最新数学物理方程期末试卷

合集下载

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

数学物理方法期末试题(5年试题含答案)

数学物理方法期末试题(5年试题含答案)

………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。

2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。

3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。

4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。

5、 将泛定方程和 结合在一起,就构成了一个定解问题。

只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。

………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。

7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。

(2)()n H x = 。

8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。

数理方程期末试题及答案

数理方程期末试题及答案

带入微分方程求解得:
k
a2
A 2
则得通解
T1
t
C1
cos
n l
a
t
D1
sin
n l
a
t
a2
A 2
sin t
带入初始条件得: C1
0,
D1
A a2 2
l a
则原定解问题的解为
u x,t
A a2 2
l sin a t cos
a l
l
x
2、 求解下列初值问题:(10 分)
uuttx,0u
xx
数; (3) 将形式解带入泛定方程以及初始条件,求解待定函数 Tn(t).
4、试述行波法的适用范围,并写出无限长弦自由振动的达朗贝尔公式。 答:行波法(特征线法)对双曲型方程是有效的,沿着双曲型方程两条特征线做
自变量替换总可以把双曲型方程化为可积形式,获得通解,由此行波法仅适用于
无界条件的波动方程。
3x x ,t sin x,ut x,0 x
0
解:应用达朗贝尔公式: u 1 (x at) (x at) 1
xat
( )d
其中
2
2a xat

x sin x, x x ,带入上式得:
u
1 2
sin
x
at
sin
x
at
1 2a
xat
d
xat
sin x cos at t
数学物理方程期末试题答案
一、 简述题:(每题 7 分,共 28 分) 1、 简述数学物理中的三类典型方程,并写出三类方程在一维情况下的具体形
式。
答:波动方程:
2u t 2

