13.17×(410-0.5×13.17)=18.99kN·m屈服荷载:F u ===15.83kN破坏荷载:F 破=1.5F u =1.5×15.83=23.75kN混凝土自重:F 自==6.188kN模拟实验的数据为开裂荷载为:F cr =13.3kN破坏荷载:F 破=16.8kN本次实验数据对比,误差存在,产生误差的主要原因有三点:1实验时没有考虑梁的自重,而计算理论值时会把自重考虑进去;2.计算的阶段值都是现象发生前一刻的荷载,但是实验给出的却是现象发生后一刻的荷载;3.破坏荷载与屈服荷载的大小相差很小,1.5倍不能准确的计算破坏荷载;4.整个计算过程都假设中和轴在受弯截面的中间。

混凝土正截面受弯承载力实验

混凝土正截面受弯承载力实验
按确定的加载值分级加载,相邻两次加载的时间间隔为 2~3min。在每级加载后的间歇时间内,认真观察梁上是 否出现裂缝,加载后持续2min后记录电阻应变仪、百分 表的读数。 临近开裂和破坏时,可半级或1/4级加载 。
当梁上出现明显较大裂缝时,撤去百分表,加载到试验 梁完全破坏,记录混凝土应变最大值和荷载最大值。
人员分工
每组11人,具体工作: 试验加载1人:控制手动油泵,根据力传感器的读 数稳定每级加载量。 测读电阻应变仪3人:负责电阻应变仪的检查和调 试,测读各个电阻应变片的读数。 应变仪数据记录1人 测读百分表3人:负责测读并记录百分表读数。 观察裂缝2人:负责观察裂缝的开展情况,并对裂 缝进行描述。 总体协调1人
梁的挠度、纵筋拉应力、截面应变试验曲线
梁跨中挠度 f 实测图
纵向钢筋应力 s实测图
纵向应变沿梁截面高度分布实测图
• 5.高压油泵全套设备
• 6.千斤顶(自重0.01kN/只) • 7.工字钢分配梁(自重0.07kN/根)
• 8.裂缝观察பைடு நூலகம்和裂缝宽度量测卡
百分表
高压油泵
• 试验加载
进行1~3级预载,预加载值不宜超过试件开裂荷载计算 值的50% ,每级稳定1min,然后卸载。加载过程中检 查仪表是否正常。
1 2
1
500
2
400 1400
应变片 500
试验梁配筋图
2 6 6@100
160 20 140
20 140
160
2 10
2 10
100
100
1-1
2-2
100
350
250
250
350
100
千斤顶 百分表
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《混凝土结构设计原理》实验报告实验一钢筋混凝土受弯构件正截面试验专业12 级 1 班学号二零一四年十月二十六号仲恺农业工程学院城市建设学院目录1.实验目的: (2)2.实验设备: (2)试件特征 (2)试验仪器设备: (2)3.实验成果与分析,包括原始数据、实验结果数据与曲线、根据实验数据绘制曲线等。

(2)实验简图 (2)适筋破坏-配筋截面: (3)超筋破坏-配筋截面 (3)少筋破坏-配筋截面 (3)3.1 适筋破坏: (11)(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

(11)(2)绘出试验梁p-f变形曲线。

(计算挠度) (11)(3)绘制裂缝分布形态图。

(计算裂缝) (12)(4)简述裂缝的出现、分布和展开的过程与机理。

(12)(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。

(13)3.2 超筋破坏: (4)(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

(4)(2)绘出试验梁p-f变形曲线。

(计算挠度) (4)(3)绘制裂缝分布形态图。

(计算裂缝) (6)(4)简述裂缝的出现、分布和展开的过程与机理。

(6)(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。

(7)3.3 少筋破坏: (7)(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

(8)(2)绘出试验梁p-f变形曲线。

(计算挠度) (8)(3)绘制裂缝分布形态图。

(计算裂缝) (9)(4)简述裂缝的出现、分布和展开的过程与机理。

(9)(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。

(10)4.实验结果讨论与实验小结,即实验报告的最后部分,同学们综合所学知识及实验所得结论认真回答思考题并提出自己的见解、讨论存在的问题。

(13)(院、系)专业班组混凝土结构设计原理课实验一钢筋混凝土受弯构件正截面试验1.实验目的:①了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程。

