特殊数的整除特征

合集下载

能被特殊数整除的特征

能被特殊数整除的特征

能被特殊数‎整除的特征‎1、能被2整除‎的数的特征‎。

如果一个数‎能被2整除‎,那么这个数‎末尾上的数‎为偶数,“0”、“2”、“4”、“6”、“8”。

2、能被3整除‎的数的特征‎。

如果一个数‎能被3整除‎,那么这个数‎所有数位上‎数字的和是‎3的倍数。

例如:225能被‎3整除,因为2+2+5=9,9是3的倍‎数,所以225‎能被3整除‎。

3、能被4整除‎的数的特征‎。

如果一个数‎的末尾两位‎能被4整除‎,这个数就能‎被4整除。

例如:15692‎512能不‎能被4整除‎呢?因为156‎92512‎的末尾两位‎12,能被4整除‎,所以156‎92512‎能被4整除‎。

4、能被5整除‎的数的特征‎。

若一个数的‎末尾是0或‎5则这个数‎能被5整除‎。

5、能被7整除的数的‎特征。

方法一:若一个整数‎的个位数字‎截去,再从余下的‎数中,减去个位数‎的2倍,如果差是7‎的倍数,则原数能被‎7整除。

如果差太大‎或心算不易‎看出是否是‎7的倍数,就需要继续‎上述「截尾、倍大、相减、验差」的过程,直到能清楚‎判断为止。

例如,判断133‎是否是7 的倍数的过‎程如下:13-3×2=7,所以133‎是7的倍数‎;又例如判断‎6139是‎否7的倍数‎的过程如下‎:613-9×2=595 ,59-5×2=49,所以613‎9是7的倍数‎,以此类推。

方法二:如果一个多‎位数的末三‎位数与末三‎位以前的数‎字所组成的‎数的差,是7的倍数‎,那么这个数‎就能被7整‎除。

例如:28067‎8末三位数‎是678,末三位以前‎数字所组成‎的数是28‎0,679-280=399,399能被‎7整除,因此280‎679也能‎被7整除。

方法三:首位缩小法‎,减少7的倍‎数。

例如,判断452‎669能不‎能被7整除‎,45266‎9-42000‎0=32669‎,只要326‎69能被7‎整除即可。

可对326‎69继续,32669‎-28000‎=4669,4669-4200=469,469-420=49,49当然被‎7整除所以4526‎69能被7‎整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征69111

能被2、3、4、5、6、7、8、9等数整除的数的特征69111

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

能被7,11,13整除的数的特征的原理

能被7,11,13整除的数的特征的原理

能被7,11,13整除的数的特征的原理能被7, 11, 13整除的数的特征的原理解析引言当我们进行数学运算时,我们可能会遇到一些特殊的数,它们能够被7,11和13整除。

这些特殊的数在数论中有着重要的地位,同时也有着一些有趣的特征。

本文将深入探讨这些数的特点及其原理。

1. 数的整除性质•整除定义:当一个数除以另一个数时,如果能够得到一个整数,那么我们称这个数能够被另一个数整除。

•整除特性:如果一个数能够同时被两个或更多个数整除,那么它也能够被这些数的乘积整除。

2. 7的整除特征•规则1:能被7整除的数,其个位数的十进制表示减去2倍的十位数的十进制表示,结果能够被7整除。

–例如,35是7的倍数,35 - (2 * 3) = 29,29被7整除。

•规则2:能被7整除的数,将其个位数的数字去掉,再用去掉的数字减去2倍的余数,结果能够被7整除。

–例如,56是7的倍数,5 - (2 * 6) = -7,-7被7整除。

3. 11的整除特征•规则1:能被11整除的数,将奇数位上的数字之和与偶数位上的数字之和相减,结果能够被11整除。

–例如,121是11的倍数,(1+1) - 2 = 0,0被11整除。

•规则2:能被11整除的数,将数从右往左数每一位数字依次相加或减,结果能够被11整除。

–例如,363是11的倍数,3 - 6 + 3 = 0,0被11整除。

4. 13的整除特征•规则1:能被13整除的数,将个位数的数字乘以4,再将结果与剩余数字相减,结果能够被13整除。

–例如,13是13的倍数,1 * 4 - 3 = 1,1被13整除。

•规则2:能被13整除的数,将数从右往左数每一位数字依次乘以进制的幂次方,并将结果相加或相减,结果能够被13整除。

–例如,169是13的倍数,1 * 13^2 + 6 * 13^1 - 9 = 0,0被13整除。

5. 组合规则如何判断一个数能否被7、11和13整除呢?我们可以将上述规则进行组合使用。

4,8,9整除的数的特征

4,8,9整除的数的特征

奥数4,8,9整除的数的特征我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。

数的整除具有如下性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。

例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。

例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质 3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。