数学物理方法期末考试试题

数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。

7. 解释什么是边界层理论,并说明它在流体力学中的重要性。

8. 描述格林函数在求解偏微分方程中的作用。

## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。

10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。

假设\( \rho \) 是常数,求解 \( V(x) \)。

## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。

请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。

山东大学物理学院 数学物理方法 2022-2023期末试题及解析

山东大学物理学院 数学物理方法 2022-2023期末试题及解析

《数学物理方法》课程考试大纲2022-2023山东大学物理学院 数学物理方法期末试题一、 填空题(每题3分,共27分)1. 已知zz =cos (aa +iibb ),z 的代数表达式为________________2. 指出多值函数�(zz −aa )(zz −bb )的支点和阶数___________3. 已知级数∑aa nn xx nn ∞nn=0的收敛半径为A ,试问级数∑aa nn √1+bb nn nnxx nn ∞nn=0(|bb |<1)的收敛半径为_____________4.ssss nn 2zz zz 3的极点为_____,且为______ 阶极点5. 利用柯西公式计算∮zz 2−zz+1zz 2(zz−1)ddzz |zz |=2_______________6. 连带勒让德多项式的正交代数表达式为_______________7. 计算留数1(zz 2+1)2_________________________8. 从t=a 持续作用到t=b 的作用力ff (tt ),可以看作许多前后相继的瞬时力的总和,其数学表达形式为__________9. ∫3δδ(xx −ππ)[ee 2xx +cccccc xx ]ddxx 10−10=_________________ 二、 简算题(每题5分,共15分)1. 将函数ff (zz )=1zz 2−3zz+2,在区域0<|zz −1|<1上展开为洛朗级数 2. �cos mmxx(xx 2+aa 2)2d xx ∞−∞,m>03. 已知解析函数ff =uu +iiνν,而uu =xx 3−3xxyy 2,试求ff三、 (8分)用级数法解微分方程yy ′′+xxyy ′+yy =0四、 (10分)在圆域ρρ<ρρ0上求解泊松方程的边值问题�ΔΔuu =aa +bb (xx 2−yy 2)uu ρρ=pp 0=cc五、 (15分)设有一均匀球体,在球面上的温度为cos 2θθ,试在稳定状态下求球内的温度分布(已知,PP 0(xx )=1,PP 1(xx )=xx , PP 2(xx )=12(3xx 2−1))六、 (10分)利用拉普拉斯变换解RC 电路方程:�RRRR +1CC �RR dd tt tt=EE 0sin ωωttRR (0)=0七、 (15分)计算:⎩⎨⎧ðð2uu ððtt 2−aa 2ðð2uuððxx2=AA cos ππxx ll sin ωωttuu |xx=0=0, uu |xx=ll =0uu |tt=0=φφ(xx ), uu tt |tt=0=ψψ(xx )2022-2023 数学物理方法期末试题 参考答案一、 填空题(每题3分,共27分)1.【正解】 12(ee bb +ee −bb )cos aa +i2(ee −bb −ee bb )sin aa 【解析】cos (aa +i bb )=ee ss (aa+ss bb )+ee −ss (aa+ss bb )2=12(ee −bb ee ss aa+ee bb ee −ss aa )=12[e −bb(cos aa +isin aa )+e bb (cos aa −isin aa )]=12[(e bb+e −bb )cos aa +i(e −bb −e bb )sin aa ]=12(ee bb +ee −bb)cos aa +i 2(ee −bb−ee bb )sin aa 2.【正解】支点:z=a 、b 、∞;皆为一阶支点【解析】注意到函数为12次,且当z=a 、b 时函数置零,z=∞为熟知的支点,阶数皆为2−1=1 3.【正解】A【解析】由根值判别法,幂级数的收敛区间为ll ii ll nn→∞�aa nn ⋅(1+bb nn )nn⋅xxxx (−1,1)而|bb |<1⇒ll ii ll nn→∞√1+bb nn nn=1故收敛半径保持不变,仍为A 4.【正解】zz =0;一阶 【解析】ll ii llzz→0ssss nn 2zz zz 3→∞,且ll ii ll zz→0zz ⋅ssss nn 2zz zz 3=1故zz =0为一阶极点5.【正解】2πi注意到原函数的极点为zz =0和zz =1,且分别为2阶与一阶极点,故上述积分即为II =2ππii �Re cc�ff (zz ),0]+Re cc [ff (zz ),1]��而Re cc [ff (zz ),0]=ll ii ll zz→0dd �zz 2−zz +1zz −1�ddzz=0Re cc [ff (zz ),1]=ll ii ll zz→1zz 2−zz +1zz 2=1因此II =2ππii6.【正解】�PP ll mm (xx )⋅PP kk mm (xx )ddxx =01−1(ll ≠kk ) 7. 【正解】Re cc [ff (zz ),ii ]=ll ii ll zz→ss dd �1(zz +ii )2�ddzz=−2[2ii ]−3Re cc [ff (zz ),−ii ]=ll ii ll zz→−ss dd �1(zz −ii )2�ddzz=−2[−2ii ]−38.【正解】∫ff (ττ)1−1δδ(tt −ττ)ddττ 9.【正解】ee 2ππ−1【解析】由δδ函数的挑选性,上述积分即为 (ee 2xx +cccccc xx )|xx=ππ=ee 2ππ−1 二、 简算题(每题5分,共15分)1.