三角形内角和综合习题
三角形内角的和练习题

三角形内角的和练习题1. 已知一三角形的两个内角分别为60°和70°,求第三个内角的度数。
解答:三角形的内角和为180°,已知两个内角为60°和70°,将其相加得130°,所以第三个内角的度数为180°-130°=50°。
2. 若一三角形的两个内角的度数分别是x°和(2x-10)°,求第三个内角的度数。
解答:三角形的内角和为180°,已知两个内角的度数分别为x°和(2x-10)°,将其相加得x° + (2x-10)° = 180°,整理方程可得3x - 10 = 180,解得x = 63,所以第三个内角的度数为2x-10 = 2(63)-10 = 116°。
3. 已知一三角形的两个内角的度数之比为3:4,求这两个内角的度数。
解答:设一个内角的度数为3x,另一个内角的度数为4x,根据题意得到方程3x:4x = 3:4,通过求解比例系数可得3x = 3,解得x = 1,所以第一个内角的度数为3x = 3,第二个内角的度数为4x = 4。
4. 若一三角形的两个内角的度数之差为20°,求这两个内角的度数。
解答:设一个内角的度数为x,另一个内角的度数为x+20°,根据题意得到方程x - (x+20°) = 20°,整理方程可得-20° = 20°,这是一个不可能成立的等式,所以不存在满足条件的三角形。
5. 若一三角形的两个内角的度数之和为110°,求这两个内角的度数。
解答:设一个内角的度数为x,另一个内角的度数为110°-x,根据题意得到方程x + (110°-x) = 110°,整理方程可得110° = 110°,这是一个恒等式,所以存在无数个满足条件的三角形,例如一个内角为50°,另一个内角为60°。
三角形内角和练习题

三角形内角和练习题在高中数学中,我们学习了各种各样的几何形状与性质。
其中,三角形是最基础且重要的几何形状之一。
在三角形的研究中,内角和是一个常见的概念和性质。
本文将为您提供一系列关于三角形内角和的练习题。
练习题1:已知三角形ABC,其中∠A=60°,∠B=40°,求∠C的度数。
解答:根据三角形内角和的性质可知,三角形的内角和是180°。
因此,∠C=180°-∠A-∠B=180°-60°-40°=80°。
练习题2:已知三角形DEF,其中∠D=45°,∠E=30°,求∠F的度数。
解答:根据三角形内角和的性质可知,三角形的内角和是180°。
因此,∠F=180°-∠D-∠E=180°-45°-30°=105°。
练习题3:已知三角形GHI,其中∠G=90°,∠H=30°,求∠I的度数。
解答:∠I=180°-∠G-∠H=180°-90°-30°=60°。
练习题4:已知三角形JKL,其中∠J=50°,∠K=80°,求∠L的度数。
解答:根据三角形内角和的性质可知,三角形的内角和是180°。
因此,∠L=180°-∠J-∠K=180°-50°-80°=50°。
练习题5:已知三角形MNO,其中∠M=∠N,∠O=90°,求∠M和∠N的度数。
解答:根据三角形内角和的性质可知,三角形的内角和是180°。
由于∠O=90°,所以∠M+∠N=180°-∠O=180°-90°=90°。
根据题意可知∠M=∠N,因此,∠M和∠N都是45°。
练习题6:已知三角形PQR,其中∠P=3x°,∠Q=4x°,∠R=5x°,求∠P、∠Q 和∠R的度数。
三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。
三角形的内角和 练习题

三角形的内角和练习题1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。
A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。
A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。
平行线与三角形内角和的综合应用学案,附练习题含答案

