2019年山东省泰安市高考数学一模试卷(理科)(解析版)
2019年普通高等学校招生全国统一考试数学试题理(山东卷,包括解析)

绝密★启用前2019年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i是虚数单位,若,4z a z z =+⋅=,则a= (A )1或-1 (B(C )(D【答案】A【解析】由4z a z z =+⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) p q ∧ (B )p q ⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C. (5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225ii x==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D.(7)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 12-e 与12λ+e e 的夹角为60,则实数λ的值是 .【解析】)()221212112122333e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()2221233232e e e e e e e -=-=-⋅+=,()22221221e e e e e e e e λλλλ+=+=+⋅+=+2cos601λ==+,解得:λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】2y x =±(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x exe x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。
山东省泰安市2019-2020学年第一次高考模拟考试数学试卷含解析

山东省泰安市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( ) A .B .2C .D .【答案】C 【解析】 【分析】 计算得到,,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,,故,,故,代入双曲线化简得到:,故.故选:. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.2.如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( ) A .点M 在圆C 上 B .点M 在圆C 外 C .点M 在圆C 内 D .上述三种情况都有可能【答案】B 【解析】 【分析】根据圆心到直线的距离小于半径可得,a b 满足的条件,利用(),M a b 与圆心的距离判断即可. 【详解】Q 直线1ax by +=与圆22:1C x y +=相交,∴圆心(0,0)到直线1ax by +=的距离1d =<,1>.也就是点(,)M a b 到圆C 的圆心的距离大于半径. 即点(,)M a b 与圆C 的位置关系是点M 在圆C 外. 故选:B 【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题. 3.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( ) A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-【答案】B 【解析】 【分析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果. 【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况.4.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1- B .0C .1D.22+ 【答案】A 【解析】 【分析】先将函数解析式化简为|cos |y x =,结合题意可求得切点4x 及其范围4,2x ππ⎛⎫∈ ⎪⎝⎭,根据导数几何意义,即可求得()442tan x x +的值. 【详解】函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩即|cos |y x =直线(2)(0)y m x m =+>与函数|cos |y x =图象恰有四个公共点,结合图象知直线(2)(0)y m x m =+>与函数cos y x =-相切于4x ,4,2x ππ⎛⎫∈ ⎪⎝⎭, 因为sin y x '=, 故444cos sin 2x k x x -==+,所以()()()()4444444sin 1221c 2tan os 2x x x x x x x -+⨯=+⨯=-++=.故选:A. 【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.5.已知函数3sin ()(1)()x x x xf x x m x e e-+=+-++为奇函数,则m =( )A .12B .1C .2D .3【答案】B 【解析】 【分析】根据()f x 整体的奇偶性和部分的奇偶性,判断出m 的值. 【详解】依题意()f x 是奇函数.而3sin y x x =+为奇函数,x xy e e -=+为偶函数,所以()()()1gx x m x =+-为偶函数,故()()0gx g x --=,也即()()()()110x m x x m x +---+=,化简得()220m x -=,所以1m =.故选:B 【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题. 6.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在区间(,)43ππ上单调,则ω的最大值是( )A .12B .11C .10D .9【答案】B 【解析】 【分析】由题意可得()4k πωϕπ-+=g ,且42k ππωϕπ+='+g ,故有2()1k k ω='-+①,再根据12234πππω-g …,求得12ω…②,由①②可得ω的最大值,检验ω的这个值满足条件.【详解】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ…,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴, ()4k πωϕπ∴-+=g ,且42k ππωϕπ+='+g ,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①. ()f x Q 在(4π,)3π单调,∴12234πππω-g…,12ω∴…②. 由①②可得ω的最大值为1. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=g ,满足4πx =-为()f x 的零点, 同时也满足满足()f x 在,43ππ⎛⎫⎪⎝⎭上单调, 故11ω=为ω的最大值, 故选:B . 【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题. 7.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立 D .当6n =时,该命题成立【答案】C 【解析】 【分析】写出命题“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N*=+∈时该命题不成立,则当n k =时该命题也不成立”,由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C. 【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.8.