【解析】在区域0<|zz −1|<1内ff (zz )=1zz 2−3zz +2=−12⋅11−zz 2−1zz −1=−12⋅11−zz 2−1zz ⋅11−1zzff (zz )=−�12kk+1zz kk ∞kk=0−�zz −(kk+1)∞kk=0 =−�zz kk−1kk=−∞−�12kk+1zz kk∞kk=02.【解析】由约旦引理,从上半平面的半圆弧补全围道,上半平面有一个二阶极点zz 0=iiaa ,该点的留数为RReeccff (zz 0) =limzz→zz 0d d zz e immzz(zz +aa i)2=lim zz→zz 0[i ll e immzz (zz +aa i)2−2e ss nn zz (zz +aa i)3] =−llaa +14aa 3ie −mmaaII =ππi ⋅(−llaa +14aa 3ie −mmaa )=llaa +14aa3ππe −mmaa 3.【解析】根据C-R 条件,有∂uu ∂xx =3xx 2−3yy 2=∂νν∂yy−∂uu ∂yy =6xxyy =∂νν∂xxddνν=−(−6xxyy )d xx +3(xx 2−yy 2)d yy =d(3xx 2yy −yy 3) 有νν=3xx 2yy −yy 3+CC ,代入得ff (zz )=xx 3−3xxyy 2+i(3xx 2yy −yy 3+CC ) =(xx +i yy )3+i CC =zz 3+i CC 0三、(8分)【解析】设 yy =�aa nn xx nn ∞nn=0 是方程的解,其中 aa 0,aa 1 是任意常数,则yy ′=�nnaa nn xx nn−1∞nn=1yy ′′=�nn (nn −1)aa nn xx nn−2∞nn=2=�(nn +2)(nn +1)aa nn+2xx nn ∞nn=0方程 yy ′′+xxyy ′+yy =0,得�[(nn +2)(nn +1)aa nn+2+nnaa nn +aa nn ]xx nn ∞nn=0=0故必有(nn +2)(nn +1)aa nn+2+(nn +1)aa nn =0即aa nn+2=−aa nnnn +2(nn =0,1,2,⋯ ) 可见,当 nn =2(kk −1) 时aa 2kk=(−12kk )aa 2kk−2=(−12kk )(−12kk −2)⋯(−12)aa 0=aa 0(−1)kkkk !2kk当nn =2kk −1时aa 2kk+1=(−12kk +1)aa 2kk−1=(−12kk +1)(−12kk −1)⋯(−13)aa 1=aa 1(−1)kk (2kk +1)!�aa 2nn xx 2nn ∞nn=0与�aa 2nn+1xx 2nn+1∞nn=0的收敛域均为(−∞,+∞) 故yy =�aa κκxx κκ∞κκ=0=�aa 2κκxx 2κκ∞κκ=0+�aa 2κκ+1xx 2κκ+1∞κκ=0=�aa 0(−1)nn nn !2nn xx 2nn∞nn=0+�aa 1(−1)nn (2nn +1)!xx 2nn+1∞ss=0即yy =aa 0e −xx 22+aa 1�(−1)nn (2nn +1)!xx 2nn+1∞nn=0,xx ∈(−∞,+∞)四、 (10分)【解析】 首先找到满足方程的特解vv =aa 4(xx 2+yy 2)+bb 12(xx 4−yy 4)=aa 4ρρ2+bb 12(xx 2+yy 2)(xx 2−yy 2) =aa 4ρρ2+bb 12ρρ4cos 2φφ 令uu =vv +ww =aa 4ρρ2+bb 12ρρ4cos 2φφ+ww对于齐次方程,且满足球心为有限值的泊松方程通解为ww (ρρ,φφ)=�ρρnn (AA mm cos ll φφ+BB nn sin llφφ)∞mm=0代入边界条件,有 �ρρ0nn (AA mmcos ll φφ+BB nn sin llφφ)∞mm=0=cc −aa 4ρρ02−bb 12ρρ04cos 2φφ比较系数解得uu =vv +ww =cc +aa 4(ρρ2−ρρ02)+bb 12ρρ2(ρρ2−ρρ02)cos 2φφ 五、(15分)【解析】对于满足球心处为有限值的拉普拉斯方程通解为uu (rr ,θθ)=�AA ll rr l P ll (cos θθ)∞ll=0代入边界条件有�AA ll rr 0l P ll (cos θθ)∞ll=0=cos 2θθ=xx 2由于P 2(xx ) =12(3xx 2−1) ,有xx 2=13[1+2P 2(xx )]=13P 0(xx )+23P 2(xx )即�AA ll rr 0lP ll (cos θθ)∞ll=0=cos 2θθ=xx 2=13P 0(xx )+23P 2(xx )对比系数可得uu (rr ,θθ)=13+23⋅1rr 02⋅rr 2P 2(cos θθ)六、(10分)【解析】对方程进行拉普拉斯变换,有jj ‾RR +jj ‾ppCC =EE 0ωωpp 2+ωω2 解得jj ‾=ωωEE 0(RR +1ppCC )(pp 2+ωω2)再进行反演RR (tt )=EE 0ωωRR (−RRCC e llRRRRωω2RR 2CC 2+1+RRCC cos ωωtt +ωωRR 2CC 2sin ωωtt ωω2RR 2CC 2+1) =EE 0RR 2+1/CC 2ωω2(RR sin ωωtt +1CCωωcos ωωtt )−EE 0/CCωωRR 2+1/CC 2ωω2e −tt /RRRR七、(15分)【解析】应用冲量定理法,先求解vv uu −aa 2vv xxxx =0ννxx ∣x=0=0,vv x ∣x=l =0vv ∣tt=ττ+0=0,vv t ∣t=ττ+0=AA cos ππxxllsin ωωττ根据通解的一般形式并代入边界条件,可得vv (xx ,tt ;ττ)=AAllππaasin ωωττsin ππaa (tt −ττ)ll cos ππxx ll uu (xx ,tt )=�vv (xx ,tt ;ττ)tt=AAll ππaa cos ππxx ll �sin ωωττsin ππaa (tt −ττ)ll d ττtt 0=AAll ππaa 1ωω2−ππ2aa 2/ll 2(ωωsin ππaa ll tt −ππaa ll sin ωωtt )cos ππxx ll。

