周公度第四版结构化学第一章_量子力学基础知识
(01) 第一章 量子力学基础

玻尔频率规则
Bohr的轨道角动量量子化
E h E E2 E1
h h
运用玻尔模型,结合经典物理学知识,玻尔计算了氢原子定态 的轨道半径及能量,圆满的解释了氢原子光谱。 1922年, Bohr
获诺贝尔物理学奖.
mv 2 e2 r 4 0 r 2
消去v,
2
r
h M mvr n 2
34
Js
这些不同能量的谐振子出现的几率之比为:
1: h / kT :2 hv / kT :…: nhv / kT e e e
的平均能量为
h e h / kT 1
因此频率为ν的振子的振动
,由此可得单位时间,单位表面积上辐
射的能量。公式计算值与实验结果非常吻合。
E 2h c
)
E总
me 4 1 R 2 2 2 2 8 0 r 8 0 h n n
e2
1 13.6 2 eV ( n 1,2,3 ) n
E总 E K 1 EV 2
当n=1,E=-R=-13.6eV,即为氢原子基态。
当电子从定态n1跃迁到n2时放出或吸收辐射。其频率满足于:
这样实物微粒若以大小为p=mv的动量运动时,伴随有 的波
h p h mv
例子:以1.0×106m.s-1 的速度运动的电子,求其de.Broglie波
长:
6.6 1034 J . s 7.0 1010 m (9.1 10 31 Kg) (1.0 106 m .s 1 )
在十九世纪末,人们利用传统的经典物理学对几个问题始终不能给予
解释, 这其中包括著名的黑体辐射、 光电效应、氢原子光谱和原子
结构等问题.
结构化学基础习题答案_周公度_第4版,

l
n xn' x d 0
0
根据定义,
n
x
和
n'
x
互相正交。
【1.15】已知在一维势箱中粒子的归一化波函数为
n x
2 sin n x ll
n 1, 2,3
式中 l 是势箱的长度, x 是粒子的坐标 0 x l ,求粒子的能量,以及坐标、动量的平均
λ/nm
v /1014s-1
312.5 9.59
365.0 8.21
404.7 7.41
546.1 5.49
Ek/10-19J
3.41
2.56
1.95
0.75
由表中数据作图,示于图 1.2 中
4
E /10-19J k
3
2
1
0 4 5 6 7 8 9 10 1014g-1
图 1.2 金属的 Ek 图
(c) 动能为 300eV 的自由电子。
解:根据关系式:
(1)
h mv
6.6261034 J s 1010 kg 0.01m s1
6.626 1022 m
(2) h h p 2mT
6.6261034 J s
2 1.6751027 kg 0.1eV 1.6021019 J eV1
l ll l
2 l n x n' x
l
sin
0
gsin l
l
dx
n n'
n n' l
2
sin
l
x sin
结构化学课件-第一章2-王卫东(化学)概要

一个吸收全部入射线的表面称为黑体表面。 一个带小孔的空腔可视为黑体表面。它几乎完全 吸收入射幅射。通过小孔进去的光线碰到内表面 时部分吸收,部分漫反射,反射光线再次被部分 吸收和部分漫反射……,只有很小部分入射光有 机会再从小孔中出来。如图1-1所示
图1-2表示 在四个不同的 温度下,黑体 单位面积单位 波长间隔上发 射的功率曲线。 十九世纪末, 科学家们对黑 体辐射实验进 行了仔细测量, 发现辐射强度 对腔壁温度 T 的依赖关系。
h=6.626×10-34 J· s
Plank
The Nobel Prize in Physics 1918
"for their theories, developed independently, concerning the course of chemical reactions"
Max Karl Ernst Ludwig Planck Germany Berlin University Berlin, Germany 1858 - 1947
限性的根本原因在于他仍旧沿用了经典力学的
概念,继承了经典原子模型中电子绕核运动如 同行星绕太阳的轨道运动的观点。
2018/11/10 35
玻尔
Bohr(older)
1922年诺贝尔物理学奖
2018/11/10
36
--- 德布罗意物质波
