数学物理方程期末试卷
数学物理方程与特殊函数试题及答案

数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。
下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。
1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。
2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。
二维拉普拉斯方程可用差分方0 近似代替。
5. 勒让德多项式的正交性???。
二.用别离变量法求?的解。
(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。
(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。
(12分) 解;先确定所给方程的特征线。
为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。
方程(1)的通解为由(2。
《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)习题一1.判断方程的类型,并将其化成标准形式:0212222=∂∂+∂∂+∂∂y uyu y x u . 解:⎪⎩⎪⎨⎧==><<>-=-≡∆.0,0. ,00,.0,02211212时,抛物型当椭圆型时当时,双曲型当y y y y a a a①当0<y 时,所给方程为双曲型,其特征方程为,0)()(22=+dx y dy 即 ,0])([)(22=--dx y dy就是 0))((=---+dx y dy dx y dy .积分之,得 c y x =-±2,此即两族相异的实特征线.作可逆自变量代换⎪⎩⎪⎨⎧--=-+=,2,2y x y x ηξ则.1 ,1 ,1 ,1yy yy x x -=∂∂--=∂∂=∂∂=∂∂ηξηξ,2 ,2222222ηηξξηξηηξξ∂∂+∂∂∂+∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u u x u u u y u x u x u ),(1ηξ∂∂+∂∂--=∂∂u u yyu ).1)(2()(121 ]1)1( 1)1([1)()(12122222222222322y u u u u u y y yu yu yuy u y u u y y u -∂∂+∂∂∂-∂∂+∂∂+∂∂---=-∂∂+--∂∂∂++-∂∂∂---∂∂--+∂∂+∂∂--=∂∂ηηξξηξηξηηξξηξ将这些偏导数代入原方程,得附注:若令⎩⎨⎧=-⇒-==0 ,2,ηηξξηξu u y x 碰巧(双曲型的另一标准形),这是巧合.②当0>y 时,所给方程为椭圆型,其特征方程为0)()(22=+dx y dy即 .0))((=-+dx y i dy dx y i dy 其特征线为 )2 ( 2c ix y c y i x =±=±或.作可逆自变量代换 ⎩⎨⎧==,2,y x ηξ则, 1 , 0 , 0 ,1y y y x x =∂∂=∂∂=∂∂=∂∂ηξηξ, 1 , ηξ∂∂=∂∂∂∂=∂∂u y y u u x u . 1121 , 22222222ηηξ∂∂+∂∂-=∂∂∂∂=∂∂u y u y y yu u x u 将这些偏导数代入原方程,得, 021212222=∂∂+∂∂+∂∂-∂∂ηηηξuy u u y u , 0 2222=∂∂+∂∂∴ηξu u 此即(0>y 时)所求之标准形. ③0=y 时,原方程变为 , 02122=∂∂+∂∂y uxu 已是标准形了(不必再化).2.化标准形:. 0222222222222=∂∂∂+∂∂∂+∂∂∂+∂∂∂+∂∂+∂∂t z ut x u z x u y x u zu x u解: u Lu )2222(434131212321δδδδδδδδδδ+++++≡.这是 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t z y x4321δδδδδ 的二次型,于是 , u A Lu Tδδ=其中 010*********1111⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 为实对称矩阵.则∃可逆矩阵M ,使 TMAM B = 为对角形. 令 , 'δδT M = 其中 , '4'3'2'1'''''⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=δδδδδt z y x 则 u B u MAM Lu T T T '''')()(δδδδ==.M 的找法很多,可配方,可从矩阵入手等.取 ,11000110001100011-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---=N M , 1000110011101111)(1⎪⎪⎪⎪⎪⎭⎫⎝⎛==-TT M N . , 1''''''⎪⎪⎪⎪⎪⎭⎫⎝⎛===⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-t zy x M MX X N t z y x X N T δδ则.)