数学物理方程期末考试试题及答案

合集下载

数学物理方程考试试题及解答(1)

数学物理方程考试试题及解答(1)

数学物理方程考试试题及解答(1)数学物理方程考试试题及解答考试题目:求解一阶常微分方程y'+3y=x+e^(-2x)解答:1. 首先我们需要将原方程变形,得到y'和y的系数都为1的形式: y'+3y=x+e^(-2x)y'+3y-1*x= e^(-2x)即:y'+3y-(1*x)= e^(-2x)2. 根据一阶常微分方程的标准形式 y'+p(x)y=q(x) ,我们可以将上述方程的左侧写成d/dx(y*e^(3x))的形式。

具体步骤如下:(y'+3y)e^(3x) - x*e^(3x) = e^(3x)*e^(-2x)即:d/dx(y*e^(3x)) - x*e^(3x) = e^xd/dx(y*e^(3x)) = e^(3x)+x*e^(3x)+e^x3. 将方程两侧的d/dx和e^(3x)去掉,得到最终的含y的方程:y*e^(3x) = ∫(e^(3x)+x*e^(3x)+e^x)dx + C= (1/3)*e^(3x) + (1/2)*x*e^(3x) + e^x + C即:y = (1/3) + (1/2)*x + e^(-3x)*(e^(2x)*C+1)4. 因为是一阶线性齐次方程,存在唯一的初始条件y0,可以将解方程带入初始条件得到C的值。

考试题目:提出热传导方程的边界条件∂u/∂t = a(∂²u/∂x²)解答:热传导方程描述的是一个物质内部温度分布随时间变化的情况,它可以用数学模型来表示:∂u/∂t = a(∂²u/∂x²)其中,u(x,t)是时间t和空间x处的温度,a是热传导系数,代表了物质的传热速率。

热传导方程的边界条件通常有如下几种:1. 第一类边界条件(Dirichlet边界条件):即在给定的边界上已知温度u,通常写成形式u(x,t)|_∂Ω = f(x,t) 。

在第一类边界上,温度保持不变,而且是已知的,所以我们直接用Dirichlet边界条件就可以描述。

数学物理方程答案

数学物理方程答案

nπ nπ n , X n x sin x , n 1, 2, a a
设原问题的解为:
nπ u x, t Tn t sin x a n 1
2
代入方程得:
2 nπ πx nπ T t x t sin n Tn t sin a a a n 1
2 2
rMM 0 y 0

rMM1
1 ,从而
1 x x0 y y0
2 2
1 ln 2π
y0 G G 1 n y y 0 π x x0 2 y0 2
这样,解的表达式为:
u x0 , y0
三、设 a 为正常数,求以下定解问题的解
πx utt u xx t sin a , u 0, t u a, t 0, t 0 u x, 0 0, ut x, 0 0, 0 x a
由分离变量法知,问题的特征值和特征函数为:
令 u r , t R r T t ,代入方程得
T t T 0
(1)
r 2 R r rR r r 2 R 0
(2)为零阶 Bessel 方程,其通解为:
(2)
R r CJ 0

r Dy0

ut u xx , 0 x a, t 0 5 u x, 0 10 x, a u 0, t 10, u a, t 5
令 w x, t 10
5 5 x, v x, t u x, t 10 x 则 a a

