量子力学基础
第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率
量子力学基础知识

量子力学基础知识量子力学是一门研究微观世界的物理学科,它揭示了微观粒子的性质和行为,与经典力学有着本质的区别。
本文将介绍量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。
1. 波粒二象性量子力学的起源可以追溯到20世纪初,当时物理学家们发现光既可以表现出波动性,又可以表现出粒子性。
这一观察结果引发了对物质微粒也具有波粒二象性的思考。
根据波粒二象性,微观粒子既可以被视为粒子,也可以被视为波动。
例如,电子和光子既可以像粒子一样在空间中传播,又可以像波动一样干涉和衍射。
2. 不确定性原理不确定性原理是量子力学的核心概念之一,由德国物理学家海森堡提出。
它指出,在测量一个粒子的位置和动量时,这两个物理量的精确测量是不可能的。
简而言之,我们无法同时准确地知道粒子的位置和动量。
这意味着测量的结果是随机的,存在一定的误差。
3. 量子态量子力学中,量子态描述了一个系统的所有信息。
量子态可以用波函数表示,波函数是描述粒子在空间中分布和运动的数学函数。
根据波函数的模的平方,我们可以得到一个粒子出现在空间中某个位置的概率。
量子态还包括诸如自旋、能量等其他信息。
4. 测量问题在量子力学中,测量是一个重要的概念。
测量会导致量子态的塌缩,即系统从一个可能的量子态跃迁到一个确定的量子态。
然而,测量结果是随机的,我们只能得到一定的概率性结果。
这与经典物理学中的确定性测量有所不同。
5. 薛定谔方程薛定谔方程是量子力学的基本方程,由奥地利物理学家薛定谔提出。
它描述了量子体系的演化规律,可以用于求解系统的量子态和能量。
薛定谔方程是量子力学的数学基础,可以解释波粒二象性、不确定性原理和量子态等现象。
总结:量子力学是一门奇特而又挑战性的学科,它已经对人类的科学认知产生了深远的影响。
本文简要介绍了量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。
了解和理解这些基础知识对于进一步深入学习量子力学以及应用量子技术具有重要意义。
量子力学三大理论基础

量子力学三大理论基础量子力学是描述微观世界中粒子运动规律的理论体系,其发展史可追溯到20世纪初。
在量子力学的研究中,有三大理论基础是至关重要的,它们分别是波粒二象性、不确定性原理和量子叠加原理。
波粒二象性波粒二象性是最早提出的量子力学的基础概念,指的是微观粒子既具有粒子的特征,如位置和能量,又具有波动的特征,如干涉和衍射。
这个概念首次被德国物理学家德布罗意提出,他认为粒子也像波一样存在一种波动。
之后的实验证实了电子、中子等粒子都具有波动性质,确立了波粒二象性的观念。
波粒二象性的概念不仅揭示了微观世界的新规律,也为量子力学的发展提供了坚实的基础。
通过波粒二象性,我们可以更好地理解微观世界中粒子的行为,例如解释干涉实验结果和电子双缝干涉现象等。
不确定性原理不确定性原理是由著名的物理学家海森堡提出的,其核心思想是在同一时刻无法确定一个粒子的位置和动量。
简单来说,当我们对一个粒子的位置进行测量时,其动量将变得不确定,反之亦然。
这个原理的提出打破了牛顿力学中确定性的观念,揭示了微观世界的一种新奇特性。
不确定性原理的发现对于我们理解和描述微观粒子的行为起到了至关重要的作用。
它不仅给出了一种全新的解释,也为量子力学的进一步发展奠定了基础。
量子叠加原理量子叠加原理是量子力学中的另一个重要基本原理,它表明一个量子系统可以处于多个态的叠加态。
换句话说,在某些情况下,一个粒子不仅可以处于A态或B态,还可以同时处于A态和B态的叠加态。
这种叠加态的出现在经典力学中是难以想象的,但在量子力学中却是一种普遍现象。
量子叠加原理为我们提供了一种全新的量子态描述方式,丰富了我们对于微观粒子行为的认识。
通过对叠加态的研究,科学家们不断深化对量子力学的理解,推动了量子技术和量子计算等领域的发展。
总结以上所述的波粒二象性、不确定性原理和量子叠加原理构成了量子力学的三大理论基础。
这三个基本概念为我们揭示了微观世界中粒子行为的规律,为科学家们探索更深奥的量子世界提供了宝贵的线索。
量子力学的基础概念

量子力学的基础概念量子力学是描述微观领域中粒子行为的物理学理论,它构建了一种不同于经典力学的框架,以解释原子、分子、凝聚态物质等微观领域的现象和行为。
本文将介绍量子力学的基础概念,包括波粒二象性、不确定性原理、量子态和测量等内容。
1. 波粒二象性波粒二象性是量子力学的核心概念之一,它表明微观粒子既具有粒子性质又具有波动性质。
根据德布罗意假说,所有物质粒子都具有波动性,波长与粒子动量成反比。
这一假说在实验中得到了验证,例如电子衍射和干涉实验。
波粒二象性的存在使得量子力学与经典物理有根本性的不同。
2. 不确定性原理不确定性原理是量子力学的重要基础,由海森堡提出。