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21 B .22C .11D .12【答案】A 【解析】 【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值. 【详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.9.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 【答案】C 【解析】 【分析】由题意可得PA ⊥面ABC ,可知PA BC ⊥,因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥.由此推出三棱锥P ABC -外接球球心是PC 的中点,进而算出2CP =,外接球半径为1,得出结果. 【详解】解:由DA AB ⊥,翻折后得到PA AB ⊥,又PA AC ⊥, 则PA ⊥面ABC ,可知PA BC ⊥.又因为AB BC ⊥,则BC ⊥面PAB ,于是BC PB ⊥, 因此三棱锥P ABC -外接球球心是PC 的中点.计算可知2CP =,则外接球半径为1,从而外接球表面积为4π.故选:C. 【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.10.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.11.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2 B .3 C .-2 D .-3【答案】B 【解析】 【分析】根据(1)3f '=求出2,a =再根据(1,)a b +也在直线32y x =-上,求出b 的值,即得解. 【详解】 因为1()f x a x'=+,所以(1)3f '= 所以13,2a a +==,又(1,)a b +也在直线32y x =-上, 所以1a b +=, 解得2,1,a b ==- 所以3a b -=. 故选:B 【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平. 12.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B 【解析】 【分析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案. 【详解】由三视图可得,该几何体的直观图如图所示, 延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =, 所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题 二、填空题:本题共4小题,每小题5分,共20分。
2019年高考试题-理科数学(山东卷)解析版(2)

2019年高考试题-理科数学(山东卷)解析版(2)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。
在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。
考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。
只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。
【一】选择题:本大题共12小题,每题5分,总分值60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
〔1〕复数z 满足(z-3)(2-i)=5(i 为虚数单位),那么z 的共轭复数为( ) A. 2+i B.2-i C. 5+i D.5-i 【答案】D 【解析】由(z-3)(2-i)=5,得(2)355〔2〕设集合A={0,1,2},那么集合B={x-y |x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9 【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选C.【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A.tan OPPAO OA∠==3PAO π∠=,选 B.,42k k Z ϕπ+=+∈,即,4k k Z ϕπ=+∈,所以选B.〔6〕在平面直角坐标系xOy 中,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动【解析】作出可行域如图,由图象可知当M 位于点D 处时,OM的斜率最小。
由210380x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=-⎩,即(3,1)D -,此时OM 的斜率为1133-=-,选C.〔A 〕充分而不必条件 〔B 〕必要而不充分条件〔C 〕充要条件 〔D 〕既不充分也不必要条件【答案】B【解析】因为﹁p 是q 的必要而不充分条件,所以﹁q 是p 的必要而不充分条件,即p 是﹁q 的充分而不必要条件,选A.〔8〕函数y=xcosx+sinx 的图象大致为 〔A 〕〔B 〕 (C)(D)【答案】 D 【解析】函数y=xcosx+sinx 为奇函数,所以图象关于原点对称,所以排除B ,C.当x π=时,()0f ππ=-<,排除A,选D.〔9〕过点〔3,1〕作圆〔x-1〕2+y 2=1的两条切线,切点分别为A ,B ,那么直线AB 的方程为〔A 〕2x+y-3=0 〔B 〕2x-y-3=0 〔C 〕4x-y-3=0 〔D 〕4x+y-3=0 【答案】A【解析】由图象可知,(1,1)A 是一个切点,所以代入选项知,,B D 不成立,排除。
2019-2020年高三数学第一次统一考试试题 理(含解析)

2019-2020年高三数学第一次统一考试试题 理(含解析)【试卷综析】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,无论是在试卷的结构安排方面,还是试题背景的设计方面以全新的面貌来诠释新课改的理念.【题文】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】 l.集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为A.3 B .4 C .11 D .12【知识点】集合中元素的特征:确定性,互异性,无序性. A1 【答案】【解析】C 解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C. 【思路点拨】利用已知求得集合C 即可.【题文】 2.已知i 为虚数单位,复数123,12z ai z i =-=+,若12z z 复平面内对应的点在第四象限,则实数a 的取值范围为 A. {}|6a a <- B . 3|62a a ⎧⎫-<<⎨⎬⎩⎭ C .3|2a a ⎧⎫<⎨⎬⎩⎭ D . 3|62a a a ⎧⎫<->⎨⎬⎩⎭或 【知识点】复数的运算;复数的几何意义. L4 【答案】【解析】B 解析:12z z ()()()()312332612121255ai i ai a a i i i i ----+===-++-,因为12zz 复平面内对应的点在第四象限,所以32036602a a a ->⎧⇒-<<⎨+>⎩,故选 B.【思路点拨】先把复数z 化为最简形式,在利用复数的几何意义求解.【题文】3.已知θ为第二象限角, sin ,cos θθ是关于x 的方程22x R)∈的两根,则 sin -cos θθ的等于 A .12+ B .12C ..【知识点】已知三角函数式的值,求另一个三角函数式的值. C7 【答案】【解析】A解析:由已知得1sin cos 2θθ+=2sin cos 2θθ⇒=-又θ为第二象限角,所以sin -cos θθ==12+,故选 A.