《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)习题一1.判断方程的类型,并将其化成标准形式:0212222=∂∂+∂∂+∂∂y uyu y x u . 解:⎪⎩⎪⎨⎧==><<>-=-≡∆.0,0. ,00,.0,02211212时,抛物型当椭圆型时当时,双曲型当y y y y a a a①当0<y 时,所给方程为双曲型,其特征方程为,0)()(22=+dx y dy 即 ,0])([)(22=--dx y dy就是 0))((=---+dx y dy dx y dy .积分之,得 c y x =-±2,此即两族相异的实特征线.作可逆自变量代换⎪⎩⎪⎨⎧--=-+=,2,2y x y x ηξ则.1 ,1 ,1 ,1yy yy x x -=∂∂--=∂∂=∂∂=∂∂ηξηξ,2 ,2222222ηηξξηξηηξξ∂∂+∂∂∂+∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u u x u u u y u x u x u ),(1ηξ∂∂+∂∂--=∂∂u u yyu ).1)(2()(121 ]1)1( 1)1([1)()(12122222222222322y u u u u u y y yu yu yuy u y u u y y u -∂∂+∂∂∂-∂∂+∂∂+∂∂---=-∂∂+--∂∂∂++-∂∂∂---∂∂--+∂∂+∂∂--=∂∂ηηξξηξηξηηξξηξ将这些偏导数代入原方程,得附注:若令⎩⎨⎧=-⇒-==0 ,2,ηηξξηξu u y x 碰巧(双曲型的另一标准形),这是巧合.②当0>y 时,所给方程为椭圆型,其特征方程为0)()(22=+dx y dy即 .0))((=-+dx y i dy dx y i dy 其特征线为 )2 ( 2c ix y c y i x =±=±或.作可逆自变量代换 ⎩⎨⎧==,2,y x ηξ则, 1 , 0 , 0 ,1y y y x x =∂∂=∂∂=∂∂=∂∂ηξηξ, 1 , ηξ∂∂=∂∂∂∂=∂∂u y y u u x u . 1121 , 22222222ηηξ∂∂+∂∂-=∂∂∂∂=∂∂u y u y y yu u x u 将这些偏导数代入原方程,得, 021212222=∂∂+∂∂+∂∂-∂∂ηηηξuy u u y u , 0 2222=∂∂+∂∂∴ηξu u 此即(0>y 时)所求之标准形. ③0=y 时,原方程变为 , 02122=∂∂+∂∂y uxu 已是标准形了(不必再化).2.化标准形:. 0222222222222=∂∂∂+∂∂∂+∂∂∂+∂∂∂+∂∂+∂∂t z ut x u z x u y x u zu x u解: u Lu )2222(434131212321δδδδδδδδδδ+++++≡.这是 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t z y x4321δδδδδ 的二次型,于是 , u A Lu Tδδ=其中 010*********1111⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 为实对称矩阵.则∃可逆矩阵M ,使 TMAM B = 为对角形. 令 , 'δδT M = 其中 , '4'3'2'1'''''⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=δδδδδt z y x 则 u B u MAM Lu T T T '''')()(δδδδ==.M 的找法很多,可配方,可从矩阵入手等.取 ,11000110001100011-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---=N M , 1000110011101111)(1⎪⎪⎪⎪⎪⎭⎫⎝⎛==-TT M N . , 1''''''⎪⎪⎪⎪⎪⎭⎫⎝⎛===⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-t zy x M MX X N t z y x X N T δδ则.)( )( 2222'2'2'2'2'''tu z uy u x u u B uMAM u A Lu TT T T ∂∂-∂∂+∂∂-∂∂====δδδδδδ这是超双曲型方程的标准形式.习题二1.决定任意函数法:(1).求解第一问题(0))(0) ( ).(),( , 002ψϕψϕ=⎪⎩⎪⎨⎧======-x ux u u a u at x at x xx tt .解:所给方程为双曲型,其特征线为 c at x =±. 令⎩⎨⎧-=+=,,at x at x ηξ 则可将方程化为 0=ξηu .其一般解为)()(),(21at x f at x f t x u -++= (其中21,f f 为二次连续可微函数). 由定解条件有)0()0()0()0( ).()2()0(),()0()2(212121ψϕψϕ==+⇒⎩⎨⎧=+=+f f x x f f x f x f . 则 ⎪⎩⎪⎨⎧-=-=⇒⎩⎨⎧-=-=).0()2()(),0()2()( ),0()()2(),0()()2(12211221f Y Y f f X X f f x x f f x x f ψϕψϕ 故 )()(),(21at x f at x f t x u -++=).0()2()2()]0()0([)2()2(21ϕψϕψϕ--++=+--++=at x at x f f atx at x (2).求解第二问题 ))0()0( ( ).(),( ,101002ϕϕϕϕ=⎪⎩⎪⎨⎧=====x u x u u a u t at x xx tt解:泛定方程的一般解为)()(),(21at x f at x f t x u -++=由定解条件有 (0))(0)(0)( ).()()(),()0()2(021121021ϕϕϕ=+⎩⎨⎧=+=+f f x x f x f x f x f 则 ),0()2()(201f xx f -=ϕ).0()2()()()()(201112f x x x f x x f +-=-=ϕϕϕ故 )()(),(21at x f at x f t x u -++= ).()2()2(100at x atx at x -+--+=ϕϕϕ (3).证明方程22222)1(])1[(tu h x a x u h x x ∂∂-=∂∂-∂∂ 的解可以写成)]()([1),(21at x f at x f xh t x u -++-=. 由此求该方程满足Cauchy 条件 ⎩⎨⎧====)(),(00x u x u t t t ψϕ 的解.解:令 ),,()(),(t x u x h t x v -= 则 ),(t x v 满足方程 xx tt v a v 2=.)()(),( 21at x f at x f t x v -++=∴.故 )]()([1),(21at x f at x f xh t x u -++-=. 因),(t x v 满足 ⎪⎩⎪⎨⎧≡-=≡-====),()()(),()()( ,10002x x x h vx x x h v v a v t t t xx tt ψϕϕϕ由D'Alembert 公式,得⎰+-+-++=atx atx d a at x at x t x v ααψϕϕ)(21)]()([21),( )]())(()())([(2100at x at x h at x at x h ---+++-=ϕϕ+ααϕαd h a atx at x ⎰+--)()(211 故 ),(1),(t x v xh t x u -=[]⎭⎬⎫⎩⎨⎧-+---+++--=⎰+-atx atx d h a at x at x h at x at x h x h ααϕαϕϕ)()(21)())(()())((211100 即为所求之解.2.Poisson 公式及应用:(1).若),,,(t z y x u u =是初值问题 ⎪⎩⎪⎨⎧+=+=>++===)()( , )()(),0( )(002z y uy g x f u t u u u a u t t t zz yy xx tt ψϕ的解,试求解的表达式.解:IIIIIIu u u u ++=(线性叠加原理),其中IIIIII,,u u u 分别满足如下的初值问题:.0 ),(),0( )(:002I ⎪⎩⎪⎨⎧==>++===t t t zz yy xx tt ux f u t u u u a u u).( ),(),0( )(:002II ⎪⎩⎪⎨⎧==>++===y uy g u t u u u a u u t t t zz yy xx tt ϕ).( ,0),0( )(:002III ⎪⎩⎪⎨⎧==>++===z uu t u u u a u u t t t zz yy xx tt ψ由Poisson 公式,可得⎰⎰∂∂=MatS dS f t a t u ])( 41[2I ξπ)].()([21])(21[at x f at x f d f a t atx atx -++=∂∂=⎰+-ξξ.)(21)( 41.)(21)]()([21 ])( 41[)( 412III22II ⎰⎰⎰⎰⎰⎰⎰⎰+-+-==+-++=∂∂+=Mat M atMat S atz at z aty aty S S d a d t a ud aat y g at y g dS g t a t dS t a u ζζψζζψπηηϕηπηϕπ故IIIII I ),,,(u u u t z y x u ++=.)(21)(2a1)]()([21)]()([21 ⎰⎰+-+-++-+++-++=atz at z aty aty d a d at y g at y g at x f at x f ζζψηηϕ(2).求解初值问题 ⎪⎩⎪⎨⎧+==>-+++=== . ,00),(t )(2)(2002yz x u u z y u u u a u t t t zz yy xx tt解: IIIu u u +=,其中I u : ⎪⎩⎪⎨⎧+==>++=== . ,00),(t )(2002yz x u u u u u a u t t t zz yy xx ttII u : ⎪⎩⎪⎨⎧==>-+++===.0 ,00),(t )(2)(002t t t zz yy xx tt uu z y u u u a u由poisson 公式,得32222I 31)()( 41t a t yz x dS t a u Mat S ++=+=⎰⎰ηζξπ. 由Duhamel 原理,得.)( ])(2)( 41[);,,,(2020II)(t z y d dS t a d t z y x w u M t a S tt-=--==⎰⎰⎰⎰-τζητπτττ故 2322)(31)(),,,(t z y t a t yz x t z y x u -+++= 即为所求. 3.降维法:⎪⎩⎪⎨⎧==>++===.0 ,00),(t ),,()(002t t t yy xx tt uu t y x f u u a u 解:把所给初值问题的解),,(t y x u 看作),,,(t z y x 空间中的函数,即与y x ,平面垂直的直线上的函数值都相等:),,(),,,(*t y x u t z y x u =,则 ),,,(*t z y x u 应形式的满足⎪⎩⎪⎨⎧==>+++=== .0 ,00),(t ),,()(0*0****2*t t t zz yy xx tt u u t y x f u u u a u 由推迟势可得dV ra rt f a t z y x u atr ⎰⎰⎰≤-=),,( 41),,,(2*ηξπττηξτπτττηξπττd dS f t a d dS t f a tS tS M t a M t a ]),,([141]),,([ 410202)()(⎰⎰⎰⎰⎰⎰---=-=τηξτηξττηξτπτd y x t a d d t a f t a ty x M t a ])()()( )(),,(2[141222202),()9------∑-=⎰⎰⎰-τηξτηξτηξπτd y x t a d d f a tx M t a ])()()( ),,([ 212222),()(⎰⎰⎰∑-----=-.