它指出,在对粒子的某一性质进行测量时,无法同时准确测量它的动量和位置。
也就是说,位置和动量的精确测量是不可能的。
不确定性原理改变了我们对物理世界的认识,揭示了微观领域的不可预测性和局限性。
3. 量子态量子态是描述量子系统的状态,通常用波函数表示。
波函数包含了关于粒子位置、动量和其他性质的概率分布信息。
根据量子力学的计算方法,可以通过波函数预测微观粒子的行为和性质。
量子态还包括叠加态和纠缠态等特殊的量子态,它们展示了量子力学独特的特性。
4. 测量在量子力学中,测量是得到粒子性质信息的过程。
与经典物理不同,量子力学中的测量会导致系统塌缩到一个特定的量子态。
这个过程是不可逆的,而且测量结果是随机的。
根据测量理论,只有对某个性质进行测量后,才能确定该性质的具体取值。
总结:量子力学是一门革命性的物理学理论,它揭示了微观世界的本质和行为规律。
通过对波粒二象性、不确定性原理、量子态和测量等基础概念的介绍,我们可以更好地理解和应用量子力学的理论框架。
这些基本概念为我们解释和预测微观粒子的行为提供了扎实的基础,并在现代科技的发展中发挥着重要作用。
量子力学的发展和应用仍在继续,我们对于微观世界的认知也将逐步深化。
大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。
本文将介绍一些关于量子力学的基本概念和原理。
2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。
解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。
2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。
通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。
3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。
通过波函数,可以计算出一系列平均值,用来描述系统的特征。
3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。
这涉及到测量的本质和粒子与波的性质之间的关系。
4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。
它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。
4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。
这为填充多电子原子如何达到稳态提供了解释。
5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。
它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。
5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。
6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。
介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。
6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。
结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。
量子力学的数学基础

量子力学的数学基础量子力学是一门研究微观领域中的物质和能量相互关系的学科。
它作为现代物理学的重要分支,提供了对原子、分子和基础粒子等微观领域行为的深入理解。
量子力学不仅仅是一种物理学理论,更是一种数学框架,其中包含了丰富而复杂的数学概念和工具。
在本文中,我们将重点介绍量子力学的数学基础,探讨其在理论和实践中的应用。
1. 线性代数:量子力学的数学基础之一是线性代数。
在量子力学中,态矢量(state vector)被用来描述一个物理系统的状态。
态矢量是一个向量,可以通过线性代数中的向量空间来描述。
量子力学中的态矢量可以存在于高维空间中,而线性代数提供了一种强大的工具来解决高维空间中的问题,例如张量积和内积等。
2. 希尔伯特空间:希尔伯特空间是量子力学中常用的数学结构。
它是一个无限维的复向量空间,其中的向量表示态矢量。
希尔伯特空间具有内积的性质,这意味着可以定义向量之间的内积(或称为点乘)。
内积可以用于计算态矢量的模长,以及求解物理量的期望值等。
3. 哈密顿算符:在量子力学中,哈密顿算符(Hamiltonian operator)被用来描述一个系统的能量。