陕西省陕西师范大附属中学2025届物理八年级第一学期期末达标检测试题含解析

陕西省陕西师范大附属中学2025届物理八年级第一学期期末达标检测试题含解析

陕西省陕西师范大附属中学2025届物理八年级第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、单选题1.2019年10月1日是祖国70岁生日,为庆祝祖国70周年,在北京举行了盛大的阅兵仪式,其中直升机方队组成了“70”字样飞过天安门,如图所示,其中有关物理知识说法正确的是()A.直升机相对于地面是静止的B.某一架直升机相对于其他直升机是运动的C.直升机是运动的,选取的参照物是地面D.直升机是静止的,它们的飞行速度可以不同2.下列关于安全用电的说法不正确的是A.有金属外壳的用电器,金属外壳一定要接地线B.发生触电事故时,应立即切断电源C.为了保证家庭电路安全,尽量不要同时使用多个大功率电器D.当保险丝熔断后,可以用铜丝代替3.下列现象是由于光的反射引起的是()A.看见本身不发光的物体B.太阳还在地平线上,人们便能看见它C.插在水中的筷子看起来向上弯折D.日食和月食现象4.如图所示,两个相同的光滑弧形槽,一个为A1B1C1凸形,一个为A2B2C2凹形,两个相同小球分别进入两弧形槽的速度都为v,运动到槽的末端速度也都为v,小球通过凸形槽的时间为t1,通过凹形槽的时间为t2,则t1、t2的关系为A.t1=t2B.t1>t2C.t1<t2D.无法确定5.苏州街头有一个会说话的交通警示产品,名为路口智能语音警示柱”。

初二下物理数学试卷期末

初二下物理数学试卷期末

一、选择题(每题5分,共50分)1. 下列哪个物理量属于矢量?A. 质量B. 时间C. 速度D. 温度2. 下列哪个图形是轴对称图形?A. 等腰三角形B. 平行四边形C. 矩形D. 等边三角形3. 在下列四个选项中,哪个选项表示的物理量是恒定的?A. 力B. 速度C. 加速度D. 动能4. 下列哪个公式表示的是功?A. W = FsB. W = FvC. W = Fv^2D. W = Fs^25. 下列哪个数学概念表示的是数轴上的点与原点的距离?A. 绝对值B. 相对值C. 平方D. 立方6. 下列哪个选项是实数?A. 无理数B. 无穷大C. 无穷小D. 虚数7. 下列哪个方程表示的是一次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = x^3 - 2x^2 + 3x - 1D. y = 2x^2 + 3x - 48. 下列哪个数学公式表示的是勾股定理?A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + b^2 + c^2 = 0D. a^2 - b^2 + c^2 = 09. 下列哪个物理现象属于光的折射?A. 镜子反射B. 彩虹C. 水中的鱼看起来比实际位置浅D. 透过玻璃看物体变大了10. 下列哪个数学概念表示的是圆的半径?A. 半径B. 直径C. 圆心D. 圆周率二、填空题(每题5分,共50分)11. 一个物体从静止开始做匀加速直线运动,加速度为2m/s^2,3秒后的速度为______m/s。