此即所求初值问题解的积分表达式.习题三1.求解特征值问题 ⎩⎨⎧=+=<<=+ . 0)()( ,0)0(),(0 0)()("''l X l X X l x x X x X λ 解:该特征值问题要有解0≥⇔λ.0>λ时,记2ωλ=,则 x B x A x X ωωsin cos )(+=.x B x A x X ωωωωcos sin )('+-=. 1(*) 由 0)0('=X ,有 0=B .从而 x A x X A ωcos )(,0=≠. 由 0sin cos ,0)()('=-=+l A l A l X l X ωωω有. ωω=l cot . 此即确定 ω(从而确定λ)的超越方程.由图解法,曲线 ωω==y l y cot 和 有无穷个交点,其横坐标<<<<<n ωωω210,从而 ),2,1( 2==n nn ωλ 便是非0特征值,相应的特征函数为2(*) ,2,1 , cos )( ==n x A x X n n n ω.)( , )( 0'A x XB Ax x X =+==时,λ由0)0('=X ,有0=A .由0)()('=+l X l X , 有 0=B .此时只有平凡解 0)(≡x X . 综上,所求特征值问题的解),2,1( , cos )( ==n x A x X n n n ω.其中n ω为超越方程 ωω=l cot 的正根.附注:下证特征函数系{}∞=1cos n n x ω是],0[l 上的正交系:事实上,设x x X n n ωcos )(=和x x X m m ωcos )(=分别是相应于不同特征值2n n ωλ=和2m m ωλ=的特征函数,即)(x X n 和)(x X m 分别满足).()(,0)0(,0)()(:)(''"⎩⎨⎧+==+l X l X X x X x X x X n n nn n n n λ (1) ⎩⎨⎧=+==+.0)()(,0)0(,0)()(:)(''"l X l X X x X x X x X m m m m m m m λ (2) 则[]0 )()2()()1(0=⋅-⋅⎰dx x X x Xln m,即 []⎰-+-=lm n m n n m m n dx x X x X x X x X x X x X"" )()()())()()()((0λλdx x X x X lm n m n ⎰-=0)()()(λλ若,m n λλ≠则 ),2,1,( 0)()(0==⎰m n dx x X x X lm n .即在],0[l 上,不同特征值所对应的特征函数彼此正交. 2.用分离变量法求波动方程混合问题⎪⎩⎪⎨⎧≤≤==>==><<+=== ),0( , ),0( ),( ,),0(),0 ,0( 20022l x x ux u t t t l u t t u t l x g u a u t t t x xx tt的形式解,其中g 为常数.解:(1).边界条件齐次化:令 ),,(),(),(t x Q t x v t x u +=使⎪⎩⎪⎨⎧====,,20t Q t Q l x x x (这不是定解问题),则取 2)(),(t t l x t x Q +-=即可. 这时),(t x v 满足 ⎪⎩⎪⎨⎧≤≤--==>==><<-+===).0( )( , 0),( 0),( ,0),0(),0 ,0( 2200t 2l x l x x vx v t t l v t v t l x g v a v t t x xx tt(2).“拆”——由线性叠加原理:IIIv v v +=,其中⎪⎩⎪⎨⎧+-====><<=== ., ,0),(),0(),0,0( :2002I l x x vx v t l v t v t l x v a v v t t t x xx tt ⎪⎩⎪⎨⎧====><<-+=== .0,0 ,0),(),0(),0,0( 2:002IIt t t x xx tt vv t l v t v t l x g v a v v (3).用分离变量法求得l x n l at n b l at n a t x v n n n 2 )12(cos 2 )12(sin 2 )12(cos ),(1Iπππ-⎥⎦⎤⎢⎣⎡-+-=∑∞=. 其中⎰⎰--=ll n d ln d ln a 022)12(cos2)12(cos 1ξπξξξπξ,ξπξξξξπξπd ln l d l n l a n b lln 2)12(cos )(2)12(cos 2 )12(122-+---=⎰⎰..,2,1 =n (n n b a ,都可算出来).(4).由Duhamel 原理: ττd t x w t x v t⎰=0II),,(),(,其中),,(τt x w 满足 ⎪⎩⎪⎨⎧-====><<=== . 2 , 0 ,0),( ,0),0( ),,(0 2g ww t l w t w t l x w a w t t t x xx tt τττ用分离变量法求得∑∞=---=12 )12(cos 2)( )12(sin),,(n n l xn l t a n c t x w πτπτ.其中 ξπξξπξπd ln g d l n l a n c lln 2)12(cos)2(2)12(cos 2 )12(12----=⎰⎰. ,3,2,1 =n (n c 可算出).综上: ),(),(),(),(),(),(III t x Q t x v t x v t x Q t x v t x u ++=+=.习题四1.用分离变量法求热方程混合问题⎪⎩⎪⎨⎧===><<-== )( ,0),(),0(),0,0( 022x u t l u t u t l x u b u a u t xx t ϕ 的形式解.解:这是齐次方程、齐次边界条件情形,直接分离变量: 令 )()(),(t T x X t x u =,代入泛定方程,得),( )(22'"λ-=+=a bTa T X X 从而 0)()()( , 0)()(2'"=++=+t T b a t T x X x X λλ. 由边界条件,得 ,0)()0(==l X X 于是,特征值问题为⎩⎨⎧==<<=+0.)((0))(0 , 0)()("l X X l x x X x X λ 特征值 2)(l n n πλ=, 特征函数为 x ln x X n πsin )(=,),2,1( =n . 而 )1,2,(n )(])[(22 ==+-t b lan n n eA t T π.取 11])[((*) . sin),(22x ln eA t x u n t b lan n ππ∑∞=+-=利用 ]0[ sinl x ln ,在⎭⎬⎫⎩⎨⎧π上的正交性,可定出 ⎰==ln n d ln l A 0),2,1( sin)(2 ξπξξϕ. 2(*) 1(*),2(*)给出所求混合问题的形式解.附注:若令 ),( ),,(),(2t x v t x v e t x u t b 则-=满足⎪⎩⎪⎨⎧===><<==== ).( ,0),0,0( 002x v v v t l x v a v t l x x xx t ϕ用分离变量法求得lxn eA t x v t lan n n sin),(2)(1ππ-∞=∑=. 而n A 同2(*),这恰与上面结果一致.习题五用Fourier 变换法求初值问题⎩⎨⎧=>++== .0),0( ),(202t xx t u t t x f tu u a u 的形式解.解:方程和初始条件两端关于x 做Fourier 变换(视t 为参数),并记),(~)],([ , ),(~)],([t f t x f F t u t x u F ξξ==.则原问题化为常微分方程的初值问题:⎪⎩⎪⎨⎧=>++-=)( .0)0,(~),0( ),(~~ 2~~22为参数ξξξξu t t f u t u a dtu d 其解为 ττξξτξτξd e f e e e t u a tt a t 2222220),(~),(~⋅⋅⋅=⎰--. 故 )],(~[),(1t uF t x u ξ-= ττξττξττξτξττξτξτξd e f F ee d ef e F e d e f e e e F ta t t a tt t t a t a t t ⎰⎰⎰-----------⋅⋅⋅=⋅⋅⋅=⎥⎦⎤⎢⎣⎡⋅⋅⋅=01)(0101]),(~[]),(~[),(~)(22222222222222ττπτττd et a F x f F F e e tt a x t]])(21[)],([[0)(412222⎰-----⋅⋅=ττπτττd et a x f F F e e tt a x t]])(21*),([[0)(412222⎰-----⋅=τξττξπτξτd d et f e a ett a x t ]1),([20)(4)(2222⎰⎰---∞∞---=即为所求.习题六1.求边值问题⎪⎪⎩⎪⎪⎨⎧≤≤=≤≤==<≤≤<≤=++=== )(0 )( ),0( 0),20 ,0( 01102αθθρπαθρρρραθθθθρρρf u l u u l u u u l 的形式解.解:用分离变量法:令 )()(θρΘ=R u ,代入泛定方程可得)( "'"2λρρ=ΘΘ-=+RR R ,因而 0)()("=Θ+Θθλθ,0)()()('"2=-+ρλρρρρR R R (Euler 方程).由边界条件 00====αθθu u,得 0)()0(=Θ=Θα.于是特征值问题为,0)()0(),0( 0)()("⎩⎨⎧=Θ=Θ<<=Θ+Θααθθλθ 特征值 2)(απλn n =,特征函数为 )1,2,( sin)( ==Θn n n θαπθ.而 Euler 方程 0'"2=-+R R R λρρ 的解 απαπρρρn n D C R -+=)(.为保证有界性应取 0=D ,从而 ),2,1( )( ==n C R n n n απρρ.取 ∑∑∞=∞==Θ=11sin)()(),(n n n n n n n C R u απθρθρθραπ. 1(*)由边界条件 )(θρf ul ==,应有 ∑∞==1sin )(n n n n lC f απθθαπ.由 ⎭⎬⎫⎩⎨⎧απθn sin在 ],0[α上的正交性,可得),2,1( sin)( 2==⎰n d n f l C n n ϕαπϕϕαααπ. 2(*)1(*) ,2(*)给出所求问题的形式解.2.用Green 函数法求解上半平面Dirichlet 问题⎪⎩⎪⎨⎧∞→+=>=+=. ),( ),0( 0220有界时,u y x x f u y u u y yy xx 解:根据二维Poisson 方程Dirichlet 问题⎩⎨⎧=∈-=+∂ ),(D.),( ),,(2y x f u y x y x u u Dyy xx πρ 解的积分表达式P PDDdl n M P G P f dxdy M M G M y x u M u ∂∂-==⎰⎰⎰∂),()(21),()(),()(00000πρ(其中0M 是D 内任一点,P n是边界D ∂上点P 的外法线方向). 其中 满足而 ),( ),,(1ln),(0000M M g M M g r M M G MM -=⎪⎩⎪⎨⎧∂∈=∈=∆).( 1ln ),g(),( 0),(000D P r M P D M M M g PM M),(0M M G 称为Green 函数,找),(0M M G 的问题归结为“特定装置下”找感应电荷所产生的电势),(0M M g -.对上半平面0>y 而言,若在0M 处放置单位正电荷,它在M 处产生的电势为01lnMM r ,则感应电荷应放在0M 关于0=y 的对称点'0M 处,电量为 -1,它于M 处产生的电势为'1lnMM r -,从而Green 函数为'1ln1ln),(0MM MM r r M M G -=20202020)()(ln )()(ln y y x x y y x x ++-+-+--=.故所求解为⎰⎰⎰⎰∞∞-=∞∞-=∞∞-=∞∞-+-=∂∂=-∂∂-=∂∂-=.)()()(21 )()(21)(21),(22000000dx yx x x f y dx yG x f dxy G x f dx n G x f y x u y y y ππππ。

