初二数学上下册知识点归纳练习
初二数学上下册知识点归纳练习

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
人教版初中数学八年级上册全册知识梳理及练习(基础版)(家教补习复习专用)

新人教版八年级上册数学全册知识点及巩固练习题与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD是ΔABC的高,或AD是ΔABC的BC边上的高,或AD⊥BC于D,或∠A DB =∠ADC=∠90°.注意:AD是ΔABC的高 ∠ADB=∠ADC=90°(或AD⊥BC于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠BAC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm >4cm .故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A、△ABC中,AD是BC边上的高正确,故本选项错误;B、△GBC中,CF是BG边上的高正确,故本选项错误;C、△ABC中,GC是BC边上的高错误,故本选项正确;D、△GBC中,GC是BC边上的高正确,故本选项错误.故选C.【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:C D5.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD=BD,即BC-AC=3.又∵ BC=8,∴ AC=5.答:AC的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC中,D、E分别为BC、AD的中点,且4ABCS△,则S阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC ,求证:∠A+∠B+∠C =180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F . 因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l , 因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】(2015春•安岳县期末)如图,在△ABC中,∠A=50°,E是△ABC内一点,∠BEC=150°,∠ABE的平分线与∠ACE的平分线相交于点D,则∠BDC的度数为多少?【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠EC B)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合4.(2015春•江阴市校级月考)已知如图∠xOy=90°,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于点C ,当点A ,B 分别在射线Ox ,Oy 上移动时,试问∠ACB 的大小是否发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而变化,请求出变化范围.【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C 的大小保持不变.理由:∵∠ABY=90°+∠OAB ,AC 平分∠OAB ,BE 平分∠ABY ,∴∠ABE=∠ABY=(90°+∠OAB )=45°+∠OAB ,即∠ABE=45°+∠CAB ,又∵∠ABE=∠C+∠CAB ,∴∠C=45°,故∠ACB 的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC 中,P 为内角平分线AD 、BE 、CF 的交点,过点P 作PG ⊥BC 于G ,试说明∠BPD 与∠CPG 的大小关系并说明理由.【答案】解:∠BPD =∠CPG .理由如下:∵ AD 、BE 、CF 分别是∠BAC 、∠ABC 、∠ACB 的角平分线,∴ ∠1=12∠ABC ,∠2=12∠BAC ,∠3=12∠ACB . ∴ ∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°. 又∵ ∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.与三角形有关的角(基础)巩固练习【巩固练习】一、选择题1.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是( ).A.直角三角形 B.等边三角形C.钝角三角形 D.等腰三角形2.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( ).A.40° B.80° C.60° D.120°3.(云南昆明)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=( ).A.80° B.90° C.100° D.110°4.(2015•绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°5.(山东济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ).A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形6.(山东菏泽)一次数学活动课上,小聪将一幅三角板按图中方式叠放.则∠α等于( ).A.30° B.45° C.60° D.75°二、填空题7.如图,AD⊥BC,垂足是点D,若∠A=32°,∠B=40°,则∠C=_______,∠BFD=_______,∠AEF=________.8.在△ABC中,∠A+∠B=∠C,则∠C=_______.9.根据如图所示角的度数,求出其中∠α的度数.10.如图所示,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)38°(即∠A =38°),飞到了C地.已知∠ABC=20°,现在飞机要到达B地,则飞机需以_______的角飞行(即∠BCD的度数).11.如图,有_______个三角形,∠1是________的外角,∠ADB是________的外角.12.(2014春•通川区校级期末)如图中,∠B=36°,∠C=76°,AD、AF分别是△ABC的角平分线和高,则∠DAF=度.三、解答题13.如图,求∠1+∠2+∠3+∠4的度数.14.已知:如图所示,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.15.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC,(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.16.如图是李师傅设计的一块模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠B=75°,∠C=85°,∠D=55°.能否判定模板是否合格,为什么?【答案与解析】一、选择题1. 【答案】D.2. 【答案】B;【解析】设∠B=2x°,则∠C=x°,由三角形的内角和定理可得,2x°+x°+60°=180°,解得x°=40°,∠B=2x°=80°.3. 【答案】D.4. 【答案】C;【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.5. 【答案】B;【解析】先求出三角形的三个内角度数,再判断三角形的形状.6. 【答案】D;【解析】利用平行线的性质及三角形的外角性质进行解答.二、填空题7. 【答案】58°,50°,98°;【解析】在Rt△ADC中,∠A=32°,∠C=58°;在Rt△BDF中,∠B=40°,∠BFD=50°;在△BEC,∠AEF=∠B+∠C=98°.8. 【答案】90°.9. 【答案】 (1)48°; (2)27°; (3)85°;【解析】充分利用:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.10.【答案】58°.11.【答案】8,△DBC,△ADE;【解析】考查三角形外角的定义.12.【答案】20;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=×68°=34°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=36°+34°=70°,∵AF⊥BC,∴∠AFD=90°,∴∠DAF=180°﹣∠ADC﹣∠AFD=180°﹣70°﹣90°=20°.三、解答题13.【解析】解:连接AD,在△ADC中,∠1+∠CAD+∠CDA=180°,在△ABD中,∠3+∠BAD+∠BDA=180°.∴∠1+∠2+∠3+∠4=∠1+∠CAD+∠BAD+∠3+∠CDA+∠BDA.=(∠1+∠CAD+∠CDA)+(∠3+∠BAD+∠BDA)=180°+180°=360°.14.【解析】解:设∠A=x°,则∠ABC=∠C=2x°.在△ABC中,由内角和定理有x+2x+2x=180°,∴ x=36°.∴∠C=72°,在△BDC中,∵ BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°,∴∠DBC=90°-∠C=18°.15.【解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==72°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.16.【解析】解:分别延长CB、DA交于点P.因为∠C=85°,∠D=55°,由三角形内角和可知∠P=180°-∠C-∠D=40°,即DA与CB相交成40°角.同理可得BA与CD相交成20°角.所以这个模板是合格的.多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释: (1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -; (3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°; 知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°; (3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF 中,从顶点A 出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?凸多边形 凹多边形【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
初二数学知识点归纳及例题