哈密顿算符是一个厄米(Hermitian)算符,这意味着它的本征态(eigenstates)是正交的,并且其本征值(eigenvalues)对应于能量的可能取值。
通过求解哈密顿算符的本征值问题,可以得到量子系统的能级结构以及各个能级上的波函数。
4. 薛定谔方程:薛定谔方程(Schrödinger equation)是量子力学的基本方程之一。
它描述了一个量子体系的时间演化规律。
薛定谔方程是一个偏微分方程,通过求解薛定谔方程,可以得到系统的波函数随时间的变化情况。
波函数包含了关于量子体系的所有信息,它通过量子态的叠加来描述粒子的概率分布和可能的测量结果。
5. 德布洛意波和解释:德布洛意波(de Broglie wave)是量子力学的基本概念之一。
物理化学-量子力学基础

04 量子力学的应用
量子计算
量子计算
量子计算机
利用量子力学原理进行计算,具有经典计 算无法比拟的优势,如加速某些算法、实 现更高级别的加密等。
利用量子比特作为计算基本单位,能够实 现并行计算,大大提高计算效率。
量子算法
量子纠错码
基于量子力学原理设计的算法,如Shor算 法、Grover算法等,能够解决经典计算机 无法有效解决的问题。
不确定性原理
总结词
指在量子力学中,无法同时精确测量某些对立的物理量,如位置和动量、时间和能量等。
详细描述
不确定性原理是量子力学中的重要原理之一,它表明微观粒子的某些物理量无法同时被精确测量。这是因为测量 一个物理量可能会对另一个物理量产生干扰,从而影响其测量精度。这一原理限制了人们获取微观粒子精确信息 的可能性。
量子态和叠加态
总结词
量子态是指微观粒子所处的状态,可以 用波函数来描述;叠加态是指一个量子 系统可以同时处于多个状态的叠加。
VS
详细描述
在量子力学中,微观粒子的状态由波函数 来描述。波函数是一个复数函数,其模方 的物理意义是粒子处于某个状态的概率幅 。当一个量子系统可以同时处于多个状态 时,这些状态被称为叠加态。叠加态是量 子力学中的基本概念之一,它解释了微观 粒子的一些奇特性质,如干涉和纠缠等。
利用量子力学原理设计的错误纠正码,能 够提高量子计算机的稳定性。
量子通信
01
02
03
04
量子密钥分发
利用量子力学原理实现密钥分 发,能够保证通信的安全性。
量子隐形传态
利用量子纠缠实现信息传输, 能够实现无损、无延迟的通信
。
量子雷达
利用量子力学原理实现探测, 能够探测到传统雷达无法探测
量子力学基础

量子力学基础量子力学是现代物理学的基石之一,它描述了微观世界中粒子的行为和性质。
本文将介绍量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。
一、波粒二象性量子力学的核心观念之一是波粒二象性,即物质既可以表现出粒子的离散性质,又可以表现出波的波动性质。
这一观念由德布罗意提出,他认为任何物体都具有波函数。
二、波函数与波动方程波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子的位置、动量和能量等物理量。
根据薛定谔方程,波函数满足定态和非定态的波动方程。
三、量子力学中的测量在量子力学中,测量是指对粒子某个物理量进行观测并得到相应的结果。
与经典物理学不同的是,量子物理学中的测量结果是随机的,只能得到概率分布。
四、不确定性原理不确定性原理是量子力学中的重要概念,由海森堡提出。
不确定性原理指出,在给定的时刻,不能同时准确测量一个粒子的位置和动量。
精确测量其中一个物理量,将会导致对另一个物理量的测量结果存在不确定性。
五、量子力学中的算符在量子力学中,算符是用来描述物理量的操作。
比如,位置算符、动量算符和能量算符等。
根据算符的性质,可以求得粒子的期望值和本征态等信息。
六、量子纠缠和超导量子纠缠是量子力学中的一个重要现象,它描述了两个或多个粒子之间的紧密联系。
超导是一种物质在低温条件下具有零电阻和完全抗磁的特性。
七、量子力学的应用量子力学在许多领域都有广泛的应用,尤其是在量子计算、量子通信和量子传感器等前沿科技领域。
量子力学的发展为人类带来了许多革命性的技术和突破。
八、总结量子力学作为现代物理学的重要理论基础,对我们理解微观世界具有重要意义。
本文介绍了量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。