②观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征。

③测定或计算受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。

2.实验设备:试件特征(1)根据试验要求,试验的混凝土强度等级为C30(fck=20.1N/mm2,ftk=2.01N/mm2,fc=14.3N/mm2, Ec=3.0×104 N/mm2),纵向受力钢筋强度等级HRB335级(极限抗拉强度标准值为fyk=335N/mm2),箍筋与架立钢筋强度等级HPB300级(屈服强度标准值为fy=270N/mm2)(2)试件为b×h=200×435 mm2,纵向受力钢筋的混凝土净保护层为20mm。

少筋、适筋、超筋的箍筋是Ф12100,保证不发生斜截面破坏。

(3)梁的受压区配有两根Ф10的架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置试验仪器设备:(1)静力试验台座、反力架、支座与支墩(2)手动式液压千斤顶(3)20T荷重传感器(4)YD-21型动态电阻应变仪(5)X-Y函数记录仪(6)YJ-26型静态电阻应变仪及平衡箱(7)读数显微镜及放大镜(8)位移计(百分表)及磁性表座(9)电阻应变片、导线等3.实验成果与分析,包括原始数据、实验结果数据与曲线、根据实验数据绘制曲线等。

实验简图适筋破坏-配筋截面 加载:(注明开裂荷载值、纵向受拉钢筋达到设计强度fy 时的荷载值、破坏荷载值)加载: cr F =0.5KN y F =95.6KN u F =96.4KN超筋破坏-配筋截面 加载:(注明开裂荷载值、纵向受拉钢筋达到设计强度fy 时的荷载值、破坏荷载值)加载: cr F =0.5KN u F =135.1 KN少筋破坏-配筋截面: 加载:(注明开裂荷载值、纵向受拉钢筋达到设计强度fy 时的荷载值、破坏荷载值)加载: cr F =0.4KN u F =7.3KN3.1 适筋破坏:(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

理论计算:1tk 1389 2.0112320.6161.020.12000.616() 2.011232(389)0.9625220.96250.47342.0333351232102.6671.020.1200()2o tk s ck cr s o cr cr yk s ck y yk s o h f A x mm f b x M f A h KN mM F KNa f A x mmf b x M f A h αα=⨯===⨯⨯=-=⨯⨯-====⨯===⨯⨯=-开裂时:开裂荷载:屈服时:1102.6673351232(389)139.362139.3668.552.0334551232139.441.020.1200139.44()4551232(389)178.9822178.98:88.042.033y y stk s ck u stk s o u u KN mM F KNa f A x mmf b x M f A h KN mM F KNa α=⨯⨯-====⨯===⨯⨯=-=⨯⨯-====屈服荷载:破坏时:破坏荷载通过分析对比,实验数据跟理论数据存在着误差,主要原因:1实验时没有考虑梁的自重,而计算理论值时会把自重考虑进去;2.计算的阶段值都是现象发生前一刻的荷载,但是实验给出的却是现象发生后一刻的荷载;3.破坏荷载与屈服荷载的大小相差很小,1.5倍不能准确的计算破坏荷载;4.整个计算过程都假设中和轴在受弯截面的中间。

(2)绘出试验梁p-f 变形曲线。

(计算挠度)054012323892.01012320.10563.01020038912320.02830.5200435s s s E c s te te A h E A E bh A A αρρ==⨯=•=⨯=⨯⨯===⨯⨯当构件开裂时,0.9625/k M KN M =6025213202600.962510 2.3080.8738912322.011.10.651.10.650.20.0283 2.30821012323893.506101.150.26 1.150.20.260.10560.962510610.11K sq s tkte sqs s s E K M h A f E A h B N mm M l f s B σηψψρσψαρ⨯===⨯⨯=-=-⨯=⨯⨯⨯⨯===⨯⋅++⨯++⨯⨯⨯==⨯负数,取213000.1123.50610mm =⨯以此类推,在不同的荷载下,可以得到相关的数据:F(kN) 0.4734 34.43 68.55 88.04 M k (KN·m) 0.9625 70 .36 178.98 sq σ(N/mm 2)2.308 167.89 334.24 429.26 ψ0.20.830.960.991310⨯s B 2()N mm 3.506 2. 1.924 1.891f (mm)0.112 13.742 29.647 38.741实验得出的荷载-挠度曲线:(3)绘制裂缝分布形态图。