Einstein为了解释光电效应提出了光子学说, 即光子是具有波粒二象性的微粒,这一观点在科学 界引起很大震动。1924年,年轻的法国物理学家德 布罗意(De Broglie)从这种思想出发,提出了实物 微粒也有波性,他认为:“在光学上,比起波动的研 究方法,是过于忽略了粒子的研究方法;在实物微 粒上,是否发生了相反的错误?是不是把粒子的图 像想得太多,而过于忽略了波的图像?” 他提出实物微粒也有波性,即德布罗意波。 E= hv, p=h/λ
结构化学:01-量子力学基础知识

光电效应和光子学说
h
W
1 mv2 2
h 0
1 2
mv2
光电方程
解释光电效应实验结果:
当hv<W 时,光子的能量不足以克服逸出功,不发生光电效应;
当hv=W 时,光子的频率即为产生光电效应的临阈频率(v0) ;
当hv>W 时,从金属中发射的电子具有一定的动能,它随v的增
加而增加,与光强无关。
1921年,爱因斯坦因在光电效应方面的成就而被授 予诺贝尔物理学奖。
1.1 微观粒子的运动特征
一、黑体辐射和能量量子化
黑体——是指能够完全吸 收照射在其上面各种波长的光 而无反射的物体。
上一内容 下一内容 主目录
College of Chemistry, LNU
黑体辐射和能量量子化
带有一微孔的空心金属 球,非常接近于黑体,进入 金属球小孔的辐射,经过多 次吸收、反射、使射入的辐 射实际上全部被吸收。当空 腔受热时,空腔壁会发出辐 射,极小部分通过小孔逸出。
College of Chemistry, LNU
黑体辐射和能量量子化
由图中不同温度的曲线可见:
①随温度增加,辐射能Eν值增
大,且其极大值向高频移动,最 大强度向短波区移动(蓝移)。
②随着温度升高,辐射总能 量(曲线所包围的面积)急剧增 加。
E
T=1500K T=1000K
在不同温度下黑体 辐射的能量分布曲线
上一内容 下一内容 主目录
College of Chemistry, LNU
1.1 微观粒子的运动特征
三、氢原子光谱
原子光谱的产生: 当原子被电火花,电弧,火焰或其它方法激发时,能够 出一系列具有一定频率(或波长)的光谱线.
结构化学第一章 量子力学基础chap1

综
述
›››
• • • • •
三种理论和三种结构
量子理论 原子结构 H 化学键理论 分子结构 化学键 点阵群理论 晶体结构
多电子原子
分子轨道理论 价键理论 配位场理论
两条主线: 电子构型和几何构型
一条渠道: 结构 - 性能 - 应用
第一章
量子力学基础
Chapter 1. Introduction to Quantum Mechanics
λ= 2dsinθ
1.1.3 不确定关系
Bohr, Heisenberg, Pauli(从左到右)
直认为是实物粒子的电子等物质, 也看作是波.
de Broglie关系式为:
ν= E / h
λ= h / p
1.1.2.1 德布罗依假说
1924年, de Broglie提出实物微粒也有波性的假设 区别:实物微粒的静止质量不为0 E=hν α粒子,电子,质子,中子,原子,分子 p=h /λ λ= h /p=h/(mv) 实物微粒在以大小p=mv 的动量 运动时,伴随有波长为λ的波
1.2
1.2.1
量子力学的建立
实物粒子的波粒二象性
L.V.de Broglie(德布罗意)认为辐射的波粒二象性 (wave-particle duality )同样适用于物质. 波以某种方式伴随 电子和其他粒子, 正如波伴随着光子一样. 这就是说, 一度被 视为波的光已被证明也有粒子性, 现在需要“反过来”把一
例1 家中烹调使用的微波炉发射一定的电磁波,其波长λ为 122mm,计算该电磁波的能量。
ν= c/ λ =3.0 ×108m•s-1/(122 ×10-3)m
= 2.46 ×1010 s-1 E= hν = 6.624×10-34J. s × 2.46 ×1010 s-1 = 1.63×10-23J
结构化学知识点归纳

结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数ψ(x , y , z ) 称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
算符:作用对象是函数,作用后函数变为新的函数。
线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。
ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。
(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。
ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。
结构化学_孙宏伟_第一章量子力学基础

参考书①周公度, 段连运:《结构化学基础》(第4版), 北京大学出版社(2008, 1)②潘道皑, 赵成大, 郑载兴:《物质结构》, 高等教育出版社③倪行, 高剑南:《物质结构学习指导》, 科学出版社④结构化学网站: http://202.113.231.117课件、《结构化学习题集》(结构化学教研室编)第一章量子力学基础§1. 微观粒子的运动特征一、黑体辐射和能量量子化1. 黑体辐射T υ∼υ+d υE υE υ∼υ黑体辐射能量密度分布曲线经典解释维恩:黑体辐射位移律瑞利-金斯:黑体辐射公式01234501234561200K1400K 1600K 1800KE νν2000K2. 能量量子化1900年,普朗克ε= nh ν()12/23−=kTh e c h E νννπc: 真空光速k: Boltzmann 常数T: 热力学温度h = 6.626×10–34J ⋅s ,称为planck 常数。
二、光电效应和光子学说1.光电效应①ν>ν0,ν0称为临阈频率②ν↑,E k ↑③I ↑,光电子数目↑2.光子学说1905年,爱因斯坦①光是一束光子流,每一种频率的光的能量都有一个最小单位,称为光子。
光子的能量与光的频率成正比:ε= h ν②光子不但有能量,还有质量,但光子的静止质量为零。
根据相对论的质能联系方程:ε= mc 2 ⇒m = h ν/c 2③光子具有一定的动量:p = mc = h ν/c = h/λ④光的强度取决于单位体积内光子的数目,即光子密度。
20v21m h E W h k +=+=νν3.光的波粒二象性ε= h νp = h/λ三、实物粒子的波粒二象性1.德布罗意(de Broglie)假设E = h νp = h/λ德布罗意波的波长: λ= h/p = h/mv德布罗意波与光波的区别:⎪⎪⎩⎪⎪⎨⎧======v21vv2122m m c mcmc p E p h T u υλ计算实物粒子的德布罗意波长例1.子弹,m = 0.01kg ,v = 1000m/sm sm kg s J m h 351323410626.6101010626.6v −−−−×=⋅×⋅×==λ例2.电子,m = 9.11×10-31kg ,v = 5×106m/sÅ455.110455.11051011.910626.6v 10163134=×=⋅×××⋅×==−−−−m sm kg s J m h λ1927年,戴维孙(C.J.Davisson)和革末(L.H.Germer)通过实验观察到了单晶的电子衍射。
结构化学知识点归纳

结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章 量子力学基础知识一、微观粒子的运动特征1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥ 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数(,,)x y z ψ称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
算符:作用对象是函数,作用后函数变为新的函数。
线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。
11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。
自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。
3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E =
h v , p = h / λ
1927 年 , 戴 维 逊 ( Davisson ) 与 革 末 ( Germer )利用单晶体电子衍射实验,汤姆逊 (Thomson)利用多晶体电子衍射实验证实了德 布罗意的假设。 光(各种波长的电磁辐射)和微观实物粒 子(静止质量不为0的电子、原子和分子等)都 有波动性(波性)和微粒性(粒性)的两重性 质,称为波粒二象性。 戴维逊 (Davisson) 等估算了电子的运动速度, 若将电子加压到 1000V, 电子波长应为几十个 pm , 这样波长一般光栅无法检验出它的波动性。他 们联想到这一尺寸恰是晶体中原子间距,所以 选择了金属的单晶为衍射光栅。