希望读者通过阅读本文,对量子力学有更深入的了解,并能进一步探索其在科学和技术中的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学基础部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第一章量子力学基础一、教案目的:通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP二、教案内容:1、微观粒子的运动特征黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系;2、量子力学基本假设波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理;3、箱中粒子的薛定谔方程及其解三、教案重点微观粒子运动的特征、量子力学的基本假设四、教案难点:量子力学的基本假设五、教案方法及手段课堂教案六、课时分配:微观粒子的运动特征 2学时量子力学基本假设 4学时箱中粒子的薛定谔方程及其解 2学时七、课外作业课本p20~21八、自学内容1-1微观粒子的运动特征1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。
p1EanqFDPw在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。
如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。
DXDiTa9E3d电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。
人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。
RTCrpUDGiT1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假说:量子说的起源黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。
带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。
当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。
5PCzVD7HxA若以Eν表示黑体辐射的能量,Eνdν表示频率在ν到ν+dν范围内、单位时间、单位表面积上辐射的能量。
以Eν对ν作图,得到能量分布曲线。
jLBHrnAILg由图中不同温度的曲线可见,随着温度<T)的增加,Eν的极大值向高频移动。
一、经典解释许多物理学家试图用经典热力学和统计力学理论来解释此现象。
其中比较好的有Rayleigh-Jeans<瑞利-金斯)把分子物理学中能量按自由度均分原则用到电磁辐射上,得到辐射强度公式,它和实验结果比较,在长波处很接近实验曲线,而在短波长处与实验显著不符。
另一位是Wein<维恩),他假设辐射按波长分布类似于Maxwell的分子速率分布,所得公式在短波处与实验比较接近,但长波处与实验曲线相差很大。
xHAQX74J0X二、量子解释1900年,普朗克(M. Planck>根据这一实验事实,突破了传统物理观念的束缚,提出了量子化假设:LDAYtRyKfE<1)黑体内分子、原子作简谐振动,这种作简谐振动的分子、原子称谐振子,黑体是有不同频率的谐振子组成。
每个谐振子的的能量只能取某一最小的能量单位ε的整数倍,ε被称为能量子,它正比于振子频率ε=hν,h为普朗克常数<h=6.626×10-27erg.sec=6.626×10-34J.s)。
Zzz6ZB2LtkE=nε,ε=hνν为谐振子的频率,h为planck常数<2)谐振子的能量变化不连续,能量变化是ε的整数倍。
∆E=n2ε-n1ε=<n2-n1)ε它只能发射或吸收频率为ν、数值为hν的整数倍的电磁能,即发射的能量可以等于0 hν,1 hν,2 hν,…nhν (为整数>等。
它们出现的几率之比为:1:exp(-hν/kT>:exp(-2hν/kT>: …exp(-nhν/kT>。
因此频率为ν的振动的平均能量为dvzfvkwMI1由此可得单位时间、单位表面积上辐射的能量用此公式计算Eν值,与实验观察到的黑体辐射非常吻合。
式中k是Boltzmann常数;T是绝对温度;c是光速;h称为Planck常数,将此式和观察到的曲线拟合,得到h的数值,目前测得h=6.626×10-34J·s。
rqyn14ZNXI普朗克的假说成功地解释了黑体辐射实验。
普朗克提出的能量量子化的概念和经典物理学是不相容的,因为经典物理学认为谐振子的能量由振幅决定,而振幅是可以连续变化的,并不受限制,因此能量可以连续地取任意数值,而不受量子化的限制。
普朗克(M. Planck>能量量子化假设的提出,标志着量子理论的诞生。
普朗克(M. Planck>是在黑体辐射这个特殊的场合中引入了能量量子化的概念,此后,在1900-1926年间,人们逐渐地把能量量子化的概念推广到所有微观体系。
EmxvxOtOco1.1.2 光电效应和光子学说——Einstein的光子学说一、光电效应19世纪80年代发现了光电效应。
光电效应是光照在金属表面上,金属发射出电子的现象。
金属中的电子从光获得足够的能量而逸出金属,称为光电子,由光电子组成的电流叫光电流。
SixE2yXPq5实验事实是:<1)在有两个电极的真空玻璃管,两极分别加上正负电压。