( )( 2222'2'2'2'2'''tu z uy u x u u B uMAM u A Lu TT T T ∂∂-∂∂+∂∂-∂∂====δδδδδδ这是超双曲型方程的标准形式.习题二1.决定任意函数法:(1).求解第一问题(0))(0) ( ).(),( , 002ψϕψϕ=⎪⎩⎪⎨⎧======-x ux u u a u at x at x xx tt .解:所给方程为双曲型,其特征线为 c at x =±. 令⎩⎨⎧-=+=,,at x at x ηξ 则可将方程化为 0=ξηu .其一般解为)()(),(21at x f at x f t x u -++= (其中21,f f 为二次连续可微函数). 由定解条件有)0()0()0()0( ).()2()0(),()0()2(212121ψϕψϕ==+⇒⎩⎨⎧=+=+f f x x f f x f x f . 则 ⎪⎩⎪⎨⎧-=-=⇒⎩⎨⎧-=-=).0()2()(),0()2()( ),0()()2(),0()()2(12211221f Y Y f f X X f f x x f f x x f ψϕψϕ 故 )()(),(21at x f at x f t x u -++=).0()2()2()]0()0([)2()2(21ϕψϕψϕ--++=+--++=at x at x f f atx at x (2).求解第二问题 ))0()0( ( ).(),( ,101002ϕϕϕϕ=⎪⎩⎪⎨⎧=====x u x u u a u t at x xx tt解:泛定方程的一般解为)()(),(21at x f at x f t x u -++=由定解条件有 (0))(0)(0)( ).()()(),()0()2(021121021ϕϕϕ=+⎩⎨⎧=+=+f f x x f x f x f x f 则 ),0()2()(201f xx f -=ϕ).0()2()()()()(201112f x x x f x x f +-=-=ϕϕϕ故 )()(),(21at x f at x f t x u -++= ).()2()2(100at x atx at x -+--+=ϕϕϕ (3).证明方程22222)1(])1[(tu h x a x u h x x ∂∂-=∂∂-∂∂ 的解可以写成)]()([1),(21at x f at x f xh t x u -++-=. 由此求该方程满足Cauchy 条件 ⎩⎨⎧====)(),(00x u x u t t t ψϕ 的解.解:令 ),,()(),(t x u x h t x v -= 则 ),(t x v 满足方程 xx tt v a v 2=.)()(),( 21at x f at x f t x v -++=∴.故 )]()([1),(21at x f at x f xh t x u -++-=. 因),(t x v 满足 ⎪⎩⎪⎨⎧≡-=≡-====),()()(),()()( ,10002x x x h vx x x h v v a v t t t xx tt ψϕϕϕ由D'Alembert 公式,得⎰+-+-++=atx atx d a at x at x t x v ααψϕϕ)(21)]()([21),( )]())(()())([(2100at x at x h at x at x h ---+++-=ϕϕ+ααϕαd h a atx at x ⎰+--)()(211 故 ),(1),(t x v xh t x u -=[]⎭⎬⎫⎩⎨⎧-+---+++--=⎰+-atx atx d h a at x at x h at x at x h x h ααϕαϕϕ)()(21)())(()())((211100 即为所求之解.2.Poisson 公式及应用:(1).若),,,(t z y x u u =是初值问题 ⎪⎩⎪⎨⎧+=+=>++===)()( , )()(),0( )(002z y uy g x f u t u u u a u t t t zz yy xx tt ψϕ的解,试求解的表达式.解:IIIIIIu u u u ++=(线性叠加原理),其中IIIIII,,u u u 分别满足如下的初值问题:.0 ),(),0( )(:002I ⎪⎩⎪⎨⎧==>++===t t t zz yy xx tt ux f u t u u u a u u).( ),(),0( )(:002II ⎪⎩⎪⎨⎧==>++===y uy g u t u u u a u u t t t zz yy xx tt ϕ).( ,0),0( )(:002III ⎪⎩⎪⎨⎧==>++===z uu t u u u a u u t t t zz yy xx tt ψ由Poisson 公式,可得⎰⎰∂∂=MatS dS f t a t u ])( 41[2I ξπ)].()([21])(21[at x f at x f d f a t atx atx -++=∂∂=⎰+-ξξ.)