12. 在直角坐标系中,点P的坐标为(3,-4),则点P关于x轴的对称点坐标为______。

13. 一个三角形的两边长分别为3cm和4cm,那么第三边的长度可能是______cm。

14. 一个等边三角形的边长为6cm,那么它的周长为______cm。

15. 一个物体的质量为2kg,重力加速度为9.8m/s^2,那么它所受的重力为______N。

初中数学物理期末试卷题

初中数学物理期末试卷题

一、选择题(每题4分,共40分)1. 下列哪个选项不是初中数学的基本概念?A. 平行四边形B. 分数C. 圆锥D. 长方体2. 物理中,下列哪个单位是表示速度的?A. 米/秒B. 牛顿C. 焦耳D. 度3. 一个长方体的长、宽、高分别是5cm、4cm、3cm,它的体积是多少?A. 60cm³B. 50cm³C. 45cm³D. 40cm³4. 在直角三角形中,若一个锐角的正弦值为0.5,则这个锐角的度数是:A. 30°B. 45°C. 60°D. 90°5. 下列哪个物理现象属于光的折射?A. 镜子中的成像B. 彩虹的形成C. 水中的倒影D. 电视机的遥控器6. 下列哪个物理量在物理学中被称为“能量”?A. 力B. 速度C. 质量D. 功7. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,2秒后它的速度是多少?A. 2m/sB. 4m/sC. 6m/sD. 8m/s8. 下列哪个选项是表示角度的单位?A. 米B. 千克C. 度D. 秒9. 在下列图形中,哪个图形是轴对称图形?A. 正方形B. 长方形C. 等腰三角形D. 等边三角形10. 下列哪个物理量在物理学中被称为“压力”?A. 力B. 力矩C. 压强D. 体积二、填空题(每题4分,共20分)11. 若一个长方体的长、宽、高分别为a、b、c,则它的体积为______。

12. 在直角三角形中,若一个锐角的余弦值为0.8,则这个锐角的度数是______。

13. 下列哪个物理量的单位是N·m?A. 力B. 速度C. 质量D. 功14. 一个物体做匀速直线运动,速度为10m/s,运动时间为5秒,则它通过的路程是______。