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

数学物理方程试卷及答案

数学物理方程试卷及答案

数学物理⽅程试卷及答案参考解答:⼀、填空题1. A 定解 B 初值(或Cauchy 问题) C 存在性、唯⼀性和稳定性2. D 双曲3. E (1)(2)(4)4. F [x-3t,x+t] ,G 决定区域5. H 222(21)(1,2,)4n n L πλ-==L I(21)cos (1,2,)2n x X n Lπ-==L ⼆、解:⽆界区域上波动⽅程200,,0|(),|()tt tt t t t u a u x t u x u x ?ψ==?=-∞<<+∞>??==?? 的达朗贝尔公式为:22()()1(,)()22x atx at x at x at u x t d aψξξ+--++=+对于本题所给半⽆界区域上的⾃由端点定解问题,只需对初始条件作偶延拓,即令:2(),()||x x x x ?ψ==即可,2a = ,代⼊达朗贝尔公式得22222222(2)(2)1()||2224,25(4),24x tx tx t x t u x d x xt t x tx t x t ξξ+--++=+??++≥?=?+⼆、解:设(,)()()u x t X x T t =,则()''()4''()()X x T t X x T t =,分离变量成为''()''()4()()T t X x T t X x λ==-,则''()()0,'(0)'(1)0''()4()0X x X x X X T t T t λλ+===??+=?,解前⼀⽅程,得固有值22(0,1,2,)n n n λπ==L 和固有函数()cos X x n x π=,代⼊⽅程''()4()0T t T t λ+=中可得()cos 2sin 2T t A n t B n t ππ=+,1,2,3,)n =L (由叠加原理,原⽅程有解1(,)(cos 2sin 2)cos nnn u x t A n t Bn t n x πππ∞==+∑。

数学物理方法期末考试卷与解答

数学物理方法期末考试卷与解答

《数学物理方法》试卷(A 卷)参考答案姓名: 学号:题号 一 二 三 四 五 六 七八 总分 得分注:本试卷共一页,共八大题。

答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废!可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f eF xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。

(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。

解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。

二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件x y x v yy x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)高数帮帮数帮高数帮高f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。

方程考试题及答案

方程考试题及答案

方程考试题及答案一、单项选择题(每题2分,共20分)1. 已知方程 \(x^2 - 5x + 6 = 0\),下列哪个选项是方程的解?A. \(x = 2\)B. \(x = 3\)C. \(x = 1\) 或 \(x = 6\)D. \(x = -1\) 或 \(x = -6\)答案:C2. 方程 \(x^3 - 2x^2 + x - 2 = 0\) 的实根个数是:A. 0B. 1C. 2D. 3答案:B3. 方程 \(x^2 + 4x + 4 = 0\) 的根的情况是:A. 有两个不相等的实根B. 有两个相等的实根C. 没有实根D. 有一个实根答案:B4. 方程 \(x^2 - 6x + 9 = 0\) 的解是:A. \(x = 3\)B. \(x = -3\)C. \(x = 3\) 或 \(x = -3\)D. 无解答案:A5. 方程 \(x^2 - 8x + 16 = 0\) 的根的判别式 \(\Delta\) 是:A. 0B. 64C. -64D. 16答案:A6. 方程 \(x^2 - 7x + 10 = 0\) 的根的和是:A. 7B. 10C. 2D. 5答案:A7. 方程 \(x^2 + 6x + 9 = 0\) 的根的积是:A. 9B. -6C. 6D. -9答案:A8. 方程 \(x^3 - 3x^2 + 3x - 1 = 0\) 的一个实根是:A. 1B. -1C. 0D. 3答案:A9. 方程 \(x^4 - 4x^2 + 4 = 0\) 的根是:A. \(x = 2\) 或 \(x = -2\)B. \(x = 1\) 或 \(x = -1\)C. \(x = 2\) 或 \(x = -2\) 或 \(x = 1\) 或 \(x = -1\)D. \(x = \sqrt{2}\) 或 \(x = -\sqrt{2}\)答案:D10. 方程 \(x^2 - 2x - 8 = 0\) 的根是:A. \(x = 4\) 或 \(x = -2\)B. \(x = 2\) 或 \(x = -4\)C. \(x = 4\) 或 \(x = 2\)D. \(x = -2\) 或 \(x = 4\)答案:B二、填空题(每题3分,共30分)1. 方程 \(x^2 - 9 = 0\) 的解是 \(x = \pm 3\)。

