数学物理方程习题课
数学物理方程习题课

一、 斯通-刘维尔型1、将方程0)1('2''=---y xy y λ转化为斯通-刘维尔型。
解:原方程两端同时乘以2x e -,可得:222''2'(1)0x x x e y xe y e y λ------=则:22[](1)0xxd dy eey dxdxλ----=为其斯通-刘维尔型。
2、(8分)将方程22(1)'''()0x y xy x y λη----=转化为斯通-刘维尔型,其中η为常数。
原方程两边同乘211x-后,得:222'''011x x y y y xxλη---=--,即为:2222'''0111x xy y y y xxxηλ-+-=---方程两边同乘以21xdxx e --⎰,就化成了斯通-刘维尔型方程222211122[][][]011xx x dx dxdxx xxd dyxee y ey dx dx x xηλ------⎰⎰⎰+-=--即为:3322222(1)(1)0d x y x x y dx ηλ--+---=二、级数解的形式1、给出0')1(''=+-++y y x s xy λ在x =0处级数解的形式。
答:x =0为原方程的正则奇点,在x =0处级数解的形式为:k ckk y ax∞+==∑2、给出方程22'''(1)0xy y x x y λ++-=在0x =处级数解的形式。
解:方程对应的标准形式为:22'''(1)0y y x y xλ++-=1x在0x =处不解析,0x =为其一级极点;22(1)x λ-在0x =处解析,可知:0x =为原方程的正则奇点。
则:在0x =处级数解的形式为0cnnn y xax ∞==∑,或写成0c nnn y ax ∞+==∑或写成两个线性独立解:110c nnn y ax∞+==∑,220c nnn y bx∞+==∑。
数学物理方程(谷超豪)-第三、四章 课后习题答案

第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
习题11数学物理方程和定解条件

ρ + ε1Δ ρ ϕ +ε 2Δϕ
( 0 < ε1 < 1 , 0 < ε 2 < 1 ) ,
即
1
( ρ + Δρ )
Δu Δρ
−ρ
ρ + Δρ
Δu Δρ
ρ
ρ
Δρ
1 ∂ ρ ∂ρ
+
Δu 1 Δϕ
−
ϕ + Δϕ
Δu Δϕ
ϕ
ρ2
Δϕ
−
ρ m ∂ 2u
T ∂t 2
ρ + ε1Δρ ϕ + ε 2 Δϕ
=0
205.在铀块中,除了中子的扩散运动外,还进行着中子的吸收和增殖过程。设在单位时间 内单位体积中,吸收和增殖的中子数均正比于该时刻该处的中子浓度 u ( r , t ) ,因而净增中 子数可表为 α u ( r , t ) , α 为比例常数。试导出 u ( r , t ) 所满足的方程。 用 q 表示单位时间流过某单位面积的中子数,有 q = − D∇u 。取一个六面体
− sin θ
θ +Δθ
∂u ⎤ 1 ⎛ ∂u k r + Δ ⎜ ⎥ ∂θ θ ⎦ Δϕ ⎜ ⎝ ∂ϕ
−
ϕ +Δϕ
= ρ ca 2 sin 2 θΔr
令 Δr , Δθ , Δϕ , Δt → 0 ,因为
Δu 。 Δt ⎡ ∂u ⎢sin (θ + Δθ ) ∂θ ⎣ − sin θ
θ +Δθ
1 Δθ
∂u ∂x
= 0 。由于左端点固定,故有 u
x=l
x=0
=0。
令(a)式中 t = 0 有 F − E S
∂u ∂x
数学物理方程习题