初二数学知识点归纳及例题初二数学知识点归纳(人教版)一、三角形。
1. 三角形的三边关系。
- 三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 例如:已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。
- 解析:根据三边关系,5 - 3 < x < 5+3,即2 < x <8。
2. 三角形的内角和定理。
- 三角形内角和为180°。
- 例如:在△ABC中,∠A = 50°,∠B = 60°,则∠C=180° - 50°-60° = 70°。
- 解析:直接利用三角形内角和定理,用180°减去已知的两个角的度数。
3. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角之和。
- 例如:在△ABC中,∠ACD是∠ACB的外角,∠A = 50°,∠B = 60°,则∠ACD=50° + 60°=110°。
- 解析:根据外角性质,∠ACD等于∠A与∠B的和。
二、全等三角形。
1. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。
- 解析:因为三边分别相等,满足SSS判定定理。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。
- 解析:两边及夹角对应相等,符合SAS判定定理。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。
- 解析:两角及其夹边相等,满足ASA判定定理。
初二数学知识点大全和练习题

初二数学知识点大全和练习题数学是一门重要的学科,对于初中生来说尤为重要。
在初二阶段,学生将进一步巩固和拓宽他们的数学知识,为更高级的数学学习做好准备。
本文将介绍初二数学的知识点大全,并提供一些练习题,以帮助学生巩固所学知识。
下面将根据数学的不同学习领域来展开阐述。
一、代数1. 整式与多项式- 定义:整式是若干个单项式通过加减运算得到的式子,多项式是若干个整式通过加减运算得到的式子。
- 多项式的运算法则:加法法则和乘法法则。
- 因式分解:将一个多项式表示为几个因子相乘的形式。
练习题:将下列多项式进行因式分解:1) 6x² + 5x2) x² - 43) 4x³ - 8x² + 2x2. 方程与不等式- 方程的定义:等号连接的含有未知数的式子。
- 解方程的方法:加减消元法、配方法、等式两边取对数等。
- 不等式的定义:包含大于(>)、小于(<)、大于等于(≥)、小于等于(≤)关系的式子。
- 解不等式的方法:由不等式性质得出解,进行图像法等。
练习题:求解下列方程或不等式的解集:1) 2x + 5 = 132) 3(x - 2) = 153) |2x - 8| > 10二、几何1. 平面几何- 图形的定义与性质:点、线段、角、圆等。
- 三角形的分类与性质:等边三角形、等腰三角形、直角三角形等。
- 五类基本几何关系:相等、相似、全等、平行、垂直。
练习题:判断下列命题是否正确,并说明理由:1) 两条相互垂直的直线一定不平行。
2) 等腰三角形的底边一定平行于其他两边之一。
3) 两个全等的圆一定具有相同的半径。
2. 空间几何- 空间几何的基本概念:点、直线、平面、轴、棱、面等。
- 空间几何中的基本定理:如垂直平分线定理、平行四边形的性质等。
- 点、直线、平面之间的位置关系:如点在线上、两条直线相交于一点、点在平面上等。
练习题:判断下列正误,并说明理由:1) 两条异面直线一定相交。
初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