【思路点拨】由已知得1sin cos 2θθ-+=2sin cos 2θθ⇒=-,又θ为第二象限角,所以sin -cos θθ==12+. 【题文】4.下面四个推导过程符合演绎推理三段论形式且推理正确的是A .大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提: π是无限不循环小数;结论: π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论: π是无理数D.大前提: π是无限不循环小数;小前提: π是无理数;结论:无限不循环小数是无理数 【知识点】演绎推理的定义及特点. M1【答案】【解析】B 解析:A :小前提不正确;C 、D 都不是由一般性命题到特殊性命题的推理,所以A 、C 、D 都不正确,只有B 正确,故选 B.【思路点拨】演绎推理是由一般性命题到特殊性命题的推理,及其推理的一般模式---“三段论”,由三段论的含义得出正确选项.【题文】5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为 A .38 B . 82π- C . 43π D . 283π-【知识点】几何体的三视图;几何体的结构. G1 G2【答案】【解析】D 解析:由三视图可知此几何体是:棱长为2 的正方体挖去了一个圆锥而形成的新几何体,其体积为3212212833ππ-⨯⨯⨯=-,故选 D.【思路点拨】由几何体的三视图得此几何体的结构,从而求得此几何体的体积.【题文】6.已知 ()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增,设333(sin )(cos ),(tan )555a fb fc f πππ===,则a,b,c 的大小关系是,A .a<b<cB .b<a<cC .c<a<bD .a<c<b【知识点】函数奇偶性,单调性的应用. B3 B4【答案】【解析】C 解析:∵()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增, ∴()f x 在[)0,+∞上单调递减,且22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭, 22tantan 55c f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,又∵2sin 5a f π⎛⎫=⎪⎝⎭,且2220cos sin tan 555πππ<<<,∴ c<a<b ,故选 C.【思路点拨】由已知得函数()f x 在[)0,+∞上单调递减,而2sin5a f π⎛⎫= ⎪⎝⎭, 22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,22tan tan 55c f f ππ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,所以只需比较 222cos,sin ,tan555πππ的大小关系即可. 【题文】7.执行如图的程序,则输出的结果等于 A .9950 B .200101 C .14950 D . 15050【知识点】对程序框图描述意义的理解. L1【答案】【解析】A 解析:根据框图中的循环结构知,此程序是求下式的值:1111136104950T =+++++222222612209900=+++++1111212233499100⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭1111111212233499100⎛⎫=-+-+-++- ⎪⎝⎭1992110050⎛⎫=-=⎪⎝⎭,故选A. 【思路点拨】由程序框图得其描述的算法意义.【题文】 8.在△ABC 中,D 为AC 的中点,3BC BE =,BD 与 AE 交于点F ,若 AF AE λ=,则实数λ的值为 A .12 B . 23 C . 34 D . 45【知识点】平面向量的线性运算. F1 【答案】【解析】C 解析:作EFAC 交BD 于G ,因为13BE BC =,所以13EG DC =,因为 D 为AC 的中点,所以13EG AD =,所以1334EF AF AE FA =⇒=,故选C.【思路点拨】画出几何图形,利用平行线分线段成比例定理求得结论.【题文】9.设 12,F F 分别为双曲线 221x y -=的左,右焦点,P 是双曲线上在x 轴上方的点, 1F PF ∠为直角,则 12sin PF F ∠的所有可能取值之和为A .83B .2C .D .2【知识点】双曲线的性质. H6【答案】【解析】D 解析:设P 是第一象限点,且12,PF m PF n ==,则222181m n m m n n ⎧-==⎧⎪⇒⎨⎨+==⎩⎪⎩,所以所求= 2m n c +==,故选 D. 【思路点拨】根据双曲线的定义及勾股定理,求得P 到两焦点的距离,这两距离和与焦距的比值为所求. 【题文】10.曲线 1(0)y x x=>在点 00(,)P x y 处的切线为 l .若直线l 与x ,y 轴的交点分别为A ,B ,则△OAB 的 周长的最小值为A. 4+5+ 【知识点】导数的几何意义;基本不等式求最值. B11 E6 【答案】【解析】A 解析:∵21y x '=-,∴00201:()l y y x x x -=--即20020x x y x +-=, 可得A(02x ,0),B(0,02x ),∴△OAB的周长00224l x x =+≥+当01x =时等号成立.故选 A.【思路点拨】由导数的几何意义得直线l 的方程,从而求得A 、B 的坐标,进而用0x 表示△OAB 的周长,再用基本不等式求得周长的最小值.【题文】11.若直线(31)(1)660x y λλλ++-+-= 与不等式组 70,310,350.x y x y x y +-<⎧⎪-+<⎨⎪-->⎩,表示的平 面区域有公共点,则实数λ的取值范围是 A . 13(,)(9,)7-∞-+∞ B . 13(,1)(9,)7-+∞ C .(1,9) D . 13(,)7-∞-【知识点】简单的线性规划. E5【答案】【解析】A 解析:画出可行域,求得可行域的三个顶点A(2,1),B(5,2),C(3,4) 而直线(31)(1)660x y λλλ++-+-=恒过定点P(0,-6),且斜率为311λλ+-,因为 7810,,253PA PB PC k k k ===,所以由8317512λλ+<<-得λ∈13(,)(9,)7-∞-+∞,故选A.【思路点拨】:画出可行域,求得可行域的三个顶点, 确定直线过定点P(0,-6),求得直线PA 、PB 、PC 的斜率,其中最小值85,最大值72,则由8317512λλ+<<-得λ的取值范围. 【题文】12.在平面直角坐标系中,点P 是直线 1:2l x =-上一动点,点 1(,0)2F ,点Q 为PF 的 中点,点M 满MQ ⊥PF ,且 ()MP OF R λλ=∈.过点M 作圆 22(3)2x y -+= 的切线,切点分别为S ,T ,则 ST 的最小值为A .. C . 72 D. 52【知识点】曲线与方程;距离最值问题. H9 【答案】【解析】A 解析:设M(x,y),1(,2)2P b -,则Q(0,b),由QM ⊥FP 得 (,)(1,2)02()0x y b b x b y b -⋅-=⇒-+-=.由()MP OF R λλ=∈得y=2b,所以点M 的轨迹方程为22y x =,M 到圆心距离=,易知当d 去最小ST 取最小值,此时MT ==,由三角形面积公式得:11222ST ST ==故选A. 【思路点拨】先求得点M 的轨迹方程22y x =,分析可知当M 到圆心距离最小时ST 最小,所以求M 到圆心距离d 得最小值,再用三角形面积公式求得ST 的最小值. 【题文】二、填空题:本大题共4小题,每小题5分,共20分. 【题文】13.设随机变量 2(,)N ξμσ,且 (1)(1),(2)0.3P P P ξξξ<-=>>=,则(20)P ξ-<<= _____________.