★经典理论与实验事实间的矛 盾: 经典电磁理论假定,黑体辐射 是由黑体中带电粒子的振动发出 的,按经典热力学和统计力学理 论,计算所得的黑体辐射能量随 波长变化的分布曲线,与实验所 得曲线明显不符。 Rayleigh-Jeans 把分子物理学中能量按自由度均 分原则用到电磁辐射上,按其公式计算所得结果在长 波处比较接近实验曲线。
结构化学的学习方法
★培养目标
用微观结构的观点和方法分析、解决化学问题
★学习方法
♥把握重点(原理、概念、方法) ♥重视实验方法(衍射法、光谱法、磁共振法)
♥结构与性能间的关系
主要章节
第一章. 量子力学基础知识 第二章. 原子的结构与性质 第三章. 共价键和双原子分子的结构化学 第四章. 分子的对称性
Einstein
The Nobel Prize in Physics 1921
"for their theories, developed independently, concerning the course of chemical reactions"
Albert Einstein
Germany and Switzerland Kaiser-Wilhelm-Institut (now Max-Planck-Institut) fü r Physik Berlin-Dahlem, Germany 1879 - 1955
一个吸收全部入射线的表面称为黑体表面。 一个带小孔的空腔可视为黑体表面。它几乎完全 吸收入射幅射。通过小孔进去的光线碰到内表面 时部分吸收,部分漫反射,反射光线再次被部分 吸收和部分漫反射……,只有很小部分入射光有 机会再从小孔中出来。如图1-1所示
图 1-2表示在 四种不同的温度 下,黑体单位面 积单位波长间隔 上发射的功率曲 线。十九世纪末, 科学家们对黑体 辐射实验进行了 仔细测量,发现 辐射强度对腔壁 温度 T的依赖关系。
·结构与性能的关系(结构
决定 反映
性能)
结构化学的发展历程
▲利用现代技术不断武装自己
采用电子技术、计算机、单晶衍射、多晶衍射、原子光谱、 分子光谱、核磁共振等现代手段,积累了大量结构数据,为归 纳总结结构化学的规律和原理作基础;
▲运用规律和理论指导化学实践
将结构和性能联系起来,用以设计合成路线、改进产品 质量、开拓产品用途。
(光源打开后,电流表指针偏转)
1.只有当照射光的频率超过某个最小频率(即临阈频率)时, 金属才能发射光电子,不同金属的临阈频率不同。 2.随着光强的增加,发射的电子数也增加,但不影响光电子的 动能。 3.增加光的频率,光电子的动能也随之增加。
★经典理论与实验事实间的矛 盾: 根据光波的经典图像, 波的能量与它的强度成正比, 而与频率无关,因此只要有 足够的强度,任何频率的光 都能产生光电效应,而电子 的动能将随光强的增加而增 加,与光的频率无关,这些 经典物理学的推测子和光子等微观粒子,具有波粒二 象性的运动特征。这一特征体现在以下的现象中,而这些 现象均不能用经典物理理论来解释,由此人们提出了量子 力学理论,这一理论就是本课程的一个重要基础。
1.1.1
黑体是一种能全部吸收照射到它上面的各种波长辐射的 物体。带有一微孔的空心金属球,非常接近于黑体,进 入金属球小孔的辐射,经过多次吸收、反射、使射入的 辐射实际上全部被吸收。当空腔受热时,空腔壁会发出 辐射,极小部分通过小孔逸出。黑体是理想的吸收体, 也是理想的发射体。
E E 2 E1
h
(3)各态能量一定,角动量也一定( M=nh/2π ) 并且是量子化的,大小为 h/2π 的整数倍。
e2 4 0 r
2
m v2 r
离心力
nh M mvr 2
角动量
-e r
库仑引力
0h2 2 2 r n 52 . 9 n ( pm) 2 m e
E
8h 3 c3
e
h / kt
1
1
●能量量子化:黑体只能辐射频率为,数值 为h的整数倍的不连续的能量。
这一创造性的工作使他成为量子理论的奠基者,在物理学发 展史上具有划时代的意义。他第一次提出辐射能量的不连续 性,著名科学家爱因斯坦接受并补充了这一理论,以此发展 自己的相对论,波尔也曾用这一理论解释原子结构。量子假 说使普朗克获得1918年诺贝尔物理奖。
n 1,2,3
+e
1 e2 m e4 1 1 2 E m v ( ) 2 2 2 2 R 2 4 0 r 8 0 h n n
h En2 En1
1 1 R( 2 2 ) n1 n2
R 1 1 ~ ( 2 2) c hc n1 n2