(21)( 41.)(21)]()([21 ])( 41[)( 412III22II ⎰⎰⎰⎰⎰⎰⎰⎰+-+-==+-++=∂∂+=Mat M atMat S atz at z aty aty S S d a d t a ud aat y g at y g dS g t a t dS t a u ζζψζζψπηηϕηπηϕπ故IIIII I ),,,(u u u t z y x u ++=.)(21)(2a1)]()([21)]()([21 ⎰⎰+-+-++-+++-++=atz at z aty aty d a d at y g at y g at x f at x f ζζψηηϕ(2).求解初值问题 ⎪⎩⎪⎨⎧+==>-+++=== . ,00),(t )(2)(2002yz x u u z y u u u a u t t t zz yy xx tt解: IIIu u u +=,其中I u : ⎪⎩⎪⎨⎧+==>++=== . ,00),(t )(2002yz x u u u u u a u t t t zz yy xx ttII u : ⎪⎩⎪⎨⎧==>-+++===.0 ,00),(t )(2)(002t t t zz yy xx tt uu z y u u u a u由poisson 公式,得32222I 31)()( 41t a t yz x dS t a u Mat S ++=+=⎰⎰ηζξπ. 由Duhamel 原理,得.)( ])(2)( 41[);,,,(2020II)(t z y d dS t a d t z y x w u M t a S tt-=--==⎰⎰⎰⎰-τζητπτττ故 2322)(31)(),,,(t z y t a t yz x t z y x u -+++= 即为所求. 3.降维法:⎪⎩⎪⎨⎧==>++===.0 ,00),(t ),,()(002t t t yy xx tt uu t y x f u u a u 解:把所给初值问题的解),,(t y x u 看作),,,(t z y x 空间中的函数,即与y x ,平面垂直的直线上的函数值都相等:),,(),,,(*t y x u t z y x u =,则 ),,,(*t z y x u 应形式的满足⎪⎩⎪⎨⎧==>+++=== .0 ,00),(t ),,()(0*0****2*t t t zz yy xx tt u u t y x f u u u a u 由推迟势可得dV ra rt f a t z y x u atr ⎰⎰⎰≤-=),,( 41),,,(2*ηξπττηξτπτττηξπττd dS f t a d dS t f a tS tS M t a M t a ]),,([141]),,([ 410202)()(⎰⎰⎰⎰⎰⎰---=-=τηξτηξττηξτπτd y x t a d d t a f t a ty x M t a ])()()( )(),,(2[141222202),()9------∑-=⎰⎰⎰-τηξτηξτηξπτd y x t a d d f a tx M t a ])()()( ),,([ 212222),()(⎰⎰⎰∑-----=-.此即所求初值问题解的积分表达式.习题三1.求解特征值问题 ⎩⎨⎧=+=<<=+ . 0)()( ,0)0(),(0 0)()("''l X l X X l x x X x X λ 解:该特征值问题要有解0≥⇔λ.0>λ时,记2ωλ=,则 x B x A x X ωωsin cos )(+=.x B x A x X ωωωωcos sin )('+-=. 1(*) 由 0)0('=X ,有 0=B .从而 x A x X A ωcos )(,0=≠. 由 0sin cos ,0)()('=-=+l A l A l X l X ωωω有. ωω=l cot . 此即确定 ω(从而确定λ)的超越方程.由图解法,曲线 ωω==y l y cot 和 有无穷个交点,其横坐标<<<<<n ωωω210,从而 ),2,1( 2==n nn ωλ 便是非0特征值,相应的特征函数为2(*) ,2,1 , cos )( ==n x A x X n n n ω.)( , )( 0'A x XB Ax x X =+==时,λ由0)0('=X ,有0=A .由0)()('=+l X l X , 有 0=B .此时只有平凡解 0)(≡x X . 综上,所求特征值问题的解),2,1( , cos )( ==n x A x X n n n ω.其中n ω为超越方程 ωω=l cot 的正根.附注:下证特征函数系{}∞=1cos n n x ω是],0[l 上的正交系:事实上,设x x X n n ωcos )(=和x x X m m ωcos )(=分别是相应于不同特征值2n n ωλ=和2m m ωλ=的特征函数,即)(x X n 和)(x X m 分别满足).