描述:例题:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.1 与三角形有关的线段一、学习任务1. 理解三角形及其有关的概念.2. 掌握三角形三边关系,并能够熟练运用这个三角形的三边关系判定已知的三条线段能否构成三角形.3. 知道三角形具有稳定性,并且能够运用到实际问题中去.二、知识清单三角形的相关概念 三角形的三边关系 三角形的稳定性三、知识讲解1.三角形的相关概念三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形(triangle ).按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形.三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高(altitude ).三角形的中线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线(median ).三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(angular bisector ).三角形的重心三角形三条中线的交点叫做三角形重心.三角形的内心三角形三条内角平分线的交点叫做三角形内心.三角形的垂心三角形三边上的三条高所在直线交于一点叫做三角形垂心.三角形的外心三角形三边的垂直平分线的交点叫做三角形外心.三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点叫做三角形的旁心.一个三角形的三个内角的度数之比为 ,这个三角形是( )2:3:7中阴影部分的面积是_______.1∠DAE线,则 的度数为______.描述:例题:3.三角形的稳定性三角形具有稳定性,有着稳固、坚定、耐压的特点.四、课后作业 (查看更多本章节同步练习题,请到快乐学)(1) ,,;(2) ,,;(3) ,,();(4) ,,().解:(1) 不能;(2) 不能;(3) 能;(4) 不能.(1) 与 的和小于 ,所以不能组成三角形;(2) 与 的和等于 ,所以不能组成三角形;(3) , 均小于 ,而 ,因为 ,所以 ,所以 ,它们可以组成三角形;(4) 最大,而 ,因此不能组成三角形.3610358+3a 2+4a 2+7a 2a ≠03a 5a 8a a >03610358+3a 2+4a 2+7a 2(+3)+(+4)=2+7=(+7)+a 2a 2a 2a 2a 2a ≠0>0a 2(+3)+(+4)>+7a 2a 2a 28a 3a +5a =8a 一个不等边三角形的边长都是整数,且周长是 ,这样的三角形共有多少?分析:已知中的数较少,只知道周长为 ,应该抓住不等边三角形的边长都是整数这一个条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.解:设 ,则 ,即 ,所以 .因为 ,, 都是正整数,所以若 ,则其他两边必然为 ,.由于 ,即 ,故线段 ,, 不能组成三角形.当然 更不可能是 或 ,因而有 .当 时,,,不符合条件;当 时,,,符合条件.所以符合条件的三角形只有 个.1212a <b <c a +b +c >2c 2c <12c <6a b c c =3a =1b =21+2=3a +b =c a b c c 124⩽c <6c =4a =2b =3c =5a =3b =41下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形解:C.答案: 1. 如图,在 中, 的对边是A .B .C .D .C △ABF ∠B ()ADAE AF AC2. 如果一个三角形的两边长分别为 和 ,则第三边长可能是 A .B .C .D .24()2468高考不提分,赔付1万元,关注快乐学了解详情。
八年级上册数学第二单元:全等三角形知识点与练习