【知识点】正态分布的意义. I3【答案】【解析】0.2 解析:因为(1)(1)P P ξξ<-=>,所以正态分布曲线关于y 轴对称, 又因为(2)0.3P ξ>=,所以(20)P ξ-<<=120.30.22-⨯=【思路点拨】根据正态分布的性质求解.【题文】14.若正四梭锥P- ABCD 的底面边长及高均为2,刚此四棱锥内切球的表面积为_______.【知识点】组合体的意义;几何体的结构. G1【答案】【解析】2(3π- 解析:根据题意得正四梭锥的底面面积为4,一个侧面面积为R ,则由等体积法得,()111442332R R =⨯⨯⇒=,所以球的表面积为2(3π.【思路点拨】由等体积法求得此四棱锥内切球的半径,再由球的表面积公式求得结论. 【题文】15.将函数 ()sin()223y sin x x ωωπ=+的图象向右平移3π个单位,所得图象关于y轴对称,则正数 ω的最小值为________.【知识点】sin()y A x ωϕ=+的图像与性质. C4 【答案】【解析】 1 解析:函数()sin()223y sin x x ωωπ=+=1sin()sin()cos()2222x x x ωωω⎛⎫+ ⎪ ⎪⎝⎭=21sin ()sin()cos()2222x x x ωωω+=11sin()264x πω-+,向右平移3π个单位后为: 1111sin[()]sin 23642364y x x πππωπωω⎡⎤⎛⎫=--+=-++ ⎪⎢⎥⎝⎭⎣⎦,这时图像关于y 轴对称,所以31362k k πωπππω+=+⇒=+,k Z ∈,所以正数 ω的最小值为1.【思路点拨】先利用两角和与差的三角函数,二倍角公式,把已知函数化为: y=11sin()264x πω-+,再由其平移后关于y 轴对称得31k ω=+,k Z ∈,所以正数 ω的最小值为1.【题文】 16.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b=l ,a= 2c ,则当C 取最大值时,△ABC 的面积为________.【知识点】余弦定理;三角形的面积公式. C8【答案】解析:当C 取最大值时,cosC 最小,由22223111cos 3244a b c c C c ab c c +-+⎛⎫===+≥⎪⎝⎭得,当且仅当c= 3时C 最大,且此时sinC=12,所以△ABC的面积为111sin 21222ab C c =⨯⨯⨯=【思路点拨】由余弦定理求得C 最大的条件,再由三角形面积公式求解.【题文】三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【题文】17.(本小题满分10分) 已知 {}{},n n a b 均为等差数列,前n 项和分别为 ,n n S T .(1)若平面内三个不共线向量 ,,OA OB OC 满足 315OC a OA a OB =+,且A ,B ,C 三点共线.是否存在正整数n ,使 n S 为定值?若存在,请求出此定值;若不存在,请说明理由。
山东省泰安一模数学试题及答案(理)

山东省泰安一模数学试题及答案(理) 高三第一轮复质量检测数学试题(理科)第I卷一、选择题:本大题共12小题,每小题5分。
共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-10.-9.…。
2},集合B={y | y=2x-3.x∈A},则A∩B等于()。
A。
{-10.-9.…。
-1}B。
{-1}C。
{-1.0 (2)D。
{0 (2)2.若(1-2i)z=5i,则z的值为()。
A。
3B。
5C。
3+2iD。
5+2i3.在各项均为正数的等比数列{an}中,a6=3,则a4+a8()。
A。
有最小值6B。
有最大值6C。
有最大值9D。
有最小值34.下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x与相应的生产能耗y的几组对应数据:x | 1 | 2 | 3 | 4 | 5 |y | 18.5 | 28.9 | 38.3 | 47.7 | 57.1 |根据上表可得回归方程y=9.4x+9.1,则表中m的值为()。
A。
27.9B。
25.5C。
26.9D。
265.阅读右侧程序框图,运行相应程序,则输出i的值为()。
i = 0while i < 5:if i % 3 == 0:i += 2elif i % 3 == 1:i += 3else:i += 1print(i)A。
3B。
4C。
5D。
66.将函数f(x)=sin(2x+π/3)的图像向右平移π/6个单位,得到函数g(x)的图像,则下列说法不正确的是()。
A。
g(x)的周期为πB。
g(π/3)=f(0)C。
x=π/6是g(x)的一条对称轴D。
g(x)为奇函数7.以F(0.2√2)为焦点的抛物线C的准线与双曲线x-y=2相交于M、N两点,若△MNF为正三角形,则抛物线C的标准方程为()。
A。
y2=26xB。
y2=46xC。
x2=46yD。
x2=26y8.a=∫2(-cosx)dx,则ax+2ax2的展开式中项的系数为()。
山东省泰安市2019年高考数学一模试卷(理科)D卷

山东省泰安市2019年高考数学一模试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·泉州模拟) 已知集合A={x|﹣1≤x≤2},B={y|y=x2 ,x∈A},则A∩B=()A . [﹣1,0]B . [0,2]C . [2,4]D . [﹣1,4]2. (2分)设复数,则()A . -3B . 3C . -3iD . 3i3. (2分)在△ABC中,三边长AB=7,BC=5,AC=6,则的值为()A . 19B . -14C . -18D . -194. (2分) (2019高三上·双流期中) 十三届全国人大二次会议于年月日至日在北京召开,会议期间工作人员将其中的个代表团人员(含、两市代表团)安排至,,三家宾馆入住,规定同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住,若、两市代表团必须安排在宾馆入住,则不同的安排种数为()A .B .C .D .5. (2分)已知a,b,a+b成等差数列,a,b,ab成等比数列,且0<logm(ab)<1,则m的取值范围是()A . m>1B . 1<m<8C . m>8D . 0<m<1或m>86. (2分)三个数0.60.7 , 0.70.6 , log0.76的大小顺序是()A . <<B . <<C . <<D . <<7. (2分) (2015高三上·合肥期末) 一个三棱锥的三视图如图所示,则该三棱锥的体积为()A .B .C . 4D . 28. (2分)定义某种运算,运算原理如图所示,则式子的值为()A . 13B . 11C . 8D . 49. (2分) (2016高二下·安吉期中) 已知双曲线(a>0,b>0)的中心为O,左焦点为F,P 是双曲线上的一点• =0且4 • =3 ,则该双曲线的离心率是()A .B .C . +D .10. (2分)(2013·辽宁理) 已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A .B .C .D .11. (2分) (2017高一下·正定期末) 下列函数中同时具有以下性质:“①最小正周期为;②图象关于直线对称;③在上是增函数”的一个函数是()A .B .C .D .12. (2分)函数在点处的切线方程是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2017·葫芦岛模拟) 在(x2+2x+y)5的展开式中,x5y2的系数为________.14. (1分)若变量x,y满足约束条件,则z=2x﹣y的最小值为________15. (1分)已知直线l过拋物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点且|AB|=12,P为C 的准线上的一点,则△ABP的面积为________16. (1分) (2016高三上·黑龙江期中) 等比数列{an}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=________三、解答题 (共7题;共65分)17. (10分) (2016高一下·成都期中) 已知函数f(x)= sin cos +sin2 (ω>0,0<φ<).