()(,0)0(,0)()(:)(''"⎩⎨⎧+==+l X l X X x X x X x X n n nn n n n λ (1) ⎩⎨⎧=+==+.0)()(,0)0(,0)()(:)(''"l X l X X x X x X x X m m m m m m m λ (2) 则[]0 )()2()()1(0=⋅-⋅⎰dx x X x Xln m,即 []⎰-+-=lm n m n n m m n dx x X x X x X x X x X x X"" )()()())()()()((0λλdx x X x X lm n m n ⎰-=0)()()(λλ若,m n λλ≠则 ),2,1,( 0)()(0==⎰m n dx x X x X lm n .即在],0[l 上,不同特征值所对应的特征函数彼此正交. 2.用分离变量法求波动方程混合问题⎪⎩⎪⎨⎧≤≤==>==><<+=== ),0( , ),0( ),( ,),0(),0 ,0( 20022l x x ux u t t t l u t t u t l x g u a u t t t x xx tt的形式解,其中g 为常数.解:(1).边界条件齐次化:令 ),,(),(),(t x Q t x v t x u +=使⎪⎩⎪⎨⎧====,,20t Q t Q l x x x (这不是定解问题),则取 2)(),(t t l x t x Q +-=即可. 这时),(t x v 满足 ⎪⎩⎪⎨⎧≤≤--==>==><<-+===).0( )( , 0),( 0),( ,0),0(),0 ,0( 2200t 2l x l x x vx v t t l v t v t l x g v a v t t x xx tt(2).“拆”——由线性叠加原理:IIIv v v +=,其中⎪⎩⎪⎨⎧+-====><<=== ., ,0),(),0(),0,0( :2002I l x x vx v t l v t v t l x v a v v t t t x xx tt ⎪⎩⎪⎨⎧====><<-+=== .0,0 ,0),(),0(),0,0( 2:002IIt t t x xx tt vv t l v t v t l x g v a v v (3).用分离变量法求得l x n l at n b l at n a t x v n n n 2 )12(cos 2 )12(sin 2 )12(cos ),(1Iπππ-⎥⎦⎤⎢⎣⎡-+-=∑∞=. 其中⎰⎰--=ll n d ln d ln a 022)12(cos2)12(cos 1ξπξξξπξ,ξπξξξξπξπd ln l d l n l a n b lln 2)12(cos )(2)12(cos 2 )12(122-+---=⎰⎰..,2,1 =n (n n b a ,都可算出来).(4).由Duhamel 原理: ττd t x w t x v t⎰=0II),,(),(,其中),,(τt x w 满足 ⎪⎩⎪⎨⎧-====><<=== . 2 , 0 ,0),( ,0),0( ),,(0 2g ww t l w t w t l x w a w t t t x xx tt τττ用分离变量法求得∑∞=---=12 )12(cos 2)( )12(sin),,(n n l xn l t a n c t x w πτπτ.其中 ξπξξπξπd ln g d l n l a n c lln 2)12(cos)2(2)12(cos 2 )12(12----=⎰⎰. ,3,2,1 =n (n c 可算出).综上: ),(),(),(),(),(),(III t x Q t x v t x v t x Q t x v t x u ++=+=.习题四1.用分离变量法求热方程混合问题⎪⎩⎪⎨⎧===><<-== )( ,0),(),0(),0,0( 022x u t l u t u t l x u b u a u t xx t ϕ 的形式解.解:这是齐次方程、齐次边界条件情形,直接分离变量: 令 )()(),(t T x X t x u =,代入泛定方程,得),( )(22'"λ-=+=a bTa T X X 从而 0)()()( , 0)()(2'"=++=+t T b a t T x X x X λλ. 由边界条件,得 ,0)()0(==l X X 于是,特征值问题为⎩⎨⎧==<<=+0.)((0))(0 , 0)()("l X X l x x X x X λ 特征值 2)(l n n πλ=, 特征函数为 x ln x X n πsin )(=,),2,1( =n . 而 )1,2,(n )(])[(22 ==+-t b lan n n eA t T π.取 11])[((*) . sin),(22x ln eA t x u n t b lan n ππ∑∞=+-=利用 ]0[ sinl x ln ,在⎭⎬⎫⎩⎨⎧π上的正交性,可定出 ⎰==ln n d ln l A 0),2,1( sin)(2 ξπξξϕ. 2(*) 1(*),2(*)给出所求混合问题的形式解.附注:若令 ),( ),,(),(2t x v t x v e t x u t b 则-=满足⎪⎩⎪⎨⎧===><<==== ).( ,0),0,0( 002x v v v t l x v a v t l x x xx t ϕ用分离变量法求得lxn eA t x v t lan n n sin),(2)(1ππ-∞=∑=. 而n A 同2(*),这恰与上面结果一致.