量子力学基本知识点总概括
量子力学基本概念总结

量子力学基本概念总结量子力学是一门描述微观粒子行为的物理学分支,它提供了一种理论框架,用于解释和预测原子、分子和基本粒子的现象。
以下是一些量子力学的基本概念的总结。
1. 波粒二象性(Wave-particle duality)量子力学中的一个重要概念是波粒二象性,即微观粒子既可以表现出粒子特性也可以表现出波动特性。
例如,电子可以像波一样传播,但也可以被当作是粒子来计算。
2. 不确定性原理(Heisenberg's Uncertainty Principle)不确定性原理是由波粒二象性导致的。
它表明在粒子的位置和动量之间存在一种固有的不确定性。
换句话说,我们无法同时准确知道一个粒子的位置和动量,只能知道它们之间的不确定性。
3. 玻尔模型(Bohr model)玻尔模型是描述原子结构的经典模型之一。
它基于量子力学中能级的概念,认为电子围绕着原子核在不同的能级轨道上运动。
这个模型解释了原子光谱、电离能和跃迁等现象。
4. 波函数(Wave function)波函数是量子力学中用来描述粒子状态的数学函数。
它包含了所有关于粒子位置、动量和能量等信息。
根据波函数,我们可以计算出粒子的一些物理性质。
5. 测量与观测(Measurement and Observation)量子力学强调测量和观测对系统产生影响。
在测量时,波函数将塌缩到某个确定的状态,并给出对应的测量结果。
这种波函数塌缩导致了一系列奇特的现象,如量子纠缠和量子隐形。
6. 量子纠缠(Quantum Entanglement)量子纠缠是量子力学中的一个非常奇特的现象。
当两个或更多粒子处于纠缠状态时,它们的态无法独立地描述,而必须考虑整个系统的态。
当一个粒子的状态发生改变时,纠缠粒子的状态也会瞬间发生变化,即使它们之间的距离很远。
7. 施特恩-盖拉赫实验(Stern-Gerlach Experiment)施特恩-盖拉赫实验是证明电子具有自旋的经典实验之一。
物理学量子力学知识点

物理学量子力学知识点量子力学是研究微观领域中原子、分子和基本粒子行为的科学。
它是20世纪最重要的科学之一,革新了我们对自然规律的理解。
本文将介绍一些物理学量子力学的基本知识点。
一、波粒二象性量子力学的一个基本概念是波粒二象性。
它指出微观粒子,如电子和光子,在某些情况下既表现出粒子的性质,又表现出波动的性质。
这意味着微观粒子既可以被视为具有确定位置和动量的点粒子,也可以被视为波动在空间中传播的波。
二、薛定谔方程薛定谔方程是量子力学的核心方程之一。
它描述了量子系统的行为,并可以用于确定系统的波函数。
波函数是描述微观粒子在时间和空间上的概率幅度的数学工具,通过薛定谔方程可以求解出系统的能级和波函数的演化。
三、不确定性原理不确定性原理是量子力学的核心原理之一,由海森堡提出。
它表明,在某些情况下,无法同时准确地确定粒子的位置和动量。
换句话说,粒子的位置和动量的精确测量是相互制约的,存在一定的测量误差。
四、量子力学中的测量在量子力学中,测量和经典物理中的测量有所不同。
量子力学中的测量会导致粒子波函数坍缩,即从一系列可能的状态中选择出一个确定的状态。
这与经典物理中的测量不同,经典物理中的测量不会改变被测系统的状态。
五、量子纠缠量子纠缠是量子力学中的一个奇特现象。
当两个或多个粒子发生相互作用后,它们之间会建立一种特殊的关联关系,即使被分开后仍然保持着这种关系。
这种关系是超越经典物理的,被广泛应用于量子计算和量子通信领域。
六、量子力学的应用量子力学在现代科学和技术中有着广泛的应用。
例如,量子力学解释了原子和分子的结构和性质,为化学理论打下了基础。
此外,量子力学还应用于核物理、凝聚态物理、量子光学等领域,推动了科学技术的发展。
总结:本文介绍了物理学量子力学的一些基本知识点,包括波粒二象性、薛定谔方程、不确定性原理、量子力学中的测量、量子纠缠以及量子力学的应用。
量子力学的发展深刻地改变了我们对自然界的认识,也为科学技术的进步提供了重要的理论基础。
量子力学基础知识

量子力学基础知识量子力学是一门研究微观世界的物理学科,它揭示了微观粒子的性质和行为,与经典力学有着本质的区别。
本文将介绍量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。
1. 波粒二象性量子力学的起源可以追溯到20世纪初,当时物理学家们发现光既可以表现出波动性,又可以表现出粒子性。
这一观察结果引发了对物质微粒也具有波粒二象性的思考。
根据波粒二象性,微观粒子既可以被视为粒子,也可以被视为波动。
例如,电子和光子既可以像粒子一样在空间中传播,又可以像波动一样干涉和衍射。