其图象的两个相邻对称中心的距离为,且过点(,1).(1)函数f(x)的解析式;(2)在△ABC中,角A,B,C所对的边分别为a,b,c.已知 = .且f(A)= ,求角C的大小.18. (10分)(2017·南京模拟) 从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记Y为所组成的三位数各位数字之和.(1)求Y是奇数的概率;(2)求Y的概率分布和数学期望.19. (5分) (2016高二上·青海期中) 如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.20. (10分) (2015高二上·石家庄期末) 设F(0,1),点P在x轴上,点Q在y轴上, =2 ,⊥ ,当点P在x轴上运动时,点N的轨迹为曲线C.(1)求曲线C的方程;(2)过点F的直线l交曲线C于A,B两点,且曲线C在A,B两点处的切线相交于点M,若△MAB的三边成等差数列,求此时点M到直线AB的距离.21. (15分) (2019高二下·盐城期末) 已知函数,(1)当,时,求函数在上的最小值;(2)若函数在与处的切线互相垂直,求的取值范围;(3)设,若函数有两个极值点,,且,求的取值范围.22. (10分) (2018高二下·抚顺期末) 在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为 . (1)写出曲线的普通方程;(2)若直线与曲线有两个不同的交点,求的取值范围.23. (5分)已知函数f(x)=|x+a|﹣|x+3|,a∈R.(Ⅰ)当a=-1时,解不等式f(x)≤1;(Ⅱ)若x∈[0,3]时,f(x)≤4恒成立,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、20、答案:略21-1、21-2、21-3、22-1、22-2、23、答案:略。
2019届山东省泰安市高三上学期第一次模拟考试数学理试题Word版含解析

2019届山东省泰安市高三上学期第一次模拟考试数学理试题第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.0()0f x '=是函数()f x 在点0x 处取极值的( )A .充分不必要条件B .既不充分又不必要条件C .充要条件D .必要不充分条件 2.函数1()x x f x xe e +=- 的单调递减区间是( )A .(,1)e -∞-B .(1,)e C. (,)e +∞ D. (1,)e -+∞3.在曲线2y x = 上切线的倾斜角为3π的点是( )A .(0,0)B .3()24 C. 1,)612 D. 1()334.曲线1x y xe -= 在点(1,1) 处切线的斜率等于( )A .2e B. e C.2 D.15.直线4y x = 与曲线3y x = 在第一象限内围成的封闭图形的面积为( )A .6. 已知三次函数3221()(41)(1527)23f x x m x m m x =--+--+ 在(,)x ∈-∞+∞ 是增函数,则m 的取值范围是( )A .2m < 或4m >B .42m -<<-C .24m ≤≤D .以上皆不正确 7. sin()4y x π=-的图象的一个对称中心是( )A .(,0)π-B .3(,0)2π C .3(,0)4π- D .(,0)2π8.若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( )A .3113≥≤≤--≤k k k 或或B .不存在这样的实数kC .22<<-kD .3113<<-<<-k k 或 9.已知α 是第四象限角,12sin 13α=-,则tan α= ( ) A .513- B. 513 C. 125- D. 12510.设sin33,cos55,tan35a b c ︒==︒=︒ ,则( )A .c b a >>B .b c a >>C . a b c >>D .c a b >>第II 卷(非选择题 共100分)二、填空题:(每题5分,共25分)11.函数cos xy x=的导数为_________________ 12.点P 从(0,1) 出发,沿单位圆逆时针方向运动23π弧长到达Q 点,则Q 点的坐标为 。
山东省泰安市高考数学一模试卷(理科)

山东省泰安市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·北京) 设集合A= ,则()A . 对任意实数a,B . 对任意实数a,C . 当且仅当时,D . 当且仅当a 时,2. (2分)若复数(,为虚数单位)是纯虚数,则实数的值为()A .B . 4C .D . 63. (2分) (2017高二上·孝感期末) 设样本数据x1 , x2 ,…,x20的均值和方差分别为1和8,若yi=2xi+3(i=1,2,…,20),则y1 , y2 ,…,y20的均值和方差分别是()A . 5,32B . 5,19C . 1,32D . 4,354. (2分)若,则下列不等式不成立的是()A . >B . >C .D . |a|>﹣b5. (2分)已知不等式>0的解集为(﹣1,2),则二项式(ax﹣)6展开式的常数项是()A . 5B . ﹣5C . 15D . 256. (2分)(2017·漳州模拟) 已知点P的坐标(x,y)满足过点P的直线l与圆O:x2+y2=7交于A,B两点,则|AB|的最小值为()A .B .C .D .7. (2分)如图是一几何体的三视图,则该几何体的表面积是()A .B .C .D .8. (2分) (2015高三上·临川期末) “m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件9. (2分) (2017高二下·新疆开学考) 设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比 =()A .B .C .D .10. (2分) (2017高二上·延安期末) 已知双曲线方程为x2﹣ =1,过点P(1,1)的直线l与双曲线只有一个公共点,则l的条数共有()A . 4条B . 3条C . 2条D . 1条11. (2分)某大学对名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这名学生在该次自主招生水平测试中成绩不低于分的学生数是()A .B .C .D .12. (2分) (2020高一下·永年期中) 若用与球心距离为1的平面去截球,所得截面圆的面积为,则球的表面积为()A .B .C .D .二、填空题 (共4题;共5分)13. (1分)(2019·全国Ⅲ卷理) 已知a,b为单位向量,且a-b=0,若c=2a- b,则cos<a,c>=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年山东省泰安市高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知复数z满足z•i=2﹣i(i为虚数单位),则在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+2x﹣3<0},B={x|0<x<3},则A∩B=()A.(0,1)B.(0,3)C.(﹣1,1)D.(﹣1,3)3.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是()A.若m∥α,m∥β,则α∥βB.若m∥α,α∥β,则m∥βC.若m⊂α,m⊥β,则α⊥βD.若m⊂α,α⊥β,则m⊥β4.在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.B.C. D.5.