值使得u(Q)在A点得邻域中调和. 16.设P 为常系数线性偏微分算子,且有基本解E (x), 满足singsuppE = {0}则P 为亚椭圆的。 (Thm6.3.2) 第七章热传导方程 1.求解热传导算子的基本解 2.求解热传导方程的Cauchy问题 { ∂u − a2 ∆u = f (x, t) t > 0 ∂t u(x, t)|t=0 = φ(x) 3.求解热传导方程的初边值问题. {
∑ 1 ξ α ∂ α uP α (x, η ) α ! α
是一个重要的公式,称为推广的莱布尼茨公式.又以后对任一函数F (x, ξ )恒
β α 记F(β ) (x, ξ ) = ∂x ∂ξ F (x, ξ ),即下标表示对x求导,上标表示对ξ 求导. (α)
8.设有C ∞ (R)函数列{fn (x)}满足 1
d2 dx2 d + dx
α, α ∈ R .
2 + ∂r , 其中r =
第六章Laplace方程
n −1 ∂r r 3
√ 2 x2 1 + ... + xn
2.设开集Ω ⊂ R 有界,边界∂ Ω光滑,u(x) ∈ C 2 (Ω) ∩ C 1 (Ω), Q ∈ Ω 证明 ∫ 1 ∂u ∫ ∫ ∆u u ∂ ( 1 )ds − 41 u(Q) = 41 ds − 41 dx π ∂ Ω r ∂n π ∂ Ω ∂n r π Ω r 3.证明球面平均值公式,球体平均值公式 4.证明调和函数的极值原理 5.利用极值原理证明以下Dirichlet问题的唯一性和稳定性 ∆u = 0 u|∂ Ω = f 6.利用Green函数求解上半平面的Dirichlet问题 ∆u(x, y ) = 0 y > 0 u|y=0 = f (x) 7.利用Green函数求解圆Ω上的Dirichlet问题 ∆u = 0 u|∂ Ω = f (x) ¯ ∩ C 2 (Ω), 证明: 8.设Ω = BR (Q)(以Q为心、 R为半径的开圆域), u ∈ C (Ω) ∫∫ ∫∫∫ 1 (1).u(Q) = 4πR )∆udx. u(P )dSp + 41 (1 − 1 2 π r ∂BR (Q) BR (Q) R ∫ ∫ 1 (2).若∆u ≥ 0, 则u(Ω) ≤ 4πR2 u(P )dSp . ∂BR (Q) 9.证明第一格林公式 ∫ ∫ u
数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。
定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。
解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。
仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。
x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。
且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。
§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。
吴小庆-数学物理方程习题解答案全

数学物理方程习题解习题一1,验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。
证明:(1)(,)lnu x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =−⋅⋅=−+++−⋅−=−=++=−⋅⋅=−+++−⋅−=−=++−−+=+=++所以(,)u x y =0xx yy u u +=的解。
(2)(,)sin xu x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=−⋅所以sin sin 0xxxx yy u u e y e y +=−=(,)sin x u x y e y =是方程0xx yy u u +=的解。
2,证明:()()u f x g y =满足方程0xy x y uu u u −=其中f 和g 都是任意的二次可微函数。
证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''−=⋅−⋅⋅=得证。
3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u −+= 的通解。
数学物理方程课后习题答案