2. 不确定性原理不确定性原理是量子力学的核心概念之一,由德国物理学家海森堡提出。
它指出,在测量一个粒子的位置和动量时,这两个物理量的精确测量是不可能的。
简而言之,我们无法同时准确地知道粒子的位置和动量。
这意味着测量的结果是随机的,存在一定的误差。
3. 量子态量子力学中,量子态描述了一个系统的所有信息。
量子态可以用波函数表示,波函数是描述粒子在空间中分布和运动的数学函数。
根据波函数的模的平方,我们可以得到一个粒子出现在空间中某个位置的概率。
量子态还包括诸如自旋、能量等其他信息。
4. 测量问题在量子力学中,测量是一个重要的概念。
测量会导致量子态的塌缩,即系统从一个可能的量子态跃迁到一个确定的量子态。
然而,测量结果是随机的,我们只能得到一定的概率性结果。
这与经典物理学中的确定性测量有所不同。
5. 薛定谔方程薛定谔方程是量子力学的基本方程,由奥地利物理学家薛定谔提出。
它描述了量子体系的演化规律,可以用于求解系统的量子态和能量。
薛定谔方程是量子力学的数学基础,可以解释波粒二象性、不确定性原理和量子态等现象。
总结:量子力学是一门奇特而又挑战性的学科,它已经对人类的科学认知产生了深远的影响。
本文简要介绍了量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。
了解和理解这些基础知识对于进一步深入学习量子力学以及应用量子技术具有重要意义。
量子力学的知识点

量子力学的知识点量子力学是一门研究微观世界的物理学分支,它描述了微观粒子的行为和相互作用。
本文将介绍一些量子力学的基本概念和知识点。
1. 波粒二象性:量子力学中最基本的概念之一是波粒二象性。
根据波粒二象性,微观粒子既可以表现出波动性,也可以表现出粒子性。
例如,电子和光子既可以像粒子一样被探测到,也可以像波一样干涉和衍射。
2. 不确定性原理:不确定性原理是量子力学的核心原理之一,由海森堡提出。
它指出,在某一时刻,无法同时准确测量一个粒子的位置和动量。
换句话说,粒子的位置和动量不能同时被完全确定。
3. 波函数和量子态:波函数是量子力学中描述微观粒子的数学工具。
它可以用来计算粒子的概率分布和状态。
量子态则是描述粒子的完整信息,包括波函数和其他相关信息。
4. 叠加态和量子叠加:叠加态是指一个粒子处于多个可能状态的叠加状态。
量子叠加是指粒子在没有被观测之前,可以同时处于多个可能状态,直到被观测时才会坍缩到其中一个确定的状态。
5. 纠缠态和量子纠缠:纠缠态是指多个粒子之间存在相互关联的状态。
量子纠缠是指两个或多个粒子之间的状态相互依赖,无论它们之间有多远的距离。
6. 测量和量子测量:量子测量是指对一个量子系统进行观测,以获取它的某个性质的数值。
量子测量会导致波函数坍缩,从而确定粒子的状态。
7. 哥本哈根解释:哥本哈根解释是量子力学最广泛接受的解释之一,由波尔和海森堡等人提出。
它强调了观察者在量子系统中的重要性,认为观测会导致波函数坍缩,从而决定粒子的状态。
8. 量子力学的应用:量子力学在现代科学和技术中有广泛的应用。
例如,量子力学在原子物理学、核物理学、凝聚态物理学和量子计算等领域发挥着重要作用。
总结起来,量子力学是一门研究微观世界的物理学分支,它涉及到波粒二象性、不确定性原理、波函数和量子态、叠加态和量子叠加、纠缠态和量子纠缠、测量和量子测量、哥本哈根解释以及量子力学的应用等知识点。
通过深入了解这些知识点,我们可以更好地理解微观世界的奥秘,并应用于相关领域的研究和技术发展中。
量子力学知识总结

量子力学基础知识总结一.微观粒子的运动特征1.黑体辐射和能量量子化黑体:一种能全部吸收照射到它上面的各种波长辐射的物体普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。
2.光电效应与光子学说爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。
其提出了光子学说,圆满解释了光电效应。
光子学说内容:①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子光子能量ε=hν/c②光子质量m=hν/c2③光子动量p=mc=hν/c= h/λ④光的强度取决于单位体积内光子的数目,即光子密度。
光电效应: hν=W+EK =hν+21mv2,W为脱出功,Ek为光电子的动能。
3.实物微粒的波粒二象性德布罗意提出实物微粒也具有波性:E=hν p=h/λ德布罗意波长:λ=h/p=h/(mv)4. 测不准原理:∆x∆x p≥h∆y∆py ≥h∆z∆py≥h∆tE≥h二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数ψ(x,y,z)称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。