数学物理方程 参考答案

数学物理方程  参考答案

1.求下列波动方程Cauchy 问题的解: (2)2005,tt xx t tt u a u u u x==⎧=⎪⎨==⎪⎩解:根据达朗贝尔公式可得521)55(21),(+=++=⎰+-xt d a t x u at x atx ξξ6.求下列强迫振动的Cauchy 问题的解:(1)⎩⎨⎧==+===2002,5x u u e u a u t t t xxx tt解:令)(),(),(x w t x v t x u +=,代入原方程,得xxx xx tt ew a v a v ++=22令2)(a ex w x-=可得⎪⎩⎪⎨⎧=+====222,5xv ae v v a v t tx t xxtt由达朗贝尔公式可得531)(2121)5()5(21),(3222222++++=+⎥⎦⎤⎢⎣⎡+++=+-+-+-⎰t a tx eead aaea e t x v atx atx atx atx atx at x ξξ所以原问题的解为2232211(,)()523x x atx ate u x t v w eetx a t aa-+=+=++++-7.求解下列定解问题:⎩⎨⎧==>+∞<<-∞=-++==)(),(0,,020022x u x u t x u a u u u t t t xx t tt ψϕεε解:令)0(),,(),(>=-ββt x v et x u t,代入原方程得:)2()(2222=+-+-+-v v v a v t xx tt βεβεβε取εβ=,可得⎩⎨⎧+==>+∞<<-∞=-==)()(),(0,,0002x x v x v t x v a v t t t xx tt εϕψϕ 由达朗贝尔公式得:[][]11(,)()()()()22x at x atv x t x at x at d aϕϕψξεϕξξ+-=++-++⎰所以,原定解问题的解为:[][]11(,)()()()()22x at t tx atu x t x at x at d eaeββϕϕψξεϕξξ+-=++-++⎰习题4.22.求解下列定解问题2000,0,00,0()tt xx t t t x x u a u x t u u u h t ===⎧=<<+∞>⎪==⎨⎪=⎩解:通解为12(,)()()u x t f x at f x at =++-由初始条件1212(,0)()()0(1)(,0)()()0(2)t u x f x f x u x af x af x =+=⎧⎨''=-=⎩对(2)式积分可得121()()f x f x C -=则有1112()2,0()2C f x x C f x ⎧=⎪⎪≥⎨⎪=⎪⎩0x at +≥恒成立,但是x at -可能小于零当0x at -<时1212()()()()()()f at f at h t f f h a ξξξ''+=⎧⎪⎨''+-=⎪⎩令0at ξ=>,积分可得12120()()()(0)(0)f f h d f f aξξξξξ+-=+-⎰令aξη=上式变为12120()()()(0)(0)a f f a h d f f ξξξηη+-=+-⎰21101110()()()()2()2a a a f f a h d C C a h d C C a h d ξξξξξηηηηηη⎡⎤-=-+⎢⎥⎣⎦=--=--⎰⎰⎰所以1210,02()(),02a C f C a h d ξξξηηξ⎧-≥⎪⎪=⎨⎪--<⎪⎩⎰则有1210,2()(),2a C x t a f x at C xa h d t a ξηη⎧-≤⎪⎪-=⎨⎪-->⎪⎩⎰又因为11()2C f x at +=所以00,(,)(),a x t a u x t xa h d t a ξηη⎧≤⎪⎪=⎨⎪->⎪⎩⎰习题4.31.求解下列定解问题200,,,,0,tt t t t u a u x y z t u yz u xz ==⎧=∆-∞<<+∞>⎪⎨==⎪⎩解:对于三维波动方程,其解为1(,,)(,,)(,,,)41(,,)1(,,)44x y z x y z u x y z t dS dS a t atatx y z x y z dS dSa tataatϕψπϕψππ''''''∂⎡⎤=+⎢⎥∂⎣⎦''''''∂⎡⎤=+⎢⎥∂⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰其中2sin cos ,02,0sin sin cos ()sin x x at y y at z z at dS at d d θϕϕπθπθϕθθϕθ'=+≤≤≤≤⎧⎪'=+⎪⎨'=+⎪⎪=⎩在本题目中(,,)x y z yzϕ=,(,,)x y z xz ψ=()()2222222001(,,)41(sin sin )(cos )()sin 41sin sin cos sinsin sin cos sin 412sin 2sin cos 4x y z dS a t aty r z r at d d a tatat yz aty at a t d d a tat yz aty d a t πππππϕπθϕθθϕθπθθθθϕθθϕϕθππθπθθθπ'''∂⎡⎤⎢⎥∂⎣⎦∂++⎡⎤=⎢⎥∂⎣⎦∂⎛⎫=+++ ⎪∂⎝⎭∂=+∂⎰⎰⎰⎰⎰⎰ ()1404at yz a t yzππ⎛⎫ ⎪⎝⎭∂⎛⎫=+⎪∂⎝⎭=⎰1(,,)4x y z dSa atxztψπ'''=⎰⎰则(,,,)u x y z t yz xzt=+3.利用三维泊松公式求解下列问题220,,,,00,tt t t t u a u x y z t u u x yz ==⎧=∆-∞<<+∞>⎪⎨==+⎪⎩ 解:对于三维波动方程,其解为1(,,)(,,)(,,,)41(,,)1(,,)44x y z x y z u x y z t dS dS a tatatx y z x y z dS dSa t ataatϕψπϕψππ''''''∂⎡⎤=+⎢⎥∂⎣⎦''''''∂⎡⎤=+⎢⎥∂⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰在本题目中有(,,,)0x y z t ϕ=,则有()()()()()()()()()222220220021(,,)(,,,)4sin sin sin sin cos 1sin 4sin sin sin sin cos sin 4sin sin sin 4sin 4x y z u x y z t dSaatx at y at z at at d d a at t x at y at z at d d t x at d d yzttx d ππππππψπθϕθϕθθϕθπθϕθϕθθϕθπθϕθϕθπθπ'''=⎛⎫++++ ⎪=⎪⎝⎭=++++=++=⎰⎰⎰⎰⎰⎰⎰⎰ ()()22222322000022223200232sin sin 2sin sin 4sin sin 043d a t d d xat d d yztt x a t d d yzta t x t yztππππππππϕθθϕϕθθϕϕθπθθϕϕπ+++=+++=++⎰⎰⎰⎰⎰⎰⎰⎰习题4.43.导出二维Cauchy 问题解的表达式200(,,),,,00,0tt t t t u a u f x y t x y t u u ==⎧=∆+-∞<<+∞>⎪⎨==⎪⎩ 解:利用齐次化原理求解 如果(,,,)w x y t τ是定解问题20,(,,)tt t tt W a W W W f x y τττ==⎧=∆⎪⎨==⎪⎩的解 则0(,,)(,,,)tu x y t w x y t d ττ=⎰即为定解问题200(,,)0,0tt t t t u a u f x y t u u ==⎧=∆+⎪⎨==⎪⎩的解 对于0(,,)(,,,)tu x y t w x y t d ττ=⎰显然存在如下的关系(,,,)0t uw x y t d ττ===⎰(,,,)t t t u w w w x y t d d tttττττ=∂∂∂=+=∂∂∂⎰⎰此时有00t ut =∂=∂又有222222222000(,,)(,,)t tttu w w w wd f x y t a wd f x y t a d tttx y ττττ=⎛⎫∂∂∂∂∂=+=+∆=++ ⎪∂∂∂∂∂⎝⎭⎰⎰⎰且222222220tuuw wd x y xy τ⎛⎫∂∂∂∂+=+ ⎪∂∂∂∂⎝⎭⎰将上式代入22u t∂∂表达式可得2222222(,,)(,,)u u u f x y t a f x y t a u txy ⎛⎫∂∂∂=++=+∆ ⎪∂∂∂⎝⎭因此齐次化原理得以证明.由齐次方程柯西问题解的泊松公式可得1(,,)(,,,)2Mf w x y t aττπ=⎰⎰所以,原问题的解为()201(cos ,sin ,)(,,)2t a t f x r y r u x y t d aτπθτπ-++=⎰⎰⎰习题5.1 1.若[]()()F g x f ω=,求证[]()2()F f x g πω=-.证明:由傅里叶反变换式1()()2j xg x f ed ωωωπ+∞-∞=⎰,将式中自变量x 换为x -,得1()()2j xg x f ed ωωωπ+∞--∞-=⎰将上式变量x 换为ω,而把ω换为x ,得 1()()2j xg f x e dx ωωπ+∞--∞-=⎰ 即[])(2)(ωπ-=g x f F2.