平行线与三角形内角和的综合应用学案知识梳理:1.三角形的内角和等于1800.已知:如图,△ABC .求证:∠BAC +∠B +∠C =180°.证明:如图,过点A 作MN||BC .∵MN ∥BC (已作)∴∠B =∠1,∠C =∠2(两直线平行,内错角相等)∵∠BAC+∠1+∠2=180°(平角的定义)∴∠BAC +∠B +∠C =180°(等量代换)2.直角三角形两锐角互余.例:如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD上一点,PE ⊥AD 交BC 的延长线于点E .若∠BAC =60°,∠ACB =85°,则∠E 的度数为_____________.解:如图,∵AD 平分∠BAC ()∴112BAC ∠=∠()∵∠BAC =60°()∴∠1=30°(等式性质)在△ACD 中,∠1=30°,∠ACB =85°∴∠EDP =180°-∠1-∠ACB=180°-30°-85°=65°()∵PE ⊥AD ()∴∠EPD =90°()∴90E EDP ∠=︒-∠9065=︒-︒25=︒()①读题标注②梳理思路要求∠E 的度数,可以将∠E 放在Rt △PDE 中,利用直角三角形两锐角互余求解,由PE ⊥AD ,则∠EPD =90°,所以需要求出∠ADC 的度数.结合已知条件,把∠ADC 放在△ADC 中利用三角形内角和定理求出.③过程书写解:如图,∵AD 平分∠BAC (已知)∴112BAC ∠=∠(角平分线的定义)∵∠BAC =60°(已知)∴∠1=30°(等式性质)在△ACD 中,∠1=30°,∠ACB =85°∴∠EDP =180°-∠1-∠ACB=180°-30°-85°=65°(三角形内角和等于180°)∵PE ⊥AD(已知)∴∠EPD =90°(垂直的定义)∴90E EDP ∠=︒-∠9065=︒-︒25=︒(直角三角形两锐角互余)练习题1.如图,在△ABC 中,∠A =50°,∠C =72°,BD 是△ABC 的一条角平分线,求∠ABD 的度数.解:如图,在△ABC 中,∠A =50°,∠C =72°(已知)∴∠ABC =180°-____-____=180°-____-____=____(_______________________)∵BD 平分∠ABC (已知)∴∠ABD =12∠ABC =12×58°=29°(_______________________)2.如图,在△ABC 中,∠B =∠C ,E 是AC 上一点,ED ⊥BC ,DF ⊥AB ,垂足分别为D ,F.若∠AED=140°,则∠C=_____,∠BDF=__________,∠A=__________.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则∠A的余角是__________和__________,∠ACD=_________,∠BCD=__________.4.已知:如图,AE∥BD,∠1=110°,∠2=30°,则∠C=______.5.已知:如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=75°,∠ADE=35°,则∠EDC=_________.6.已知:如图,BD∥AE交△ABC的边AC于点F,∠CAE=95°,∠CBD=30°,求∠C的度数.解:如图,∵BD∥AE(___________________________)∴∠DFC=∠CAE(___________________________)∵∠CAE=95°(___________________________)∴∠DFC=95°(___________________________)∴∠CFB=180°-∠DFC=180°-95°=85°(平角的定义)在△CBF中,∠CBD=30°,∠CFB=85°(已知)∴∠C=__________________=______________=________(___________________________)7.已知:如图,∠BAC与∠GCA互补,∠1=∠2.求证:∠E=∠F.8.已知:如图,AB⊥BC,BC⊥CD,垂足分别为B,C,∠1=∠2.求证:BE∥CF.证明:如图,∵AB⊥BC,BC⊥CD(__________________________)∴_______=______=90°(垂直的定义)∵∠1=∠2(__________________________)∴∠EBC=∠BCF(__________________________)∴______∥______(__________________________)9.已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.证明:如图,∵∠1+∠2=180°(_____________________________)∠1+∠DFE=180°(_____________________________)∴______=______(_____________________________)∴______∥______(_____________________________)∴∠3=∠ADE(_____________________________)∵∠3=∠B(_____________________________)∴∠ADE=∠B(_____________________________)∴______∥______(_____________________________)∴∠AED=∠C(_____________________________)10.已知:如图,∠1=∠2,∠C=∠D.求证:∠F=∠A.∵∠1=∠2(________________________________)∠1=∠DGF(________________________________)∴∠2=_______(________________________________)∴____∥____(________________________________)∴∠D=_______(________________________________)∵∠C=∠D(________________________________)∴______=∠C(________________________________)∴____∥____(________________________________)∴∠F=∠A(________________________________)11.已知:如图,AB∥CD,∠ABF=120°,CE⊥BF,垂足为E,则∠ECF=___________.∥BA交AC于点E,则∠C=_______.13.已知:如图,点E,F分别在AB,CD上,AD交CE于点G,交BF于点H,且∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2(______________________________)∠CGD=∠1(______________________________)∴______=______(______________________________)∴CE∥BF(______________________________)∴_____=∠3(______________________________)∵∠B=∠C(______________________________)∴∠3=_________(______________________________)∴_____∥_____(______________________________)∴∠A=∠D(______________________________)14.在△ABC 中,123A B C =∠:∠:∠::,则A =∠___,B =∠___.15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则图中∠1的度数为___________.16.如图,直线m ∥n ,在△ABC 中,∠C =90°.若∠1=25°,∠2=70°,则∠B =____________.17.已知:如图,△ABC .求证:∠A +∠B +∠ACB =180°.证明:如图,延长BC 到点D ,过点C 作射线CE ∥AB .∵CE ∥AB∴∠A =_____(________________________)∠B =_____(________________________)∵∠1+∠2+∠ACB =180°(________________________)∴∠A +∠B +∠ACB =180°(________________________)18.已知:如图,AB ∥CD ,∠BAE =∠DCE =45°.求证:∠E =90°.证明:如图,∵AB ∥CD (___________________________)∴∠BAC +______=180°(___________________________)∵∠BAE=∠DCE=45°(___________________________)∴∠1+∠2=180°-∠BAE-∠DCE=180°-45°-45°=______(等式性质)∴∠E=180°-(∠1+∠2)=180°-90°=90°()19.已知:如图,∠1=∠ACB,∠2=∠3.求证:CD∥HF.证明:如图,∵∠1=∠ACB(_______________________________)∴______∥______(_______________________________)∴∠2=______(_______________________________)∵∠2=∠3(_______________________________)∴∠3=______(_______________________________)∴______∥______(_______________________________)20.已知:如图,EF⊥BC,DE⊥AB,∠B=∠ADE.求证:AD∥EF.证明:如图,∵EF⊥BC(___________________________)∴∠EFB=90°(垂直的定义)∴∠BEF+∠B=90°(直角三角形两锐角互余)∵DE⊥AB(___________________________)∴∠AED=90°(___________________________)∴∠BAD+∠ADE=90°(___________________________)∵∠B=∠ADE(___________________________)∴∠BEF=∠BAD(___________________________)∴______∥______(___________________________)【参考答案】1.∠A,∠C50°,72°58°,三角形的内角和等于180°角平分线的定义2.50°,40°,80°3.∠ACD,∠B,∠B,∠A4.40°5.35°6.已知两直线平行,同位角相等已知等量代换∴∠C=180°-∠CBF-∠CFB=180°-30°-85°=65°(三角形的内角和等于180°)7.∵∠BAC+∠GCA=180°(已知)∴AB∥DG(同旁内角互补,两直线平行)∴∠BAC=∠DCA(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠BAC-∠1=∠DCA-∠2(等式性质)即∠CAE=∠ACF∴AE∥CF(内错角相等,两直线平行)∴∠E=∠F(两直线平行,内错角相等)8.已知∠ABC,∠BCD已知等角的余角相等BE,CF;内错角相等,两直线平行9.已知平角的定义∠2,∠DFE;同角的补角相等AB,EF;内错角相等,两直线平行两直线平行,内错角相等已知等量代换DE,BC;同位角相等,两直线平行两直线平行,同位角相等10.已知对顶角相等∠DGF,等量代换CE,BD;同位角相等,两直线平行∠FEH,两直线平行,同位角相等已知∠FEH,等量代换DF,AC;内错角相等,两直线平行两直线平行,内错角相等11.30°12.60°13.已知对顶角相等∠CGD,∠2;等量代换同位角相等,两直线平行∠C;两直线平行,同位角相等已知∠B;等量代换AB,CD;内错角相等,两直线平行两直线平行,内错角相等14.30°,60°15.105°16.45°17.∠1;两直线平行,内错角相等∠2;两直线平行,同位角相等平角的定义等量代换18.已知∠ACD;两直线平行,同旁内角互补已知90°三角形的内角和等于180°19.已知DE,BC;同位角相等,两直线平行∠BCD;两直线平行,内错角相等已知∠BCD,等量代换CD,HF;同位角相等,两直线平行20.已知已知垂直的定义直角三角形两锐角互余已知等角的余角相等AD,EF;同位角相等,两直线平行。
四年级数学 三角形内角和专项练习 带答案