(3).光子具有一定的动量(p)
P = mc = h /c = h/λ
光子有动量在光压实验中得到了证实。 (4).光的强度取决于单位体积内光子的数目,即 光子密度。
将频率为的光照射到金属上,当金属中的一个 电子受到一个光子撞击时,产生光电效应,光子消 失,并把它的能量h转移给电子。电子吸收的能量, 一部分用于克服金属对它的束缚力,其余部分则表 现为光电子的动能。
结构和物性
绪
言
结构化学的研究范围 结构化学的主要内容 结构化学的发展历程 结构化学的学习方法
李国政 办公室:明理楼C116
结构化学的研究范围
♥ 原子、分子和晶体的微观结构
♥ 原子和分子的运动规律 ♥ 物质的结构与性能间的关系
结构化学的主要内容
•微观粒子运动所遵循的量子力学规律
·原子结构(原子中电子的分布和能级) ·分子结构(化学键的性质和分子的能量状态) ·晶体结构(晶胞中分子的堆垛) ·实验方法(IR、NMR、UPS、XPS、XRD)
Ek = h- W
Ek = h- W
式中W是电子逸出金属所需要的最低能量,称为逸 出功,它等于h0;Ek是光电子的动能,它等于 mv2/2 ,上式能解释全部实验观测结果: 当h < W时,光子没有足够的能量使电子逸 出金属,不发生光电效应。 当h = W时,这时的频率是产生光电效应的临 阈频率。 当h > W时,从金属中发射的电子具有一定 的动能,它随 的增加而增加,与光强无关。 ―光子说”表明——光不仅有波动性,且有 微粒性,这就是光的波粒二象性思想。
玻尔
Bohr
他获得了 1922年的 诺贝尔物 理学奖。
Bohr模型对于单电子原子在多方面应用得很有 成效,对碱金属原子也近似适用. 但它竟不能解释 He 原子的光谱,更不必说较复杂的原子;也不能 计算谱线强度。后来,Bohr模型又被Sommerfeld 等人进一步改进,增加了椭圆轨道和轨道平面取向 量子化(即空间量子化). 这些改进并没有从根本上 解决问题, 促使更多物理学家认识到, 必须对物理学 进行一场深刻变革. 法国物理学家德布罗意(L.V.de Broglie)勇敢地迈出一大步. 1924年, 他提出了物质
第五章. 多原子分子的结构和性质
第六章. 配位化合物的结构和性质
第七章. 晶体的点阵结构和晶体的性质
第八章.金属的结构和性质
第一章 量子力学基础知识
1 . 微观粒子的运动特征 2 . 量子力学基本假设 3 . 势箱中自由粒子的薛定谔 方程及其解
十九世纪末的物理学
十九世纪末,经典物理学已经形成一个相当 完善的体系,机械力学方面建立了牛顿三大定律, 热力学方面有吉布斯理论,电磁学方面用麦克斯 韦方程统一解释电、磁、光等现象,而统计方面 有玻耳兹曼的统计力学。当时物理学家很自豪地 说,物理学的问题基本解决了,一般的物理现象 都可以从以上某一学说获得解释。唯独有几个物 理实验还没找到解释的途径,而恰恰是这几个实 验为我们打开了一扇通向微观世界的大门。
The Nobel Prize in Physics 1918
Max Karl Ernst Ludwig Planck Germany Berlin University Berlin, Germany 1858 - 1947
普朗克
1.1.2
光电效应是光照在金属表面上,金属发射出电子的现象。
图1-3 光电效应示意图
Wien 假定辐射波长的分布与 Maxwell 分子速度分 布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
Planck能量量子化假设
1900年,Planck(普朗克)假定,黑体中原子或 分子辐射能量时作简谐振动,只能发射或吸收频 率为、能量为h的整数倍的电磁能,即振动频 率为的振子,发射的能量只能是0h,1h, 2h,……,nh(n为整数)。 h称为Planck常数,h=6.626×10-34J•S 按Planck假定,算出的辐射能E与实验观测到的 黑体辐射能非常吻合:
微观粒子因为没有明确的外形和确定的轨道, 我们得不到一个粒子一个粒子的衍射图象,我们只 能用大量的微粒流做衍射实验。实验开始时,只能 观察到照象底片上一个个点,未形成衍射图象,待 到足够长时间,通过粒子数目足够多时,照片才能 显出衍射图象,显示出波动性来。可见微观粒子的 波动性是一种统计行为。微粒的物质波与宏观的机 械波(水波,声波)不同,机械波是介质质点的振 动产生的;与电磁波也不同,电磁波是电场与磁场 的振动在空间的传播。微粒物质波,能反映微粒出 现几率,故也称为几率波。