当光照在正极上,没有电流产生;而当光照在负极上则产生电流,电流强度与光的强度成正比。
6ewMyirQFL<2)对于一定的金属电极,仅当入射光的频率大于某一频率时ν0时才有电流产生,ν0称为临阈频率,不同金属的ν0不同kavU42VRUs <3)由光电效应产生的电子动能仅随光的频率增大而增加而与光的强度无关。
<4)入射光照射到金属表面,立即有电子逸出,二者几乎无时间差。
对于上述实验事实,应用经典的电磁波理论得到的是相反的结论。
根据光波的经典图象,波的能量与它的强度成正比,而与频率无关。
因此只要有足够的强度,任何频率的光都能产生光电效应,而电子的动能将随着光强的增加而增加,与光的频率无关,这些经典物理学家的推测与实验事实不符。
y6v3ALoS89二、光电效应的量子解释首先认识到Planck能量量子化重要性的是Einstein<爱因斯坦),他将能量量子化的概念应用于电磁辐射,并用以解释光电效应。
M2ub6vSTnP1905年爱因斯坦<A. Einstein)依据普朗克的能量子的思想,提出了光子说,圆满地解释了光电效应。
其要点是:0YujCfmUCw<1)光的能量是量子化的,最小能量单位是ε=hν,称为光子。
<2)光为一束以光速c运动的光子流,光的强度正比于光子的密度ρ<ρ为单位体元内光子的数目)。
eUts8ZQVRd<3)光子具有质量m,根据相对论原理光子质量m= hν/c2<4)光子有动量PP = mc = hν/ c =h/λ<5)光子与电子碰撞时服从能量守恒和动量守恒。
将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,光子消失,并把它的能量hv转移给电子。
电子吸收的能量,一部分用于克服金属对它的束缚力,其余则表现出光电子的动能。
上式中的W是电子逸出金属所需的最少能量,称脱出功,它等于hvo,Ek是自由电子的动能,它等于mυ2/2。
sQsAEJkW5T当hv<W时,光子没有足够的能量使电子逸出金属,不发生光电效应。
当hv=W时,这时的频率是产生光电效应的临阈频率<vo)。
当hv>W时,从金属中发射的电子具有一定的动能,它随频率的增加而增加,与光强无关。
但增加光的强度可增加光束中单位体积内的光子数,因而增加发射电子的速率。
GMsIasNXkA只有把光看成是由光子组成的才能理解光电效应,而只有把光看成波才能解释衍射和干涉现象,即光表现出波粒二象性,在一些场合光的行为像粒子,在另一些场合光的行为像波。
ε=hν和P=h/λ将光的波动性和粒子性联系在一起。
TIrRGchYzg1.1.3 实物微粒的波粒二相性一、德布罗依假说实物粒子是指静止质量不为零的微观粒子<m0≠0)。
如电子、质子、中子、原子、分子等。
1924年德布罗依<de Broglie)受到光的波粒二象性的启示,提出实物粒子也具有波粒二象性假设:7EqZcWLZNX式中,λ为物质波的波长,P为粒子的动量,h为普郎克常数, E为粒子能量,ν物质波频率。
lzq7IGf02E一切微观体系都是粒性和波性的对立统一体。
两式具体揭示了波性和粒性的内在联系,等式左边体现粒性,右边体现波性,它们彼此联系,互相渗透,在一定条件下又可互相转化,构成矛盾对立的统一体。
微观体系的这种波粒二象性是它们运动的本质特性。
zvpgeqJ1hkυ为粒子的运动速度。
二、物质波的实验证实1927年,戴维逊(Dawison>—革末(Germer>用单晶体电子衍射实验,汤姆逊(G.P.Thomson>用多晶体电子衍射实验,发现电子入射到金属晶体上产生与光入射到晶体上同样产生衍射条纹,证实了德布罗意假说。
NrpoJac3v1电子运动速度由加速电子运动的电场电势差(v>决定,即由上式可知,若加速电压用1000 V,则所得波长为39pm,波长的数量级和x射线相近,普通光栅无法检验出它的波性,Davisson和Germer将被一定电势差加速到一定速度的电子束射到金属镍的单晶上,观察到完全类似于x射线衍射的性质,证实电子确实具有波性。
1nowfTG4KI后来采用中子、质子、氢原子和氦原子等微粒流,也同样观察到衍射现象,充分证明了实物微粒具有波性,而不仅限于电子。
fjnFLDa5Zo例1:<1)求以1.0×106m·s-1的速度运动的电子的波长。
这个波长相当于分子大小的数量级,说明分子和原子中电子运动的波动性显著的。
<2)求m=1.0×10-3kg的宏观粒子以v=1.0×10-2m·s-1的速度运动时的波长这个波长与粒子本身的大小相比太小,观察不到波动效应。
例2计算动能为300eV的电子的德布罗意波长.解: 已知常数h=6.626⨯10-27erg⋅s,m=9.11⨯10-28g,1eV=1.602⨯10-12ergtfnNhnE6e5由因此 ==7.08⨯10-9 (cm>三、实物微粒波性的物理意义实物微粒波的物理意义与机械波<水波、声波)和电磁波等不同,机械波是介质质点的振动,电磁波是电场和磁场的振动在空间的传播,而实物微粒波没有这种直接的物理意义。