15. 下列哪个物理现象属于光的反射?A. 彩虹的形成B. 水中的倒影C. 镜子中的成像D. 电视机的遥控器三、解答题(每题20分,共40分)16. 解答下列方程:(1) 3x + 2 = 11(2) 5 - 2x = 317. 已知一个长方体的长、宽、高分别为6cm、4cm、3cm,求它的表面积和体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新数学物理方程期末试卷出卷人:欧峥1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ϕ初始速度为().x ψ试写出相应的定解问题.(10分)2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是()2x l x -,试写出其定解问题.(10分)3、试用分离变量法求定解问题(10分):.⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===x t x x ut u u u u t x x 2,0,00,40,040224、分离变量法求定解问题(10分)222sin cos ,(0,0)(0,)3,(,)64(,0)31,(,0)sin tt xxtu a u x x x l t l l u t u l t x u x u x x l l πππ⎧=+<<>⎪⎪⎪==⎨⎪⎛⎫⎪=+= ⎪⎪⎝⎭⎩5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x ux u x u a t u at x at x ψϕ ())0()0(ψϕ=6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u7、用积分变换法求解定解问题(10分):⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u8、用积分变换法求解定解问题(10分):⎩⎨⎧==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt9、用格林函数法求解定解问题(10分):222200, y 0, () , .y u ux y u f x x =⎧∂∂+=<⎪∂∂⎨⎪=-∞<<+∞⎩10、写出格林函数公式(三维)及满足的条件,并解释其物理意义.(10分)考试内容分析①用数理方程研究物理问题的一般步骤;数理方程的建立(导出),包括三类典型方程的建立(导出)推导过程.这里的1,2两道题就是考察学生在实际物理背景下能否写出定解问题.这些定解问题并不复杂,主要就是让学生了解一下.②3,4两道题主要考察分离变量法的精神、解题步骤和适用范围.第3题是最基本的分离变量法的运用,分离变量法的主要思想:1、将方程中含有各个变量的项分离开来,从而原方程拆分成多个更简单的只含1个自变量的常微分方程;2、运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程;3、利用高数知识、级数求解知识、以及其他巧妙方法,求出各个方程的通解;4、最后将这些通解“组装”起来.第4题是非齐次方程,主要考察学生对非齐次方程的处理能力.③5,6两道题是考察行波法.第5题就是书本中一维波动方程的D'Alembert公式的推导,是最最基础的东西,在这里考察学生平时的基础,题目不难但是能很好的考察学生对行波法的理解.第6题考察了D'Alembert公式的应用,同时又因为方程式非齐次的,也考察了方程的齐次化.④第7,8两道题是对积分变换法的考察.第7题是对拉普拉斯变换的考察拉普拉斯变换的基本概念以及常见函数的拉普拉斯正变换;利用拉普拉斯变换的基本定理,拉普拉斯变换表以及部分分式展开法对常见函数进行拉普拉斯反变换.第8题主要考察傅里叶变换的基本定理及其性质.⑤9,10两道题是考察格林函数法.第9题有些难度,是一道二维拉普拉斯的狄利克雷问题,主要考察对第二格林公式的理解及其应用.第10题看似比较简单,但是也是大家比较容易忽略的问题,不一定能将其完整的解答.这里还要求你写出其物理意义,意图当然不言而喻了,就是想体现数学物理方程这门课的意义,将数学与物理结合起来,了解古典方程的类型,明白其物理意义和现象.答案及分析1、解: 这是弦的自由振动,其位移函数(,)u x t 满足2,tt xx u a u = (2分)其中2Ta ρ=.由于左端开始时自由,以后受到强度为sin A t ω的力的作用,所以(0,0)0,(0,)sin 0,0,x x u Tu t A t t ω=+=>因此sin (0,),0.x A tu t t T ω=-≥ (2分)又右端系在弹性系数为k 的弹性支承上面,所以(,)(,)0,x Tu l t ku l t --= 即(,)(,)0.x Tu l t ku l t += (2分)而初始条件为(),().t tt ux u x ϕψ==== (2分)因此,相应的定解问题为200,0,0,sin (0,),(,)(,)0,0.(),().tt xx xx t t t u a u x l t A t u t Tu l t ku l t t T u x u x ωϕψ==⎧=<<>⎪⎪=-+=≥⎨⎪==⎪⎩ (2分)2、解:侧面绝热,方程为 2,0,0t xx u a u x l t =<<> (3分)边界条件为 00,,0x xx lquu t k ====>(3分)初始条件为(),02t x l x ux l =-=<<(3分)因此,相应的定解问题为:(1分)3、解 令)()(),(t T x X t x u =(2分),代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ(2分),由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin)(πn B x X n n =(1分),再解)(t T ,得到16;22)(tn n n e C t T π-=(2分),于是,4sin(),(16122xn eC t x u t n n n ππ-∞=∑=(1分)再由初始条件得到140)1(164sin 242+-==⎰n n n xdx n x C ππ(1分),所以原定解问题的解为,4sin)1(16),(161122xn e n t x u tn n n πππ-+∞=-=∑(1分)4、解:令(,)(,)()u x t V x t W x =+(1分)将其代入定解问题可以得到:2,(0,0)(0,)0,(,)0.....