执行如图所示的程序框图,则输出的s的值是()A .7B .6C .5D .36.在△ABC 中,||=||,||=||=3,则=( )A .3B .﹣3C .D .﹣7.某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥最长的棱长等于( ) A . B . C . D .8.已知x ,y 满足线性约束条件,若z=x +4y 的最大值与最小值之差为5,则实数λ的值为( )A .3B .C .D .19.将函数y=cos (2x +)的图象向左平移个单位后,得到f (x )的图象,则( )A.f(x)=﹣sin2x B.f(x)的图象关于x=﹣对称C.f()=D.f(x)的图象关于(,0)对称10.己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f (0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为()A. B. C. D.二、填空题:本大题共5小题,每小题5分,共25分).11.若双曲线的渐近线为,则双曲线C的离心率为.12.已知α为第四象限角,sinα+cosα=,则tanα的值为.13.(x﹣2y)5的展开式中的x2y3系数是.14.已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对∀x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为.15.以下命题:①“x=1”是“x2﹣3x+2=0”的充分不必要条件;②命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”③对于命题p:∃x>0,使得x2+x+1<0,则¬p:∀x≤0,均有x2+x+1≥0④若p∨q为假命题,则p,q均为假命题其中正确命题的序号为(把所有正确命题的序号都填上).三、解答题:本大题共6小题,共75分.解答写出文字说明、证明过程或演算过程.16.已知函数f(x)=4cosxsin(x+)+m(m∈R),当x∈[0,]时,f(x)的最小值为﹣1.(Ⅰ)求m的值;(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.17.在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:(Ⅰ)求乙班总分超过甲班的概率;(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.18.若数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=2,且a n b n+b n=nb n+1.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=,数列{c n}的前n项和为T n,若不等式(﹣1)nλ<T n+对一切n∈N*,求实数λ的取值范围.19.如图长方体ABCD﹣A1B1C1D1的底面边长为1,侧棱长为2,E、F、G分别为CB1、CD1、AB的中点.(Ⅰ)求证:FG∥面ADD1A1;(Ⅱ)求二面角B﹣EF﹣C的余弦值.20.已知椭圆C: +=1(a>b>0)经过点(,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为.(1)求椭圆C的方程;(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.21.已知函数f(x)=xlnx+2,g(x)=x2﹣mx.(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,求证:f(1)+g(1)<0;(Ⅲ)若存在x0∈[,e]使得mf′(x)+g(x)≥2x+m成立,求实数m的取值范围.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知复数z满足z•i=2﹣i(i为虚数单位),则在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】由z•i=2﹣i,得,然后利用复数代数形式的乘除运算化简复数z,求出在复平面内对应的点的坐标,则答案可求.【解答】解:由z•i=2﹣i,得=,则,则在复平面内对应的点的坐标为:(﹣1,2),位于第二象限.故选:B.2.已知集合A={x|x2+2x﹣3<0},B={x|0<x<3},则A∩B=()A.(0,1)B.(0,3)C.(﹣1,1)D.(﹣1,3)【考点】交集及其运算.【分析】求出A中不等式的解集,找出A与B的交集即可.【解答】解:集合A={x|x2+2x﹣3<0}=(﹣3,1),B={x|0<x<3}=(0,3),则A∩B=(0,1),故选:A3.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是()A.若m∥α,m∥β,则α∥βB.若m∥α,α∥β,则m∥βC.若m⊂α,m⊥β,则α⊥βD.若m⊂α,α⊥β,则m⊥β【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,m∥β或m⊂β;在C 中,由面面垂直的判定定理得α⊥β;在D中,m⊥与β相交、平行或m⊂β.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m∥α,m∥β,则α与β相交或平行,故A错误;在B中,若m∥α,α∥β,则m∥β或m⊂β,故B错误;在C中,若m⊂α,m⊥β,则由面面垂直的判定定理得α⊥β,故C 正确;在D中,若m⊂α,α⊥β,则m⊥与β相交、平行或m⊂β,故D错误.故选:C.4.在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.B.C. D.【考点】几何概型.【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.【解答】解:圆x2+y2=1的圆心为(0,0)圆心到直线y=k(x+3)的距离为要使直线y=k(x+3)与圆x2+y2=1相交,则<1,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使y=k(x+3)与圆x2+y2=1相交的概率为=.故选:C.5.执行如图所示的程序框图,则输出的s的值是()A.7 B.6 C.5 D.3【考点】程序框图.【分析】模拟程序框图的运行过程,根据流程图所示的顺序,可知该程序的作用是累加并输出S>5时的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=1+02+12+22+…+(k﹣1)2的值S=1+02+12+22=6>5输出S=6.故选:B6.在△ABC中,||=||,||=||=3,则=()A.3 B.﹣3 C.D.﹣【考点】平面向量数量积的运算.【分析】由题意,画出图形,利用向量的平行四边形法则得到对角线长度的关系,求出OC,得到△ABC 的形状即可求得.【解答】解:由平面向量的平行四边形法则得到,在△ABC中,||=||,||=||=3,如图,设|OC|=x,则|OA|=x,所以|AO|2+|OC|2=|AC|2即3x2+x2=9,解得x=,所以|BC|=3,所以△ABC为等边三角形,所以=3×3×=;故选:C.7.某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥最长的棱长等于()A.B.C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得:该几何体是底面为直角三角形,侧面垂直于底面,高为5的三棱锥,即可求得.【解答】解:根据几何体的三视图,得:该几何体是底面为直角三角形,侧面垂直于底面,高为5的三棱锥,棱锥最长的棱长等于=,故选C.8.已知x,y满足线性约束条件,若z=x+4y的最大值与最小值之差为5,则实数λ的值为()A.3 B.C.D.1【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值和最小值.