三角形内角和典题探究一个1、三角形的两个内角和是850,你知道这是一个什么三角形吗?2、在一个三角形中,已知∠1是∠2的2倍,∠2是∠3的31。
这个三角形各个角是多少度?这是一个什么三角形?3、同学们知道三角形的内角和是1800,你能运用这个知识分别求出四边形、五边形、六边形的内角和吗?4、如图,两个三角形都是等腰三角形,∠3是多少度?演练方阵A 档(巩固专练)1.由三条( )围成的图形叫三角形。
2.三角形按角可分为( )三角形、( )三角形、( )三角形。
3.三角形的内角和是( )。
4.等腰直角三角形中三个内角分别是( ),( )和( )。
5、判 断,(对的画“√”,错的画“X ”)(1).一个三角形有一个锐角,那么,这个三角形就一定是锐角三角形。
( )(2).直角三角形中只能有一个角是直角。
( )(3).等边三角形一定是锐角三角形。
( )(4).三角形共有一条高。
( )(5).一个三角形中,最大的角是锐角,那么,这个三角形一定是锐角三角形。
( )(6).两个底角都是280的三角形,一定是钝角三角形。
( )6、选 择。
(1).一个等腰三角形,其中一个底角是750,顶角是( )A .750B .450C .300D .600(2).任意一个三角形都有( )高。
A .一条B .两条C 三条D .无数条(3).( )个角是锐角的三角形,叫锐角三角形。
A.三 B.二 C.—(4).三角形越大,内角和( )A.越大 B.不变 C.越小7、求下面三角形中/3的度数,并指出是什么三角形。
1.∠1=300,∠2=1080,∠3= ( ),它是( )三角形。
2.∠1=900,∠2=450,∠3=( ),它是( )三角形。
3.∠1=700,∠2=700,∠3=( )。
它是( )三角形。
4.∠1=900,∠2=300,∠3=( ),它是( )三角形。
8、一个三角形的两个内角和是1100,你知道这是一个什么三角形吗?9、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B大600,这个三角形各个角是多少度?你知道这是一个什么三角形?10、一个等腰三角形的顶角是一个底角的2倍,这个三角形各个角是多少度?B档(提升精练)1、任意三角形的内角和是度;一个直角三角形的两个锐角的和是度。
(完整word)三角形内角和定理练习题