例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。

为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。

因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。

因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。

这就证明了(4)。

类似地可以证明(5)。

(6)的正确性,我们用一个具体的数来说明一般性的证明方法。

能被1234567等这些小数整除的整数的特征(完整版)

能被1234567等这些小数整除的整数的特征(完整版)

能被小数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

1、1能整除所有整数2、能被2整除的数,个位上的数能被2整除(偶数),那么这个数能被2整除3、能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除4、能被4整除的数,个位和十位所组成的两位数能被4整除(即整数的末尾两位数能被4整除),那么这个数能被4整除5、能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除6、能被6整除的数,各数位上的数字和能被3整除的偶数,(既能被2整除又能被3整除)7、能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;例如,判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

8、能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除(即最后三位能被8整除的数,这个数就能被8整除)。

9、能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除10、能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零的数)11、能被11整除的数,把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

这种方法叫“奇偶位差法”例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23 偶位数位的和4+1+7=12 23-12=11 因此491678能被11整除。

整除的性质和特征

整除的性质和特征

整除的性质和特征整除问题是整数内容最基本的问题;理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感;一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b 整除或b能整除a,记作b/a,读作“b整除a”或“a能被b整除”;a叫做b的倍数,b叫做a 的约数或因数;整除属于除尽的一种特殊情况;二、整除的五条基本性质:1如果a与b都能被c整除,则a+b与a-b也能被c整除;2如果a能被b整除,c是任意整数,则积ac也能被b整除;3如果a能被b整除,b能被c整除,则积a也能被c整除;4如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;5任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数;三、一些特殊数的整除特征:根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便;1如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征;①若一个整数的个位数字是2的倍数0、2、4、6或8或5的倍数0、5,则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除;推理过程:2、5都是10的因数,根据整除的基本性质2,可知所有整十数都能被10、2、5整除;任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质1,则这个数能被2或5整除;又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质2,可知任意整百数都能被4、25整除,任意整千数都能被8、125整除;同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质1,可以推导出上面第②条、第③条整除特征;同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推;2若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除;推理过程:因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几;因此,对于任意整数ABCDE…_______________都可以写成下面的形式n为任意整数:9n+A+B+C+D+E+……9n一定能被3或9整除,根据整除的基本性质1,只要这个数各位上的数字和A+B +C+D+E+……能被3或9整除,这个数就能被3或9整除;3用“截尾法”判断整除性;①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除;根据整除的基本性质3,以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止;推理过程:设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数;一个数截尾减2后,所得数为x-2y;因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了x-2y个10;如下式:10x-20y+y-y﹦x-2y×10﹦10x +y-21y;根据整除的基本性质,如果x-2y能被7整除,则x-2y×10就能被7整除,即10x+y-21y能被7整除,21y是7的倍数,可以推出原数10x+y一定能被7整除;“截尾加4”就是原数截去1个y、加上40个y,总共加了39y13的倍数,得到x+4y 个10,“截尾加4”所得x+4y如果能被13整除,原数必能被13整除;同理,“截尾减1”就是原数减去了11个y11的倍数,原数剩下x-y个10,“截尾减1”所得x-y能被11整除,原数必能被11整除;“截尾减5”就是原数减去了51个y17的倍数,原数剩下x-5y个10,“截尾减5”所得x-5y能被17整除,原数必能被17整除;“截尾加2”就是原数加了19y19的倍数,得到x+2y个10,“截尾加2” 所得x+2y如果能被19整除,原数必能被19整除;依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等;4 “截尾法”的推广使用;①若一个数的末三位数与末三位之前的数字组成的数相减之差大数减小数能被7、11或13整除,则这个数一定能被7、11或13整除;②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除;比较适合对五位数进行判断推理过程:①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x 为任意整数;当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到x-y;这里x 减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下x-y个1000;如下式:1000x-1000y+y-y﹦1000x-y﹦1000x+y-1001y7×11×13﹦1001,7、11和13都是1001的因数;综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到x-y能被7、11或13整除,即1000x+y-1001y能被7、11或13整除,则原数必能被7、11或13整除;当y大于x时,可得1000y-x﹦1001y-1000x+y,如果y-x能被7、11或13整除,则原数必能被7、11或13整除;②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x 为任意整数;末四位与之前数字组成数的5倍相减之差即y-5x;10000y-5x﹦1005y-510000x+y因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即y-5x能被23或29整除,即10000y-5x能被23或29整除,则原数必能被23或29整除;依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等;5若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除;推理过程:一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几;一个整数奇数位上每个计数单位除以11都“缺1”余数为10,如10、1000、100000……等,除以11都“缺1”, 因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几;“移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除;。