建立方程关系进行求解即可.【解答】解:作出不等式组对应的平面区域,由得A(1,4),B(λ,λ﹣3)由z=x+4y,得y=﹣x+,平移直线y=﹣x+,由图象可知当直线经过点A时,直线y=﹣的截距最大,此时z最大.z=1+4×4=17当直线经过点B时,直线的截距最小,此时z最小.z=λ﹣3+4λ=5λ﹣3.∵z=x+4y的最大值与最小值得差为5∴17﹣(5λ﹣3)=20﹣5λ=5.得λ=3.故选:A.9.将函数y=cos(2x+)的图象向左平移个单位后,得到f(x)的图象,则()A.f(x)=﹣sin2x B.f(x)的图象关于x=﹣对称C.f()=D.f(x)的图象关于(,0)对称【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用诱导公式、y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,得出结论.【解答】解:将函数y=cos(2x+)的图象向左平移个单位后,得到f(x)=cos[2(x+)+]=cos(2x+)=﹣sin(2x+)的图象,故排除A;当x=﹣时,f(x)=1,为最大值,故f(x)的图象关于x=﹣对称,故B正确;f()=﹣sin=﹣sin=﹣,故排除C;当x=时,f(x)=﹣sin=﹣≠0,故f(x)的图象不关于(,0)对称,故D错误,故选:B.10.己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f (0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为()A. B. C. D.【考点】函数奇偶性的性质.【分析】由f(x+1)为奇函数,可得f(x)=﹣f(2﹣x).由f(x)为偶函数可得f(x)=f(x+4),故f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+2=﹣1得x的值.【解答】解:∵f(x+1)为奇函数,即f(x+1)=﹣f(﹣x+1),即f (x)=﹣f(2﹣x).当x∈(1,2)时,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).又f(x)为偶函数,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),即f(x)=﹣f(x+2)=f(x+4),故f(x)是以4为周期的函数.∵f(1)=0,∴当8<x≤9时,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).由f()=﹣1,f(x)+2=f()可化为log2(x﹣8)+2=﹣1,得x=.故选:D.二、填空题:本大题共5小题,每小题5分,共25分).11.若双曲线的渐近线为,则双曲线C的离心率为2.【考点】双曲线的简单性质.【分析】先利用双曲线的几何性质,焦点在x轴上的双曲线的渐近线方程为,得=,在两边平方,利用双曲线离心率的定义求其离心率即可【解答】解:∵双曲线的渐近线为,∴=∴=3即e2﹣1=3∴e=2故答案为212.已知α为第四象限角,sinα+cosα=,则tanα的值为﹣.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得cosα,sinα的值,可得tanα的值.【解答】解:∵α为第四象限角,sinα+cosα=,∴sinα<0,cosα>0,∴1+2sinαcosα=,2sinαcosα=﹣,∴cosα﹣sinα===,解得sinα=﹣,cosα=,则tanα==﹣,故答案为:﹣.13.(x﹣2y)5的展开式中的x2y3系数是﹣20.【考点】二项式系数的性质.【分析】先求得二项展开式的通项公式,令x的幂指数等于2、y的幂指数等于3,可得r的值,即可求得x2y3系数.【解答】解:(x﹣2y)5的展开式的通项公式为T r+1=•(﹣2)r••x5﹣r•y r,令r=3,可得x2y3系数是﹣20,故答案为:﹣20.14.已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对∀x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为(﹣∞,﹣1).【考点】利用导数研究函数的单调性.【分析】求出g(x)的图象关于点(﹣1,5)对称,令h(x)=g(x)﹣x2﹣4,根据函数的单调性求出不等式的解集即可.【解答】解:因为函数f(x)是定义在R上的奇函数,所以函数f(x)关于原点对称,又g(x)=f(x+1)+5,故g(x)的图象关于点(﹣1,5)对称,令h(x)=g(x)﹣x2﹣4,∴h′(x)=g′(x)﹣2x,∵对∀x∈R,g′(x)>2x,∴h(x)在R上是增函数,又h(﹣1)=g(﹣1)﹣(﹣1)2﹣4=0,∴g(x)<x2+4的解集是(﹣∞,﹣1),故答案为:(﹣∞,﹣1).15.以下命题:①“x=1”是“x2﹣3x+2=0”的充分不必要条件;②命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”③对于命题p:∃x>0,使得x2+x+1<0,则¬p:∀x≤0,均有x2+x+1≥0④若p∨q为假命题,则p,q均为假命题其中正确命题的序号为①②(把所有正确命题的序号都填上).【考点】命题的真假判断与应用.【分析】①,“x=1”时“x2﹣3x+2=0”成立,“x2﹣3x+2=0”时,“x=1或2,;②,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”;③,对于命题p的¬p只否定结论;④,若p∨q为假命题,则p,q中至少有一个为假命题;【解答】解:对于①,“x=1”时“x2﹣3x+2=0”成立,“x2﹣3x+2=0”时,“x=1或2,故正确;对于②,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,正确;对于③,对于命题p:∃x>0,使得x2+x+1<0,则¬p:∀x>0,均有x2+x+1≥0,故错;对于④,若p∨q为假命题,则p,q中至少有一个为假命题,故错;故答案为:①②三、解答题:本大题共6小题,共75分.解答写出文字说明、证明过程或演算过程.16.已知函数f(x)=4cosxsin(x+)+m(m∈R),当x∈[0,]时,f(x)的最小值为﹣1.(Ⅰ)求m的值;(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x+)+m+1.由x∈[0,],利用正弦函数的性质可求2sin(2x+)min=﹣1,结合已知可求m的值.(Ⅱ)由(Ⅰ)可得2sin(2C+)=1,结合范围C∈(0,π),可求C=,设BD=BC=x,则AB=5﹣x,在△ACB中,由余弦定理可解得x,进而由余弦定理可求cosA,利用同角三角函数基本关系式可求sinA,利用三角形面积公式即可计算得解.【解答】解:(Ⅰ)∵f(x)=4cosxsin(x+)+m=4cosx(sinxcos+cosxsin)+m=sin2x+2cos2x+m=sin2x+cos2x+1+m=2sin(2x+)+m+1.∵x∈[0,],2x+∈[,],可得:2sin(2x+)min=﹣1,∴f(x)=﹣1=﹣1+m+1,解得:m=﹣1.(Ⅱ)∵由(Ⅰ)可得:f(x)=2sin(2x+),∴2sin(2C+)=1,∵C∈(0,π),可得:2C+∈(,),∴2C+=,解得:C=,如图,设BD=BC=x,则AB=5﹣x,∵在△ACB中,由余弦定理可得:cosC==,解得x=,∴cosA==,可得:sinA==,∴S△ACD=AC•AD•sinA==.17.在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:(Ⅰ)求乙班总分超过甲班的概率;(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.