, 令 u( x, t ) U ( x, t ) v( x, t ) 代入原定解问题,则
vtt a 2vxx 2 2 A cos 2t x / l , v(0, t ) 0, v(l , t ) 0 v( x, 0) v ( x, 0) 0 t
u u x E t t x x
证 在杆上任取一段,其中两端于静止时的坐标分别为 x 与 x x 。现在计算这段杆在时刻 t 的相对伸长。在时 刻t 这段杆两端的坐标分别为:
x u( x, t ); x x u ( x x, t )
0
4 Al 1 cos 2
2 k
k
2
a
.
t 4 Al 1 1 1 v k 1 sin k l x cos 2 sin k al t d . 2 2 0 k a 2 k
1 cos2 sin k al t 0 d
Bk 4 A k a cos 2 l sin k l d
2 1 l 1 l 1 2 3 3 1 0
计算可得
4 Al k a cos 2 sin d .
2 3 3 1 k 0
4 Al k a cos 2 k l 1 sin k l 1 d k l 1
利用微分中值定理,消去 x ,再令 x 0 得
utt g[(l x)ux ]x .
§2 达朗贝尔公式、波的传播
p.16:3. 8.
3.利用传播波法,求解波动方程的古尔萨(Goursat) 问题
2 u a uxx , tt u x at 0 ( x), u x at 0 ( x), (0) (0).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
端点固定
2 2u u 2 a f ( x, t ), x 0, t 0 t 2 2 x u ( x, 0) ( x), ut ( x, 0) ( x), x 0 u (0, t ) 0, t0
奇延拓
端点自由
2 2u 2 u x 0, t 0 t 2 a x 2 f ( x, t ), ( x, 0) ( x), ut ( x, 0) ( x), x 0 u (0, t ) 0, t0 x
非齐次方程的初值问题和推迟势
2 3 u a ( u u u ) f ( x , y , z , t ), ( x , y , z ) R , t 0, tt xx yy zz 3 u ( x , y , z ), u ( x , y , z ), ( x , y , z ) R , t t 0 t 0
x , t x
则 u2 ( x, t ) ( x, t , )d
0
t
三、半无界弦的振动问题
对称延拓法的理论依据:
如果自由项 f ( x, t ), 初始数据 ( x) 和 ( x) 是 x 的 奇(偶)函数,则由表达式(19)所定义的函数 u ( x, t ) 是 x 的奇(偶)函数。
偶延拓
四、三维波动方程
2 3 u a ( u u u ), ( x , y , z ) R , t 0, tt xx yy zz 3 u ( x , y , z ), u ( x , y , z ), ( x , y , z ) R , t t 0 t 0
Kirchhoff公式
1 u(M , t ) ( 2 4 a t 1 2 4a
M Sat
( , , )
t
dS
M Sat
( , , )
t
dS )
r at
r f ( , , , t ) a d d d , r
其中 r ( x) 2 ( y ) 2 ( z ) 2 .
2 2 u2 2 u2 a f ( x, t ), 2 2 t x u ( x, 0) 0, u2 ( x, 0) 0, 2 t
x , t 0 x
非齐次方程,齐次初始条件
则 u u1 u2 是初值问题(10)~(11)的解。
定理1(齐次化原理或Duhamel原理) 设 f ( x, t ) C1 ( R [0, )), 若 ( x, t , ) 满足:
2 2 2 a , 2 2 t x ( x, ) 0, ( x, ) f ( x, ), t
三维波动方程初值问题解的泊松公式
1 ( , , ) ( , , ) u(M , t ) ( dS dS ) 2 4 a t S M t t SM
at at
x at sin cos , y at sin sin , 0 , 0 2 . z at cos ,
2 2u1 u1 2 a , x , t 0 2 2 t x u ( x, 0) ( x), u1 ( x, 0) ( x), x 1 t
齐次方程,非齐次初始条件
u2 u2 ( x, t ) 是初值问题
u ( x, y , t ) 2 a t C M 1
at
( , )d d
a 2t 2 ( x) 2 ( y ) 2
2 a C M
at
1
( , )d d
a 2t 2 ( x) 2 ( y ) 2
二维非齐次波动方程的初值问题
2 u a (u xx u yy ) f ( x, y, t ), tt u t 0 ( x, y ), ut t 0 ( x, y ),
( x, y ) R 2 , t 0, ( x, y ) R 2 ,
利用叠加原理和齐次化原理,可以得到其解为 1 ( , )d d u ( x, y , t ) 2 2 2 2 2 a t C M a t ( x ) ( y ) at
二、无界弦的受迫振动和齐次化原理
2 2u u 2 a f ( x, t ), x , t 0 2 t 2 x u ( x, 0) ( x), u ( x, 0) ( x), x t
由叠加原理可知, 若 u1 u1 ( x, t ) 是初值问题
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d x at 2 2a 1 t x a (t ) f ( , )d d 2a 0 x a (t )
一维非齐次波动方程初值问题的 Kirchhoff 公式
五、二维齐次波动方程的初值问题
2 2 u a ( u u ), ( x , y ) R , t 0, tt xx yy 2 u ( x , y ), u ( x , y ), ( x , y ) R , t t 0 t 0
二维波动方程初值问题的Poisson公式