求证 (1)1,0y Fe y ω--⎡⎤>⎣⎦(2)00()()j xF ef x f ωωω⎡⎤=-⎣⎦证明:根据Fourier 变换可得出000++()0()()()()j xj xj xj xF e f x f x e edxf x edxf ωωωωωωω∞--∞∞---∞⎡⎤⎣⎦===-⎰⎰(3)[]()()f aF f at aω=证明:若0>a ,则)(at f 的傅里叶变换为[]+()()j tF f at f at edtω∞--∞=⎰令at x =,则adtdx=代入上式,可得[]+1()()j x adx F f x f x ef aa a ωω-∞-∞⎛⎫==⎪⎝⎭⎰若0<a ,则类似地有[]1()Ff at f aa ω⎛⎫=-⎪⎝⎭综上所述[]()()f aF f at aω=3.求函数的Fourier 变换 (1) ()xf x e -= 证明:2cos sin 22cos 1xxxxj xxF e eedx exdx i exdxexdx ωωωωω+∞+∞+∞------∞-∞-∞+∞-⎡⎤==-⎣⎦==+⎰⎰⎰⎰由于积分区间是关于坐标轴对称,且积分函数是个奇函数故sin 0xexdx ω+∞--∞=⎰因此2022cos 1x xF e e xdx ωω+∞--⎡⎤==⎣⎦+⎰(2) 2()xf x eπ-=证明:直接利用公式[]2222()cos sin 2cos xj xxxxF f x e edxexdx i exdxexdxπωπππωωω+∞---∞+∞+∞---∞-∞+∞-==-=⎰⎰⎰⎰根据公式22240cos xa ba bexd ωωω-+∞-=⎰则[]22441()22Ff x eeωωππ--=⋅=(3)2()cos f x ax = 证明:[]2()cos j xF f x ax edxω+∞--∞=⋅⎰根据cos 2izize ez -+=上式可以变为2222222222222()()2424()42cos 211221122112212j xjaxjaxj xjaxj xjaxj xjax j xjax j xja x jja x jaaa ajja x aaax edxee edxe edx eedxedx edxedx edxeeωωωωωωωωωωωω+∞--∞-+∞--∞+∞+∞----∞-∞+∞+∞----∞-∞--+++∞+∞-∞-∞--⋅+==+=+=+=⎰⎰⎰⎰⎰⎰⎰⎰22()4212jja x aadx eedxωω++∞+∞-∞-∞+⎰⎰令)2x aωξ=-以及)2x aωη=+上式变为222222222222()()4242444401122112211jja x jja x aaaajjj j aajjj j aaeedx eedxeedeede d ed ωωωωωωξηωωξηξη--++∞+∞-∞-∞-+∞+∞-∞-∞-+∞+∞+==+⎰⎰⎰⎰⎰⎰再利用公式2402jj ed πξξ+∞=⎰上式可变为22222222440()()4444()()444422)44jjj j aaj j a a j j a a ed ed ee e e aωωξηωπωπωπωπξηωπ-+∞+∞------+⎤=+⎥⎥⎦⎤+⎥=⎥⎥⎣⎦=-⎰⎰5.求()0axf x ea -=>,,Fourier 正弦与余弦变换.解:由定义,得:2202cos 1cos 11cos cos 1sin 1sin 1sin cos 1cos axaxaxaxaxaxaxaxaxexdxxdeaxe ed xaaexdxa axdea axe xdea a xdeaaωωωωωωωωωωωωωω+∞-+∞-+∞+∞--+∞-+∞-+∞+∞--+∞-=-=-+=-=+⎡⎤=+-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰由此得出222cos axaexdx a ωω+∞-=+⎰即22()c a f a ωω=+同理可得22ˆ()sin axs f exdx a ωωωω+∞-==+⎰习题5.21. 用Fourier 变换法求解定解问题 ⎩⎨⎧==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 解:对于初值问题关于x 作Fourier 变换,得:[]2222d (,)(,),,0d (,0)sin ,(,0)0t u t a u t x R t t u F x uωωωωω⎧+∈>⎪⎨⎪==⎩该方程变为带参数ω的常微分方程的初值问题. 解得12(,)ja t ja t ut C e C e ωωω-=+ 于是1212(,0)(sin ),(,0)()0t uF x C C u ja C C ωωω==+=-= 则由[]121sin 2C C F x ==可得[]1(,)sin ()2ja tja tut F x eeωωω-=+作像函数(,)ut ω 的Fourier 逆变换 [][][]11111(,)[(,)]1sin ()21sin (sin )211sin (sin )221[sin()sin()]2sin cos ja t ja t ja t ja t ja t ja t u x t F u t F F x e e F F x e F x e FF x e F F x e x at x at x atωωωωωωω--------=⎡⎤=+⎣⎦⎡⎤=+⎣⎦⎡⎤⎡⎤=+⎣⎦⎣⎦=-++=2.求解下列定解问题2cos ,0,0(,0)0,(,0)0,lim (,)0(0,)0tt xx t x x u a u t x t u x u x u x t u t →+∞⎧=+<<+∞>⎪===⎨⎪=⎩ 解:对自变量t 取Laplace 变换可得⎪⎩⎪⎨⎧=+∞=+=-0),(~,0),0(~1~~22222s u s us s dx ud a u s x求解常微分方程,得)(1~22s s Be Ae u xa sx as+++=-ω于是)1(1,02s s B A +-==所以]1[)1(1~2xas es s u --+=且111222()22211L (1)L L (1)(1)(1)R e s ,R e s ,(1)(1)s x sa x a xs t sta k k kke e s s s s s s e e s s s s s s ------⎡⎤⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥++⎣⎦⎢⎥⎣⎦∑∑其中k s 是u ~的极点 由于01=s ,js =2,j s -=3都是一级极点,所以222202R e s ,lim lim ()lim ()(1)(1)(1)(1)11()2(1cos )12sin2st st st stk s s j s j kjtjte e e e s s s j s j s s s s s s s s eet t→→→--⎡⎤=⋅+-++⎢⎥++++⎣⎦=-+=-=∑2()2()2sin ,2R e s ,(1)0,x s t a k kat x x t e a a s x s s t a --⎧⎡⎤>⎪⎪⎢⎥=⎨⎢⎥+⎪≤⎢⎥⎣⎦⎪⎩∑所以,最后定解问题为22122sin 2sin ,22[]2sin ,2t at x x t aau L ut x t a--⎧->⎪⎪==⎨⎪≤⎪⎩4.求解定解问题(,),,0(,0)(),(,0)()tt xx t u u f x t x t u x x u x x ϕψ=+-∞<<+∞>⎧⎨==⎩解:首先使用分离变量法,令u VW=+,则可将原定解问题分解为200()(1)()tt xx t t t V a V V x V x ϕψ==⎧=⎪⎪=⎨⎪=⎪⎩200(,)0(2)0tt xx t t t W a W f x t W W ==⎧=+⎪⎪=⎨⎪=⎪⎩对于方程(1).对初值问题关于x 做Fourier 变化,得2222(,)(,)0(,0)(),(,0)()t d v t a v t dt v v ωωωωϕωωψω⎧+=⎪⎨⎪==⎩该方程变为带参数ω的常微分方程的初值问题.解得12(,)j at j at vt C e C e ωωω-=+ 于是1212()(,0)()(,0)()t v C C vj a C C ϕωωψωωω==+==-即有1111(,)()()()()22j at j at vt e ej a j a ωωωϕωψωϕωψωωω-⎡⎤⎡⎤=++-⎢⎥⎢⎥⎣⎦⎣⎦做像函数的Fourier 逆变换[]11111(,)(,)1111()()()()22j at j at j at j at W x t Fut Fe F e F e F e aj a j ωωωωωϕωϕωψωψωωω-------=⎡⎤⎡⎤⎡⎤⎡⎤=++-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦因为[][]()()()j atj atF x at eF x eωωϕϕϕω±±±== 做逆变换可得 1()()j at Fe x at ωϕωϕ-±⎡⎤=±⎣⎦又因为1()()()x at x j atj at F s ds e F s ds e j ωωψψψωω±±±-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 做逆变换可得11()()x at j at Fe s dsj ωψωψω±-±-∞⎡⎤=⎢⎥⎣⎦⎰因此[][]11(,)()()()()2211()()()22x atx at x at x atV x t x at x at s ds s ds a x at x at s dsaϕϕψψϕϕψ+--∞-∞+-⎡⎤=++-+-⎢⎥⎣⎦=++-+⎰⎰⎰对于方程(2).根据齐次化原理,如果(,,)w x t τ是齐次方程Cauchy 问题的解20(,)tt xx t t t w a ww w f x τττ==⎧=⎪⎪=⎨⎪=⎪⎩则0(,)(,,)tW x t w x t d ττ=⎰是原问题的解.