●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。
●不同金属的临阈频率不同。
●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。
●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。
Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。
如:sin,log等。
线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。
5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。
量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
量子力学的基础知识

量子力学的基础知识量子力学是描述物质结构和物理属性的理论,它在20世纪初的时候被开发出来,由于它的成功应用,此后一直是物理学的重要工具。
它不仅可以帮助科学家们能够理解物质的结构,而且可以用来研究物体的行为,甚至在一定程度上预测它们可能发生的事情。
量子力学的基础知识主要包括量子状态、量子场理论、对称性、态密度矩阵、能量层结构、矩阵力学等。
量子状态是量子力学中最基本的概念,它是一个描述原子或分子等物质态的数学表达式。
量子状态可以用于研究物体的不同状态和物理性质,并可以用来预测物质在极其微小的尺度上的行为和属性。
量子场理论是量子力学中最重要的理论,它可以用来描述和解释物质和粒子的行为。
根据量子场理论,一些粒子例如光子和重子之间会存在相互作用,而这种相互作用的本质是自旋极化的实质性的交互作用。
对称性是很多领域的重要概念,也是量子力学中的重要概念。
"对称"指的是某些系统的性质是不变的,这就意味着,当你对系统的某些变量做出改变时,如果另一个变量也发生相应的改变,那么这种系统就是对称的。
态密度矩阵是量子力学中最重要的概念之一,它描述物质结构下的能量变化。
态密度矩阵可以用来表示物质的状态,并可以用来预测物质的性质,而且也可以用来计算物质的各种性质,比如能量、质量等。
能量层结构是量子力学中常用的概念,通过研究可以发现,能量层结构可以看作一个多层结构,上层由更高能量组成,而下层由更低能量组成。
而每一层都存在一定的跃迁规律,这些跃迁规律将决定能量状态的变化。
最后,矩阵力学是量子力学中近年来研究的重要方向,矩阵力学使用数学方法来分析物质的性质、结构和变化,可以用来研究物质的性质,并用来预测物质的性质变化,从而更好地了解物质的结构和行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
En 1 n 0*H ˆ n 0d
En 2
l
'E H n 0ln -H E ln (0)ll
'En H 0n -E 2ll0
H'nm n 0*H ˆm 0d
实际应用:案例(习题集二、25-27)
例转1动P惯18量0求为电I、介电质偶的极极矩化为率D 。的空间转子处在均匀电场中的
能量。
返回
返回
五个基本假设
• 公设一:量子力学对物质系统的描述方式。微观体系的运动状 态由相应的波函数(r,t)完全描述,归一化的波函数是几率波 振幅;
• 公设二:量子力学对物质系统的运动状态规律。微观体系的运 动状态波函数(r,t)随时间变化的规律遵从薛定谔方程;
• 公设三:量子力学对物质系统的力学量的描述方式。微观体系 的力学量由相应的线性厄米算符表示。基本对应关系是: x ,p 。完全确定一个系统的状态需要一组完全的力 学量集合,代表它们的算符两两对易;
问题。O r * r r,tO ˆ rr r,td r r=c n2n n
如:1.用直接积分法和周期性边界条件求轨道
角动量的
Lˆz
i
Z分量算符的本征值和本
征态,并求本征态的归一化常数。2.无限深势
阱波函数。
返回
表象问题
比如:
Fmn mFˆ n
F11
F21
Fn1
F12 F22
• 公设四:量子力学对物质系统的力学量的确定方法。它们之间 有确定的对易关系(称为量子条件),因此力学量算符由其相 应的量子条件确定;
• 公设五:量子力学对全同多粒子系统的波函数的特点。全同的 多粒子体系的波函数对于任意一对粒子交换而言具有对称性, 玻色子系的波函数是对称的,费米子系的波函数是反对称的。 返回
(5)说出原子中的电子从状态Φm跃迁到状态Φn所必须满足的 条件,该条件与原子的光谱谱线有什么关系?