【考点】离散型随机变量的期望与方差;茎叶图.【分析】(Ⅰ)甲班前5位选手的总分为450,乙班前5位选手的总分为443,若乙班总分超过甲班,则甲、乙两班第六位选手的成绩可分别为:(90,98),(90,99),(91,99)三种情况,即可得出乙班总分超过甲班的概率.(II)(Ⅱ)ξ的可能取值为0,1,2,3,4,利用相互独立与互斥事件的概率计算公式,进而得出分布列与数学期望.【解答】解:(Ⅰ)甲班前5位选手的总分为:87+89+90+91+93=450,乙班前5位选手的总分为:82+85+92+91+93=443,若乙班总分超过甲班,则甲、乙两班第六位选手的成绩可分别为:(90,98),(90,99),(91,99)三种情况,∴乙班总分超过甲班的概率P==.(Ⅱ)ξ的可能取值为0,1,2,3,4,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,∴ξ的分布列为:∴E(ξ)=0×+1×+2×+3×+4×=2.18.若数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=2,且a n b n+b n=nb n+1.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=,数列{c n}的前n项和为T n,若不等式(﹣1)nλ<T n+对一切n∈N*,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(I)数列{b n}满足b1=1,b2=2,且a n b n+b n=nb n+1.可得a1+1=2,解得a1.利用等差数列的通项公式可得a n.可得2nb n=nb n+1,化为2b n=b n+1,利用等比数列的通项公式可得b n.(Ⅱ)设数列{c n}满足c n===,利用“错位相减法”可得数列{c n}的前n项和为T n,再利用数列的单调性与分类讨论即可得出.【解答】解:(I)∵数列{b n}满足b1=1,b2=2,且a n b n+b n=nb n+1.∴a1+1=2,解得a1=1.又数列{a n}是公差为2的等差数列,∴a n=1+2(n﹣1)=2n﹣1.∴2nb n=nb n+1,化为2b n=b n+1,∴数列{b n}是等比数列,公比为2.∴b n=2n﹣1.(Ⅱ)设数列{c n}满足c n===,数列{c n}的前n项和为T n=1++…+,∴=+…++,∴=1+++…+﹣=﹣=2﹣,∴T n=4﹣.不等式(﹣1)nλ<T n+,化为:(﹣1)nλ<4﹣,n=2k(k∈N*)时,λ<4﹣,∴λ<2.n=2k﹣1(k∈N*)时,﹣λ<4﹣,∴λ>﹣2.综上可得:实数λ的取值范围是(﹣2,2).19.如图长方体ABCD﹣A1B1C1D1的底面边长为1,侧棱长为2,E、F、G分别为CB1、CD1、AB的中点.(Ⅰ)求证:FG∥面ADD1A1;(Ⅱ)求二面角B﹣EF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)由题意,分别以DA、DC、DD1所在直线为x、y、z轴建立空间直角坐标系,求出平面ADD1A1的一个法向量,求出,由可得FG∥面ADD1A1;(Ⅱ)分别求出平面BEF与平面EFC的一个法向量,利用两法向量所成角的余弦值求得二面角B﹣EF﹣C的余弦值.【解答】(Ⅰ)证明:∵ABCD﹣A1B1C1D1是长方体,且底面边长为1,侧棱长为2,分别以DA、DC、DD1所在直线为x、y、z轴建立空间直角坐标系,则B(1,1,0),F(0,,1),E(,1,1),G(1,,0),C(0,1,0),∴平面ADD1A1的一个法向量为.,∵,且FG⊄平面ADD1A1,∴FG∥面ADD1A1;(Ⅱ)解:,,.设平面BEF的一个法向量为,则,取y=﹣2,得,平面EFC的一个法向量为,则,取y=﹣2,得.∴cos<>==.∴二面角B﹣EF﹣C的余弦值为.20.已知椭圆C: +=1(a>b>0)经过点(,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为.(1)求椭圆C的方程;(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.【考点】直线与椭圆的位置关系.【分析】(1)将点(,1)代入椭圆方程,设左焦点为(﹣c,0),再由斜率公式,可得c的值,结合a,b,c的关系,即可得到椭圆方程;(2)假设存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.当直线MN的斜率为0时,由对称性可得B在y轴上,设为B(0,t),设直线MN的方程为x=my+1,代入椭圆方程,运用韦达定理,设M (x1,y1),N(x2,y2),由假设可得k BM+k BN=0,化简整理,可得t+2m=0,故不存在这样的定点B.【解答】解:(1)椭圆C: +=1(a>b>0)经过点(,1),可得+=1,又设左焦点为(﹣c,0),有=,即c=,a2﹣b2=2,解得a=2,b=,则椭圆方程为+=1;(2)假设存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.当直线MN的斜率为0时,由对称性可得B在y轴上,设为B(0,t),设直线MN的方程为x=my+1,代入椭圆方程可得,(2+m2)y2+2my﹣3=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,由假设可得k BM+k BN=0,即为+=0,即有x1y2+x2y1=t(x1+x2),即m(y1+1)y2+(my2+1)y1=t[m(y1+y2)+2],即有2my1y2+(y1+y2)=t[m(y1+y2)+2],即为﹣=t(﹣+2),化为﹣8m=4t,即t+2m=0,由于m为任意的,则t不为定值.故不存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.21.已知函数f(x)=xlnx+2,g(x)=x2﹣mx.(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,求证:f(1)+g(1)<0;(Ⅲ)若存在x0∈[,e]使得mf′(x)+g(x)≥2x+m成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,通过讨论t的范围,求出函数的最小值即可;(Ⅱ)问题转化为m=lnx+x+有两个不同的实数根,令h(x)=lnx+x+,(x>0),根据函数的单调性求出h(x)的最小值,求出m的范围,从而判断f(1)+g(1)的符号即可;(Ⅲ)问题转化为存在x0∈[,e]使得m≤成立,令k(x)=,x∈[,e],根据函数的单调性求出m的范围即可.【解答】解:(Ⅰ)f′(x)=lnx+1,令f′(x)>0,解得:x>,令f′(x)<0,解得:0<x<,∴f(x)在(0,)递减,在(,+∞)递增,若t≥,则f(x)在[t,t+2]递增,∴f(x)min=f(t)=tlnt+2,若0<t<,则f(x)在[t,)递减,在(,t+2]递增,∴f(x)min=f()=2﹣;(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,即m=lnx+x+有两个不同的实数根,令h(x)=lnx+x+,(x>0),即函数y=m和h(x)=lnx+x+有两个不同的交点,而h′(x)=+1﹣=,令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,故h(x)在(0,1)递减,在(1,+∞)递增,故h(x)≥h(1)=3,故m>3,故f(1)+g(1)=3﹣m<0;(Ⅲ)若存在x0∈[,e]使得mf′(x)+g(x)≥2x+m成立,即存在x0∈[,e]使得m≤成立,令k(x)=,x∈[,e],则k′(x)=,易得2lnx﹣x<0,令k′(x)>0,解得:x>1,令k′(x)<0,解得:x<1,故k(x)在[,1)递减,在(1,e]递增,故k(x)的最大值是k()或k(e),而k()=<k(e)=,故m≤.。