利用变换t t τ'=-则2000(,)t t xx t t t w a w w w f x τ'''=''=⎧=⎪⎪=⎨⎪=⎪⎩ 利用达朗贝尔公式有1(,,)(,)2x at x at w x t f d a τατα'+'-'=⎰ ()()1(,,)(,)2x a t x a t w x t f d aτττατα+---=⎰可求得()0()1(,)(,)2t x a t x a t W x t f d d aττατατ+---=⎰⎰最后,[]()0()111()()()(,)222x at t x a t x atx a t u V W x at x at s ds f d d aaττϕϕψατατ++----=+=++-++⎰⎰⎰习题5.31.求证Laplace 变换的位移定理. 证明: Laplace 变换的位移定理为L ()(),Re()axef x f s a s a σ⎡⎤=-->⎣⎦ 根据Laplace 变换的定义可以求得()00L ()()()(),Re()axaxsxs a xef x ef x edx f x edx f s a s a σ+∞+∞---⎡⎤===-->⎣⎦⎰⎰3.用留数计算1221L (1)()sx ae s s ω--⎡⎤-⎢⎥+⎣⎦解:1122222211L (1)L ()()()sx sa x a e e s s s s s s ωωω----⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥+++⎣⎦⎢⎥⎣⎦根据L 变换的线性性质11122222211L (1)L L ()()()sx sa x ae e s s s s s s ωωω-----⎡⎤⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎢⎥⎣⎦根据留数定理可得出()12222221L (1)R e s ,R e s ,()()()xs t ssta x a k k kk eee s s s s s s s s ωωω---⎡⎤⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎢⎥⎣⎦∑∑其中k s 是极点.由于01=s ,ωj s =2,ωj s -=3都是一级极点,所以22222222022222R e s ,lim lim ()lim ()()()()()11()21(1cos )2sin2st st st stk s s j s j kj tj te e e e s s s j s j s s s s s s s s eet tωωωωωωωωωωωωωωωω→→→--⎡⎤=⋅+-++⎢⎥++++⎣⎦=-+=-=∑对于()22R e s ,()xs t a k kes s s ω-⎡⎤⎢⎥⎢⎥+⎢⎥⎣⎦∑需要分情况讨论当xt a >时,()()()()222222220()()22222R e s ,lim lim ()lim ()()()()()1121()1cos 2()sin2x x x x s t s t s t s t a a a a k s s j s j kx xj t j t aae e e e s s s j s j s s s s s s s s e e at x a at x aωωωωωωωωωωωωωωωω----→→→----⎡⎤⎢⎥=⋅+-++⎢⎥++++⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦-⎡⎤=-⎢⎥⎣⎦-=∑当x t a≤时,()22R e s ,0()xs t a k kes s s ω-⎡⎤⎢⎥=⎢⎥+⎢⎥⎣⎦∑综上所述,可以得出2()2222()sin ,2R e s ,()0,x s t a k kat x x t e a a s x s s t a ωωω--⎧⎡⎤>⎪⎪⎢⎥=⎨⎢⎥+⎪≤⎢⎥⎣⎦⎪⎩∑所以,最后结果为22221222222()sin sin ,122L (1)2()sin ,2s x at at x x t a a e t xs s t a ωωωωωωω---⎧->⎪⎡⎤⎪-=⎨⎢⎥+⎣⎦⎪≤⎪⎩7.求下列函数的Laplace 逆变换 (1) 5482+++s ss (2) )0(,)(222>+a a s s解:(1)对原式进行分解,得1)2(61)2(2548222++++++=+++s s s s s s则)sin 6(cos 1)2(61)2(25482212121t t e s L s s L s s s L t+=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡+++=⎥⎦⎤⎢⎣⎡+++----[查表可得](2)对原式进行分解,得22222)(14)(14)(ja s a j ja s a j a s s--+=+由于[]2)(1a s te L at+=-,得:1112222211()4()4()()41sin 2jatjats j jL L L s a a s ja a s ja j t eea t ata ----⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥++-⎣⎦⎣⎦⎣⎦=-=[查表可得] 习题5.41.用Laplace 变换法解下列定解问题:(2)2000,0,00,00tt xx t t t x u a u c x t u u u ===⎧=+<<∞>⎪⎪==⎨⎪=⎪⎩解:对时间变量t 坐拉普拉斯变换222200,x x d u c a s u u dx s u =→∞⎡⎤=⎧-=-⎪⎪⎩⎣⎨⎦=求解微分方程上述微分方程. 对应的特征方程为220s a λ⎛⎫-= ⎪⎝⎭特征根为s aλ=±对应齐次方程的通解为s sxxaauAe Be-=+由于00λ=不是特征方程对应的特征根,故非齐次方程的一个特解为*uC =将特解代入原方程可得3c C s=因此原问题的解为*3s sxxa ac uu u Ae Bes-=+=++根据边界条件可得出30c A s B ⎧=-⎪⎨⎪=⎩则33s xac c uess-=-+对其做逆变换可得[]1133(,)sx a c c u x t L u L e ss ---⎡⎤==-+⎢⎥⎣⎦ 根据线性定理可将其变为1133(,)sx ac c u x t L e L s s ---⎡⎤⎡⎤=-+⎢⎥⎢⎥⎣⎦⎣⎦其中,2132c ctL s -⎡⎤=⎢⎥⎣⎦133Re s ,ssx x staa k kc c L e e e s s s ---⎡⎤⎡⎤-=-⋅⎢⎥⎢⎥⎣⎦⎣⎦∑其中,0s =是三阶极点故有()332()32302R e s ,R e s ,1lim (0),(31)!0,(),20,,s xx t s sta a k k kkxt s as c c e e s e s s s d c x s e t ds s a x t a c x x t t a a x t a ---→⎡⎤⎡⎤-⋅=⎢⎥⎢⎥⎣⎦⎣⎦⎧⎡⎤->⎪⎢⎥⎪-⎣⎦=⎨⎪≤⎪⎩⎧->⎪⎪=⎨⎪≤⎪⎩∑∑因此222(),22(,),2ct c x xt t a au x t ct x t a ⎧-->⎪⎪=⎨⎪≤⎪⎩4.用Laplace 变换求解⎪⎩⎪⎨⎧===+∞=>+∞<<=0)0,(,0)0,(0),(),(),0(0,0,2x u x u t u t f t u t x u a u t x xx tt 解:对自变量t 取Laplace 变换22220(0,)(),(,)0x d u s u a dx u s f s us ⎧-=⎪⎨⎪=+∞=⎩微分方程的解为x a sx a sBe Ae u-+=~ 再由(0,)(),(,)0x u s f s us =+∞= 所以()s xa a uef s s-=-由 Laplace 变换的卷积定理,得[][][]()*()()()L g x f x L g x L f x =⋅令xa s es a x g --=)(,对其求逆,得:()()0R e s ,lim (0)0,xxs t s t a a k s kx a t a a a e s s e xs s t a --→⎧->⎪⎡⎤⎡⎤⎪-=--=⎨⎢⎥⎢⎥⎣⎦⎣⎦⎪≤⎪⎩∑,最后定解问题的解是)(*)(x f x g 则最后的解为0()(,)0,xt ax a f d t au x t x t a ττ-⎧->⎪⎪=⎨⎪≤⎪⎩⎰,6.有一根均匀弹性细杆,长为l ,一端固定,另一端受外力sin F A tω=作用.杆的初始位移与速度都为0,求杆的纵向振动规律.解:设Y 与S 分别是细杆杨氏模量与截面积,则定解问题为2,0,0sin (0,)0,(,)(,0)0,(,0)0tt xx xx u a u x l t A t u t u l t SY u x u x ω⎧=<<>⎪⎪==⎨⎪==⎪⎩对自变量t 取Laplace 变换2222220(,)(0,)0,x ld u a s u dx du x s Au s dx SY s ωω=⎧-=⎪⎪⎨⎪==⎪+⎩求解常微分方程可得ss xxaauC eD e-=+代入边界条件可得出2201()l l s s aaC D A C SY s s e e ωω-+=⎧⎪⎪=⎨+⎛⎫⎪+ ⎪⎪⎝⎭⎩所以221()ssx x x x s s a a a a l ls s a a u C e D e e e s s e eωω---⎛⎫=+=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭对上式取Laplace 逆变换可求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方程期末考试试题及答案
一、求解方程(15分)
⎪⎩⎪⎨⎧===-=+=-.
)()(0002x u x u u a u at x at x xx tt ψϕ
其中)0()0(ψϕ=。