返回
简述题
(1)论述全同性原理的内容以及全同粒 子体系的波函数的特点,同时说明费米子 体系的波函数和玻色子体系的波函数的主 要差别。 (2)试简述量子力学的五个基本假设。 (3)论述量子力学中体系所满足的态叠 加原理的内容。 (4)试简述泡利不相容原理。
第九章:全同粒子、费米子、玻色子、对称波函数、反对称波函数、 全同性原理、泡利不相容原理。
返回
物质波
已知hc =1.24nm·keV,电子质量 me=9.10908×10-31千克,h=6.62559×10-34焦克 ·秒,回答: (1)电子显微镜跟光学显微镜相比,谁的放大 率高?
(2)如果需要观测一个大小为0.5Å的物体,可 用的光子的最小能量是多少电子伏?
F1n a1 a1
a2 a2
Fnn aF1n
F21 F22
0
Fn1
Fnn
FSF SS1FS
bS1a或 者 a=Sb
寻找幺正变换矩阵
把求得的本征函数按列写成矩阵形式
1 2
1 ei
2 1
ei 1
令该矩阵为变换矩阵S,便可将算符从A表象的 表示变换为自身的表象中的表示。
综合问题
比如: 设粒子原来处在 0xa的一维无限深势阱中的基态, 在t=0时阱壁 xa突然运动到 x2a 处,此后粒子 处于新势阱中,求它处于新系统中的第二激发态的 几率。 如:氢原子的波函数
习题集(二、21-24) 23-24讲案例例3
返回
1 ei ei
S
2
1
1
表象问题例题
• 已知在 Sˆ z 表象中,算符 Sˆ x 的表示为:
h 0 1
Sx
2
1
0
求它的本征值和本征函数,并将它对角化。
又如:
Sˆ y
h 2
0
i
i
0
返回
微扰问题
比如:
EnEn0Hn
nψ mn'E ψ H nn 0 0n -E m m 20m En H 0-m E m 0nψm 0
证明题
比如: 1.假设某厄米算符Â的本征函数Φm(m=1,2, 3,…)非简并,本征值λm分立,证明本征函 数满足正交归一性:∫Φm*Φndτ=δmn。
2.证明:x ˆp ˆxp ˆxx ˆih ,并说明量子力学中 所存在的不确定关系的原因。
3.厄米算符的本征值是实数。
返回
本征问题
比如:无限深势阱波函数、能量;谐振子能 量;氢原子波函数、能量。求平均值和几率
(2)什么叫作定态?写出定态波函数所满足的定态薛定谔方 程的形式。定态中几率密度和几率流密度与时间有关吗?
(3)一维线性谐振子的振动频率为ω,其零点能是量子力学中 所 及特它有的而 能在级旧公量式子En论。中所没有的,写出该零点能E0的大小,以
(4)什么叫作量子力学中态和力学量的表象?力学量算符在 自身表象中的矩阵具有什么特点?矩阵元与它的本征值有何关 系?
第三章:力学量、平均值、算符、厄米算符、本征值、本征函数、 正交归一、 完备封闭性、对易、不确定性原理。
第四章:表象、动量表象、能量表象、共轭矩阵、对角矩阵、幺正 变换、基矢、狄拉克符号
第五章:微扰、定态微扰、跃迁概率、零级波函数和零级能量、能 量一级修正、能量二级修正、微扰矩阵
第六章:自旋角动量、自旋算符、泡利算符、泡利矩阵、自旋单态、 自旋三重态、耦合表象、无耦合表象
(3)考虑非相对论情形,利用德布罗意波关系 式,若把光子变为电子,电子的最小能量是多少 电子伏?
返回
简答题
(1)由于动量算符的本征值连续,所对应的本征函数不能归 一化为1,但是可以归一化为δ函数。写出自由粒子的按照箱归 一化的德布罗意波的数学形式。并说明波函数所满足的三个标 准条件以及波函数的统计解释。
第27讲 总复习
概念理解题 简答题 简述题 知识点证明题 本征问题 表象问题 微扰问题 综合问题
结束
概念理解题
第一章:量子、波粒二象性(物质波)
第二章:波函数(态函数)、状态、几率、几率密度、几率流密度、 态叠加、薛定谔方程、平面波函数、定态、简并、简并度、一维无 限深势阱、一维线性谐振子、隧道效应、势垒贯穿。