(计算裂缝)620max1.912320.02830.50.520043528989.400.0283178.9810429.3/0.8738912322.011.10.65 1.00.0283429.3429.31.90.08 1.9 1.021cr s te eq te k sq s sq eq cr s s te a A bh d mm M N mm h A d W a c E ρρσηψσψρ====⨯⨯==⨯===⨯⨯=-⨯=⨯⎛⎫=+=⨯⨯ ⎪⨯⎝⎭最大裂缝:()5 1.920120.08989.400.570mm ⨯++⨯=⎡⎤⎣⎦(4)简述裂缝的出现、分布和展开的过程与机理。

①当荷载在0.5KN,梁属于弹性阶段,没有达到屈服更没有受到破坏。

②当荷载在0.5KN的基础上分级加载,受拉区混凝土进入塑性阶段,手拉应变曲线开始呈现较明显的曲线性,并且曲线的切线斜率不断减小,表现为在受压区压应变增大的过程中,合拉力的增长不断减小,而此时受压区混凝土和受拉钢筋仍工作在弹性围,呈直线增长,于是受压区高度降低,以保证斜截面力平衡。

当力增大到某一数值时,受拉区边缘的混凝土达到其实际的抗拉强度和极限拉应变,截面处于开裂前的临界状态。

③接着荷载只要增加少许,受拉区混凝土拉应变超过极限抗拉应变,部分薄弱地方的混凝土开始出现裂缝,此时荷载为9.7KN。

在开裂截面,力重新分布,开裂的混凝土一下子把原来承担的绝大部分拉力交给受拉钢筋,是钢筋应力突然增加很多,故裂缝一出现就有一定的宽度。

此时受压混凝土也开始表现出一定的塑性,应力图形开始呈现平缓的曲线。

此时钢筋的应力应变突然增加很多,曲率急剧增大,受压区高度急剧下降,在挠度-荷载曲线上表现为有一个表示挠度突然增大的转折。

力重新分布完成后,荷载继续增加时,钢筋承担了绝大部分拉应力,应变增量与荷载增量成一定的线性关系,表现为梁的抗弯刚度与开裂一瞬间相比又有所上升,挠度与荷载曲线成一定的线性关系。

随着荷载的增加,刚进的应力应变不断增大,直至最后达到屈服前的临界状态。

④钢筋屈服至受压区混凝土达到峰值应力阶段。

此阶段初力只要增加一点儿,钢筋便即屈服。

此时荷载为95.6KN。

一旦屈服,理论上可看作钢筋应力不再增大(钢筋的应力增量急剧衰减),截面承载力已接近破坏荷载,在梁钢筋屈服的部位开始形成塑性铰,但混凝土受压区边缘应力还未达到峰值应力。

随着荷载的少许增加,裂缝继续向上开展,混凝土受压区高度降低,中和轴上移,力臂增大,使得承载力会有所增大,但增大非常有限,而由于裂缝的急剧开展和混凝土压应变的迅速增加,梁的抗弯刚度急剧降低,裂缝截面的曲率和梁的挠度迅速增大。

(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。

配筋率越高,受弯构件正截面承载力越大,最大裂缝宽度值越小,但配筋率的提高对减小挠度的效果不明显。

3.2 超筋破坏:(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

0362.5mm h = 2s A 2463mm = 跨度为 a 2033mm =1ck s tk f bx A f α= )2(0cr xh A f M s tk -=12463 2.01 1.23151.020.1200s tkck A f x mm f b α⨯===⨯⨯1.23152.012463362.5- 1.7922cr M KN M ⎛⎫=⨯⨯=⋅ ⎪⎝⎭ 1.7920.8812.033cr cr M F KN a === 破坏弯矩、荷载: 14552463278.77120.1200stk s ck f A x mm a f b⨯===⨯⨯278.774552463362.5-250.042u M KN M ⎛⎫=⨯⨯=⋅ ⎪⎝⎭250.04122.992.033u u M F KN a === 通过分析对比,实验数据跟理论数据存在着误差,主要原因: (1)、构件的平整度,截面尺寸是否准确、混凝土实际保护层的厚度等施工质量会使计算值与实际抗弯承载力产生差异。

相关文档
最新文档