解:设⎩
⎨⎧+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得:
)()0()2(),()2()0(x G x F x x G F ψϕ=+=+
由)0()0(ψϕ=即得:
)0()2
()2(
),(ϕψϕ--++=at x at x t x u 。

二、利用变量分离法求解方程。

(15分)
⎪⎩⎪⎨⎧==≥==∈=-====)(,)(,
0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψϕ
其中l x ≤≤0。

0>a 为常数
解:设)()(t T x X u =代于方程得:
0''=+X X λ,0''2=+T a T λ(8’)
x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:
21)(
,0l n C πλ== l x n at A at B u n n n πλλsin
)sin cos (1
+=∑∞= ⎰=l n dx l x n x l B 0sin )(2πϕ,⎰=l n dx l
x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与
稳定性. (15分)
证明:设u e v ct -=代入方程:
⎪⎩
⎪⎨⎧====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ϕ
设21,v v 都是方程的解设21v v v -=代入方程得:
⎪⎩
⎪⎨⎧====-=0),(,),0(0002t l v t v v v a v t xx t
由极值原理得0=v 唯一性得证。

(8’)由
≤-21v v ετ≤-2
1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性
得证。

四.求解二维调和方程在半平面上的狄利克雷问题(15分).
,0,0>=++=∆z u u u u zz yy xx
).(0x f u z ==
解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点
),,(ςηξ-p 格林函数:
222)()()(141
),,,(ςηξπ
ηξ-+-+--=z y x y x G 222)()()(141
ςηξπ++-+-+z y x
2/32220])()[(2ςηξπς
+-+-=∂∂-=∂∂=y x z G n G z 方程的解:dx y x y x u R ⎰+-+-=2
2/3222])()[(),(2),(ςηξϕπς
ηξ
五、证明下列初边值问题解的唯一性.(20分)
),,()(2t y x f u u a u yy xx tt =+- ),,(0y x u t ϕ==
),,(0
y x u t t ψ== ).,,(t y x g u =Γ
其中,),(,0Ω∈>y x t Γ为Ω的边界.
解:设21,u u 都是方程的解设21u u u -=代入方程得:
0)(2=+-yy xx tt u u a u
00==t u
00
==t t u .0=Γu 设⎰⎰Ω
=[21)(t E dxdy u u a u y x t ](2222++ =dt t dE )(⎰⎰Ω
[2dxdy u u u u a u u yt y xt x tt t )](2++ ⎰⎰Ω=[2dxdy u u a u u yy xx tt t )]([2
+-
0=(10’)
0)0()(==E t E ,C u =,由边值条件得:0=u 。

(20’)
六 考察边值问题
∑==++∆n i x i
f u x c u x b u i 1)()(
.0=∂∂Γn u
试证)(x c 当充分负时,其解具有唯一性及在能量模意义下的稳定性.(20分) 证明:在原方程两边同乘以u 然后在Ω上积分:
⎰Ω∆u u ∑⎰=Ω
=++n i x i dx fu dx u x c u u x b i 12)()(
由格林公式dx u u ⎰Ω∆⎰Ω∂-∂∂=
ds n u dx Du 2⎰Ωdx Du 2⎰Ω-= 由Young 不等式
≤⎰∑=dx u u n i x i 1dx u n i x i 212⎰∑=εdx u n ⎰+22ε 又⎰⎰⎰+≤
dx u dx f fudx 222121故得估计: ⎰⎰∑≤+=dx f C dx u u n i x i 222
1)((10’)
设21,u u 都是方程的解设21u u u -=代入方程并由估计式得:0=u 唯一性得证
≤-21u u ετ≤-2
1f f ,稳定性得证。

相关文档
最新文档