数的整除

数的整除

2. 与3有同种倍数特征的数据: 9的倍数的特征:一个数的各个数位上的数的和 是9的倍数,这个数就是9的倍数。 例:4536是9的倍数吗? 解答:(4+5+3+6)÷9=2,是9的倍数, 所以4536是9的倍数。
3. 其他一些数据的倍数的特征:
7的倍数的特征:把一个数的末尾数字割去,从留下的 数中减去所割去的数字的2倍,这样继续 做下去,如果最后的结果是7的倍数,那么 原来这个数就是7的倍数。 例:判断:4151能否被7整除?
判断1884924与2560437, 能否被27或37整除。 能被27(或37)整除的数的特征:对于任何一个 自然数,从个位开始,每三位为一节将其分成若 干节,然后将每一节上的数连加,如果所得的和 能被27(或37)整除,那么这个数一定能被27 (或37)整除。
判断1884924与2560437,能 否被27或37整除。 解:1884924=1,884,924, 1+884+924=1809。 因为,1809能被27整除,不能被37整除。 所以,1884924能被27整除,但不能被37整除。
所有六位数是:123654、321654
5. 一个整数乘以17后,乘积的后四位数是2002, 这样的整数中最小的是多少? 解答:用□2002除以17,要求整数中最小的 是多少?这个数字最小就是12002。 12002÷17=706, 符合题目要求的最小的整数是706。
ABC分别是几时,使得七位数A6474BC能分别 被8、9和25整除。 分析:本体可以利用能被8、9和25整除的数的特 征,以及整除的性质3来解决。 ① 能被8整除的数的特征:一个数的末三位能被8整除。 ② 能被9整除的数的特征:一个数各个数位上的数字 之和能被9整除。 ③ 能被25整除的数的特征:一个数的末两位能被25整除。

奥数 整除或求余特征法

奥数 整除或求余特征法

整除或求余法则
一、末系:
2:末位是0、2、4、6、8的数可以被2整除
5:末位是0或5的数可以被5整除
4:末两位是4的倍数的数可以被4整除
25:末两位是25的倍数的数可以被25整除(00、25、50、75)
8和125:末三位是8(8的整除)的倍数的数可以被8整除;末三位是125(125的整除)的倍数的数可以被125整除
16和625:末四位是16(16的整除)的倍数的数可以被16整除;末四位是625(625的整除)的倍数的数可以被625整除
二、和系:
3:数字和可以被3整除的数,就可以被三整除
9:数字和可以被九整除的数,就可以被九整除
可以用弃九法,将和为九的几个数去掉,再加、除
还有乱切法,有规律地将一个大数切成好多小的数,加、除算余
注:99从末位开始两位断开求和,为99的倍数。

999从末位开始,三位断开求和,为999的倍数。

9999从末位开始,四位断开求和,为9999的倍数。

三、差系:
11:奇位和减偶位和,差求余,不够减加上11
7、11和13:从末位开始三位断开,奇三位减偶三位,求余不够再加7或11或13(别忘
了0也是7、11、13的倍数)
四、拆分系:
一定要拆成因数互质
来源于大牛课堂,励老师讲课。

下一节椅子数特征(较短)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊数的整除特征
几个重要的整除特征:
(1)能被2整除的数的特征:一个整数的个位上的数能被2整除,这个数就能被2整除。