第二单元全等三角形本单元的学习目标①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用②难点:三角形全等的判断方法及应用;角平分线的性质及应用在中考中的重要性:①中考热点,初中数学中的重点内容②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识点综合,有的探究三角形全等条件或结论的开放性题目③题型以选择题、填空题、解答题为主【知识归纳】1.全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12.全等三角形的性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等3.全等三角形的判定方法(1)三边相等(SSS);(2)两边和它们的夹角相等(SAS);(3)两角和其中一角的对应边相等(AAS);(4)两角和它们的夹边相等(ASA);(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。
如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。
4.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。
5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。
判定三角形全等常用思路公理及定理练笔1、一般三角形全等的判定(如图)(1) 边角边(SSS) AAB=A′B′ BC=B′C ′ _______=_____∴△ABC≌△A′B′C′(2)边角边(SAS)AB=A′B′∠B=∠B′ _______=_____ B C∴△ABC≌△A′B′C′A′(3) 角边角(ASA)∠B=∠B′ ____=_____ ∠C=∠C′∴△ABC≌△A′B′C′B ′ C′(4) 角角边(AAS)∠A=∠A′∠C=∠C′ _______=_____∴△ABC≌△A′B′C′2、直角三角形全等的判定:斜边直角边定理(HL)AB=AB _____=_____∴Rt△ABC≌Rt△A′B′C′B C B′ C′二、全等三角形的性质1、全等三角形的对应角_____2、全等三角形的对应边、对应中线、对应高、对应角平分线_______注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。
七八年级数学知识点全总结及七年级重点章节习题及答案

暑假补习针对性练习(七八年级知识点+重点章节练习题)第一部分:七八年级知识点人教版数学七、八年级知识点汇总人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容人教版七年级数学下册主要包含了相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理与描述六章内容人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。
九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。
人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。
七年级上册人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容第一章 有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.【注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数】(3)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 重点② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;【注意:绝对值的意义是数轴上表示某数的点离开原点的距离】(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;【注意:0没有倒数;若 a ≠0,那么a 的倒数是a1】 若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数; 【注意:零不能做除数,无意义即0a 】13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 如23叫2的3次幂,其中2是底数,3是指数。
人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上下册知识点总结及其练习第一章一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2 会用各种统计图表示出一些实际的问题第三章全等三角形1 全等三角形的性质:全等三角形的对应边、对应角相等2 全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3 角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上。
第四章轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4 等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等。
(等角对等边)5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。
第五章整式1 整式定义、同类项及其合并2 整式的加减3 整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4 乘法公式(1)平方差公式(2)完全平方公式5 整式的除法(1)同底数幂的除法(2)整式的除法6 因式分解(1)提共因式法(2)公式法(3)十字相乘法初二下册知识点第一章分式1 分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2 分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3 整数指数幂的加减乘除法4 分式方程及其解法第二章反比例函数1 反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2 反比例函数在实际问题中的应用第三章勾股定理1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1 平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析加权平均数、中位数、众数、极差、方差∙人人网新浪微博开心网MSNQQ空间6回答时间:2011-3-26 12:19 |我来评论向TA求助回答者:linxj5201|一级擅长领域:暂未定制参加的活动:暂时没有参加的活动相关内容∙2011-3-23自贡地区初二数学下册知识点1∙2010-5-29初二数学下册知识点64∙2011-3-10初二数学下册分式知识点66∙2011-3-30初二数学几何知识点归纳∙2011-3-13求初二数学(下)知识点归纳北师大版的更多关于初二数学知识点的问题>>等待您来回答∙1回答人教版初二数学下册勾股定理的知识点有哪些∙0回答请问谁有北师大版初二下册数学期中知识点总结?谢,加分!∙2回答10请问现在上海初二数学下册在教什么?最好答案里能附一些该部分内容的...∙3回答初二知识点掌握不牢靠怎么办更多等待您来回答的问题>>其他回答共6条看书去回答者:热心网友| 2011-3-25 21:26一般参考书上都总结得有,这用不好回答你!回答者:YY1039795372|三级| 2011-3-25 23:52方程四边形一次函数就这些了回答者:无限_希望|四级| 2011-3-26 09:30全等三角形回答者:段灵妹|二级| 2011-3-26 12:27第一章一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2 会用各种统计图表示出一些实际的问题第三章全等三角形1 全等三角形的性质:全等三角形的对应边、对应角相等2 全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3 角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上。
第四章轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4 等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等。
(等角对等边)5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。
第五章整式1 整式定义、同类项及其合并2 整式的加减3 整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4 乘法公式(1)平方差公式(2)完全平方公式5 整式的除法(1)同底数幂的除法(2)整式的除法6 因式分解(1)提共因式法(2)公式法(3)十字相乘法初二下册知识点第一章分式1 分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2 分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3 整数指数幂的加减乘除法4 分式方程及其解法第二章反比例函数1 反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2 反比例函数在实际问题中的应用第三章勾股定理1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1 平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
回答者:寂寞vs地狱|二级| 2011-3-26 13:18第一章轴对称图形1. 成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。