三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,则△ABC是三角形。
2.如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,则∠BIC =。
3。
如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,则∠A=。
4.如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58°,则这个等腰三角形顶角的度数是。
6.如图,将三角形纸片ABC的一角折叠,折痕为EF,若∠A=80°,∠B=68°,∠CFB=22°,则∠CEA =。
7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若∠ABE=135°,∠CDE=110°,则∠DEF=。
9。
如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于( )A.64°B.65°C.67°D。
68°10。
如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,则∠E是( )A.锐角B.直角C。
钝角 D.无法确定11。
如图,已知在△ABC中,AD平分外角∠EAC,AD∥BC,则△ABC的形状是() A。
等边三角形 B.直角三角形C。
等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,则∠D等于()A。
180°—2∠α B。
180°—∠αC。
90°—∠α D.90°-2∠α13.如果三角形的一个外角等于与它相邻的内角,那么这个三角形的形状是( )A.锐角三角形B。
直角三角形 C.钝角三角形 D.任意三角形14。
如图,∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数等于()A。
完整版三角形内角和练习题

三角形的内角和练习例1. 在△A B C 中,已知∠A =21∠B =31∠C ,请你判断三角形的形状。
分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠C 是最大的角,因此只需求出∠C 的度数即可判断三角形的形状。
例2. 如图,已知D F ⊥A B 于点F ,且∠A =45°,∠D =30°,求∠A C B 的度数。
例3. 如图,在△A B C 中,∠1=∠2,∠3=∠4,∠B A C =54°,求∠D A C 的度数。
例4. 已知在△A B C 中,∠A =62°,B O 、C O 分别是∠A B C 、∠A C B 的平分线,且B O 、C O 相交于O ,求∠B O C 的度数。
〖拓展与延伸〗(1)已知△A B 中C ,B O 、C O 分别是∠A B C 、∠A C B 的平分线,且B O 、C O 相交于点O ,试AB C DB D C2 43 1AB CA探索∠B O C与∠A之间是否有固定不变的数量关系。
(2)已知B O、C O分别是△A B C的∠A B C、∠A C B的外角角平分线,B O、C O相交于O,试探索∠B O C与∠A之间是否有固定不变的数量关系。
(3)已知:B D为△A B C的角平分线,C O为△A B C的外角平分线,它与B O的延长线交于点O,试探索∠B O C与∠A的数量关系。
由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个内角之间存在着一定的数量关系。
例5.已知多边形的每一个内角都等于135°,求这个多边形的边数。
例6. 一个零件的形状如图,按规定∠A =90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠B D C =149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内角和综合习题精选
1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.
(1).若∠C=80°,∠B=50°,求∠DAE的度数.
(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).
(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?
2.如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?
3.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.
4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=35°,∠ACB=85°,求∠E的度数;
(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.
5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.
(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么
∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.
6.如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.
(1)求证:BD=DE;
(2)若AB=CD,求∠ACD的大小.
7.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;
(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,
问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
8.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.。