习题五用Fourier 变换法求初值问题⎩⎨⎧=>++== .0),0( ),(202t xx t u t t x f tu u a u 的形式解.解:方程和初始条件两端关于x 做Fourier 变换(视t 为参数),并记),(~)],([ , ),(~)],([t f t x f F t u t x u F ξξ==.则原问题化为常微分方程的初值问题:⎪⎩⎪⎨⎧=>++-=)( .0)0,(~),0( ),(~~ 2~~22为参数ξξξξu t t f u t u a dtu d 其解为 ττξξτξτξd e f e e e t u a tt a t 2222220),(~),(~⋅⋅⋅=⎰--. 故 )],(~[),(1t uF t x u ξ-= ττξττξττξτξττξτξτξd e f F ee d ef e F e d e f e e e F ta t t a tt t t a t a t t ⎰⎰⎰-----------⋅⋅⋅=⋅⋅⋅=⎥⎦⎤⎢⎣⎡⋅⋅⋅=01)(0101]),(~[]),(~[),(~)(22222222222222ττπτττd et a F x f F F e e tt a x t]])(21[)],([[0)(412222⎰-----⋅⋅=ττπτττd et a x f F F e e tt a x t]])(21*),([[0)(412222⎰-----⋅=τξττξπτξτd d et f e a ett a x t ]1),([20)(4)(2222⎰⎰---∞∞---=即为所求.习题六1.求边值问题⎪⎪⎩⎪⎪⎨⎧≤≤=≤≤==<≤≤<≤=++=== )(0 )( ),0( 0),20 ,0( 01102αθθρπαθρρρραθθθθρρρf u l u u l u u u l 的形式解.解:用分离变量法:令 )()(θρΘ=R u ,代入泛定方程可得)( "'"2λρρ=ΘΘ-=+RR R ,因而 0)()("=Θ+Θθλθ,0)()()('"2=-+ρλρρρρR R R (Euler 方程).由边界条件 00====αθθu u,得 0)()0(=Θ=Θα.于是特征值问题为,0)()0(),0( 0)()("⎩⎨⎧=Θ=Θ<<=Θ+Θααθθλθ 特征值 2)(απλn n =,特征函数为 )1,2,( sin)( ==Θn n n θαπθ.而 Euler 方程 0'"2=-+R R R λρρ 的解 απαπρρρn n D C R -+=)(.为保证有界性应取 0=D ,从而 ),2,1( )( ==n C R n n n απρρ.取 ∑∑∞=∞==Θ=11sin)()(),(n n n n n n n C R u απθρθρθραπ. 1(*)由边界条件 )(θρf ul ==,应有 ∑∞==1sin )(n n n n lC f απθθαπ.由 ⎭⎬⎫⎩⎨⎧απθn sin在 ],0[α上的正交性,可得),2,1( sin)( 2==⎰n d n f l C n n ϕαπϕϕαααπ. 2(*)1(*) ,2(*)给出所求问题的形式解.2.用Green 函数法求解上半平面Dirichlet 问题⎪⎩⎪⎨⎧∞→+=>=+=. ),( ),0( 0220有界时,u y x x f u y u u y yy xx 解:根据二维Poisson 方程Dirichlet 问题⎩⎨⎧=∈-=+∂ ),(D.),( ),,(2y x f u y x y x u u Dyy xx πρ 解的积分表达式P PDDdl n M P G P f dxdy M M G M y x u M u ∂∂-==⎰⎰⎰∂),()(21),()(),()(00000πρ(其中0M 是D 内任一点,P n是边界D ∂上点P 的外法线方向). 其中 满足而 ),( ),,(1ln),(0000M M g M M g r M M G MM -=⎪⎩⎪⎨⎧∂∈=∈=∆).( 1ln ),g(),( 0),(000D P r M P D M M M g PM M),(0M M G 称为Green 函数,找),(0M M G 的问题归结为“特定装置下”找感应电荷所产生的电势),(0M M g -.对上半平面0>y 而言,若在0M 处放置单位正电荷,它在M 处产生的电势为01lnMM r ,则感应电荷应放在0M 关于0=y 的对称点'0M 处,电量为 -1,它于M 处产生的电势为'1lnMM r -,从而Green 函数为'1ln1ln),(0MM MM r r M M G -=20202020)()(ln )()(ln y y x x y y x x ++-+-+--=.故所求解为⎰⎰⎰⎰∞∞-=∞∞-=∞∞-=∞∞-+-=∂∂=-∂∂-=∂∂-=.)()()(21 )()(21)(21),(22000000dx yx x x f y dx yG x f dxy G x f dx n G x f y x u y y y ππππ。
西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。
数学物理方程期末试卷

数学物理方程期末试卷第一部分:选择题请在每个题目中选择仅一个正确答案并将字母填入括号内。