(2)能被3整除的数的特征;一个数的各位上的数的和能被3整除,这个数就能被3整除。

(3)能被4整除的数的特征:一个整数的十位和个位所组成的数能被4整除,这个数就能被4整除。

(4)能被5整除的数的特征:一个整数的个位上的数能被5整除,这个数就能被5整除。

(5)能被7整除的数的特征:一个数的末三位所组成的数与除末三位数外所有数字组成的数的差能被7整除,这个数就能被7整除。

(6)能被8整除的数的特征:一个整数的百位、十位、个位所组成的数能被8整除,这个数就能被8整除。

(7)能被9整除的数的特征;一个数的各位上的数的和能被9整除,这个数就能被9整除。

(8)能被11整除的数的特征:一个数的末三位所组成的数与除末三位数外所有数字组成的数的差能被11整除,这个数就能被11整除;或者一个数的奇数位上数字的和与偶数位上的数字和的差能被11整除,这个数就能被11整除。

(9)能被13整除的数的特征:一个数的末三位所组成的数与除末三位数外所有数字组成的数的差能被13整除,这个数就能被13整除。

(10)能被25整除的数的特征:一个整数的十位和个位所组成的数能被25整除,这个数就能被25整除。

(11)能被125整除的数的特征:一个整数的百位、十位、个位所组成的数能被125整除,这个数就能被125整除。

例1、在□内填上适当的数,使五位数29□7□能被4整除,也能被3整除。

练习:1、在235后面补上三个数字,组成一个六位数,使它分别能被3、4、5整除。

这个六位数最小是多少?
2、有一个四位数3AA1,它能被9整除。

A代表的数字是几?
3、在□内填上合适的数,使六位数8□12□能被125整除,也能被9整除。

例2、有这样两个五位数,一个能被11整除,一个能被7整除。

它们的前四位都是9876,而末位数字不同。

求这两个五位数的和。

练习:4、一个自然数与19的乘积的最后三位数是321,求满足条件的最小的自然数。

5、一个三位数能被3整除,去掉它的末位数后,所得的两位数是17的倍数,这样的三位数中,最大是几?
例3、在□内填上合适的数,使五位数2□10□能被72整除。

练习:6、七位数22A333A能被4整除,且它的末两位3A是6的倍数,那么A=()。

7、已知87654321□□这个十位数能被36整除,那么,这个数个位上的数最小是几?
8、一个六位数12□34□是88的倍数,这个数除以88所得的商是多少?
例4、某校六年级共有学生72人,每人买了一本语文课外读物和一本数学课外读物。

已知两本书的单价不同,但是语文课外读物和数学课外读物的总价都在200元与300元之间,且元位上的数都是8,角位上的数都是4。

问:每个学生为购买这两本书付了多少钱?
座的人数是听数学讲座人数的6倍。

还剩下一个小组在教师里讨论问题,这一组是第几组?
练习:9、商店里有6只不同的货箱,分别装有货物15,16,18,19,20,31千克。

两个顾客买走了其中5箱货物,而且一个顾客的货物重量是另一个顾客的2倍,商店里剩下的那箱货物是多少千克?
10、小佳的储蓄筒里存有二分和五分的硬币,他把这些硬币倒出来,估计有五、六元钱。

小佳把这些硬币分成钱数相等的两堆,第一堆中二分硬币和五分硬币的个数相等;第二堆中二分硬币和五分硬币的钱数相等。

你知道小佳存了多少钱吗?
综合练习:1、应当在如下的□中填上0~9间哪一个数字,才能使得到的数能被7整除。

66...6□55 (5)
2、在478后面补上三个数字,组成一个六位数,使它能被60整除,且使这个六位数尽可能小。

3、一个无重复数字的五位数3□6□5,千位和十位数字看不清了,但知这个数是75的倍数。

问这种五位数有哪几个?
4、六位数□1993□能被33整除,这样的六位数是多少?
5、如果六位数1993□□能被105整除,那么,它的最后两位数是多少?
6、从1到100的自然数中,所有不能被9整除的数的和是多少?
7、你随便写一个三位数,接在后面把这个三位数再写一遍,组成形如ABCABC这样的六位数。

这样的六位数能不能被7、11、13整除?为什么?
8、商店有三种油漆,牌子和颜色都不同,红色的每桶1.5千克,黄色的每桶2千克,白色
的每桶2.5千克。

为了方便顾客,商店把这三种油漆改装成每桶0.5千克油漆的小桶。

结果“球光牌”装了280桶,“江海牌”装了255桶,“前进牌”装了292桶。

请问:每种牌子的油漆各是什么颜色?。

相关文档
最新文档