(1)4(,0)31(),(,0)sin tt xx t V a V x l t V t V l t x V x W x V x x l l π⎧⎪=<<>⎪⎪==⎨⎪⎛⎫⎪=+-= ⎪⎪⎝⎭⎩ (1分)222()sin cos 0(2)(0)3,()6a W x x x l l W W l ππ⎧''+=⎪⎨⎪==⎩L (1分)(2)的解为:2224()sin 3132l x W x x al l ππ⎛⎫=++ ⎪⎝⎭ (2分)对于(1),由分离变量法可得一般解为1(,)cos sin sin n n n n at n at n x V x t a b l l l πππ+∞=⎛⎫=+ ⎪⎝⎭∑ (2分) 由初始条件可求得:222444(,)cos sin sin 324l a l at xV x t t a l a l l πππππ⎛⎫=-+ ⎪⎝⎭ (2分) 所以,原定解问题的解为:2222224444(,)cos sin sin sin 3132432l a l at x l x u x t t x a l a l l a l l πππππππ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭(1分)5、解:u(x ,t)=F(x-at)+G(x+at) (2分)令 x-at=0 得 )(x ϕ=F (0)+G (2x )(2分)令 x+at=0 得 )(x ψ=F (2x )+G(0)(2分)所以 F(x)=)2(x ψ-G(0). G (x )=)2(xϕ-F(0).(2分)且 F (0)+G(0)=).0()0(ψϕ=(1分)所以 u(x ,t)=(ϕ)2at x ++)2(atx -ψ-).0(ϕ(1分)即为古尔沙问题的解.6、解令)(),(),(x w t x v t x u +=(1分),代入原方程中,将方程齐次化,因此x a x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2''2''22222=⇒=+⇒++∂∂=∂∂(2分),再求定解问题⎪⎪⎩⎪⎪⎨⎧=∂∂-=>∂∂=∂∂==,0),(cos 12sin 0,02022222t t tv x xw a x t xv a t v v (2分)由达朗贝尔公式得到以上问题的解为atx a at x at x aat x at a a at x t x v cos cos 1cos sin 0)]cos(1)(2sin )cos(1)(2[sin 21),(222-=+---++-+=(4分)故.cos 1cos cos 1cos sin ),(22x a at x a at x t x u +-=(1分)7、解 对y 取拉普拉斯变换),()],([p x U y x u L =(1分),对方程和边界条件同时对y 取拉普拉斯变换得到p p U pdx dU px 11,120+===(3分),解这个微分方程得到p p x p p x U 111),(22++=(3分),再取拉普拉斯逆变换有1),(++=y yx y x u (2分)所以原问题的解为1),(++=y yx y x u .(1分) 8、解:对于初值问题关于x 作Fourier 变换,得:⎪⎩⎪⎨⎧==>∈+0)0,(ˆ),(sin )0,(ˆ0,),,(ˆd ),(ˆd 2222ωωωωωt ux F u t R x t u a t t u(2分)该方程变为带参数ω的常微分方程的初值问题.解得t ja t ja e C e C t uωωω-+=21),(ˆ(2分)于是0)()0,(ˆ,)(sin )0,(ˆ2121=-=+==C C ja u C C x F ut ωωω(2分)则由)(sin 2121x F C C ==,得:))((sin 21),(ˆt ja t ja e e x F t uωωω-+=.(2分)作像函数),(ˆt uω的Fourier 逆变换[]atx at x at x e e x F F t uF t x u t ja t ja cos sin )]sin()[sin(21))((sin 21)],(ˆ[),(11=++-=+===---ωωω(2分)9、解:设),(000y x M 为下半平面中任意一点.已知二维调和函数的积分表达式为dS nur r n M u M u MM MM )1ln )1(ln )((21)(000∂∂-∂∂-=⎰Γπ (1分)设v 为调和函数,则由第二格林公式知0)()(22=∂∂-∂∂=∇-∇⎰⎰⎰ΓΩdS nuv n v u d u v v u σ(2)(1)+(2)可得dS n u v r dS r n n v M u M u MM MM ])1ln 21(])1(ln 21)(([)(000⎰⎰ΓΓ∂∂-+∂∂-∂∂=ππ (2分)若能求得v 满足⎪⎪⎩⎪⎪⎨⎧=<=∇==00201ln 210,0y MM y rv y v π (3)则定义格林函数v r M M G MM -=1ln 21),(0π,则有dS nG M u M u ⎰Γ∂∂-=)()(0(2分)由电象法可知,),(001y x M -为),(000y x M 的象点,故可取11ln 21MM r v π=(1分)显然其满足(3).从而可得格林函数))()()()()()((21)1ln 1(ln 211ln211ln 21),(202002020001010y y x x y y y y x x y y r r y y G n G r r M M G MM MM MM MM ++-+-+-+---=-∂∂=∂∂=∂∂-=ππππ (3分) 故而ξξξπd f y x y dS n G M u M u ⎰⎰+∞∞-Γ+--=∂∂-=)()(1)()(202000 (1分)10、解:(1)格林函数公式(三维)为:G (M ,M 0)=14MM r π— g (M ,M 0) M ∈Ω(2分)其中函数g 满足的条件为:001|4MM g M g rπΓΓ∆=∈Ω⎧⎪⎨=⎪⎩ 式中Γ为区域Ω的边界曲面(3分)(2)格林函数的物理意义:在某个闭合导电曲面Γ内M 0点处放一个单位正电荷,则有它在该导电曲面内一点M 处产生的电势为14MM r π(不考虑电介常数),将此闭合导电曲面接地,又静电平衡理论,则M 0将在该导电曲面上产生负感应电荷,其在M 处的电势— g (M ,M 0),并且导电面上的电势恒等于0,即有|g Γ=14MM r πΓ(5分)。

相关文档
最新文档