1.求解y″+y=0有解的方法是?A. 特征根法 ( )B. 系数法 ( )C. 齐次线性微分方程法 ( )D. 变量分离法 ( )2.求解 $\\frac{\\partial^2u}{\\partialx^2}+\\frac{\\partial^2u}{\\partial y^2}=0$ 有解的条件是?A. u在区域内为调和函数 ( )B. u在区域内为多项式函数 ( )C. 区域的边界条件为第一类边界条件 ( )D. 区域的边界条件为第二类边界条件 ( )3.解 $\\frac{\\partial u}{\\partial t}+2u=0$,u(x,0)=x,在t=1时,u(x,1)=?A. $\\frac{x}{2}$B. xe−2C. $\\frac{x}{e^2}$D. xe2 ( )4.对于一般的偏微分方程,逐步消去导数的方法称为?A. 特征线法 ( )B. 微分方程求解法 ( )C. 变量分离法 ( )D. 特征值法 ( )5.$y=A\\cos(x)-B\\sin(x)$ 是如下微分方程的?A. $y''+y=\\sin(x)$B. $y''-y=\\cos(x)$ ( )C. $y''+y=\\cos(x)$D. $y''-y=\\sin(x)$第二部分:填空题请在每个题目中填入恰当的答案。
1.y″−2y′+2y=0的通解为______。
2.$\\frac{\\partial^2 u}{\\partial t^2}-c^2\\frac{\\partial^2u}{\\partial x^2}=0$ 的波动方程,初始时刻条件为$u(x,0)=\\varphi(x)$,$u_t(x,0)=\\psi(x)$,其解为$u(x,t)=\\frac{1}{2}(f_1(x-ct)+f_2(x+ct))$,其中f1(x),f2(x)分别是u(x,0)和u t(x,0)的__________。
数学物理方程试卷及答案

数学物理⽅程试卷及答案参考解答:⼀、填空题1. A 定解 B 初值(或Cauchy 问题) C 存在性、唯⼀性和稳定性2. D 双曲3. E (1)(2)(4)4. F [x-3t,x+t] ,G 决定区域5. H 222(21)(1,2,)4n n L πλ-==L I(21)cos (1,2,)2n x X n Lπ-==L ⼆、解:⽆界区域上波动⽅程200,,0|(),|()tt tt t t t u a u x t u x u x ?ψ==?=-∞<<+∞>??==?? 的达朗贝尔公式为:22()()1(,)()22x atx at x at x at u x t d aψξξ+--++=+对于本题所给半⽆界区域上的⾃由端点定解问题,只需对初始条件作偶延拓,即令:2(),()||x x x x ?ψ==即可,2a = ,代⼊达朗贝尔公式得22222222(2)(2)1()||2224,25(4),24x tx tx t x t u x d x xt t x tx t x t ξξ+--++=+??++≥?=?+⼆、解:设(,)()()u x t X x T t =,则()''()4''()()X x T t X x T t =,分离变量成为''()''()4()()T t X x T t X x λ==-,则''()()0,'(0)'(1)0''()4()0X x X x X X T t T t λλ+===??+=?,解前⼀⽅程,得固有值22(0,1,2,)n n n λπ==L 和固有函数()cos X x n x π=,代⼊⽅程''()4()0T t T t λ+=中可得()cos 2sin 2T t A n t B n t ππ=+,1,2,3,)n =L (由叠加原理,原⽅程有解1(,)(cos 2sin 2)cos nnn u x t A n t Bn t n x πππ∞==+∑。
数学物理方法期末试题(5年试题含答案)

………密………封………线………以………内………答………题………无………效……附:拉普拉斯方程02=∇u 在柱坐标系和球坐标系下的表达式 柱坐标系:2222222110u u u uzρρρρϕ∂∂∂∂+++=∂∂∂∂球坐标系:2222222111sin 0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭一、填空题36分(每空2分)1、 数量场2322u x z y z =+在点(2, 0, -1)处沿2423x xy z =-+l i j k 方向的方向导数是。
2、 矢量场()xyz x y z ==+A r r i +j k 在点(1, 3, 3)处的散度为 。
3、 面单连域内设有矢量场A ,若其散度0∇⋅A =,则称此矢量场为 。
4、 高斯公式Sd ⋅=⎰⎰ A S ;斯托克斯公式ld ⋅=⎰ A l 。
5、 将泛定方程和 结合在一起,就构成了一个定解问题。
只有初始条件,没有边界条件的定解问题称为 ;只有边界条件,没有初始条件的定解问题称为 ;既有边界条件,又有初始条件的定解问题称为 。
………密………封………线………以………内………答………题………无………效……6、 ()l P x 是l 次勒让德多项式,则11()()l l P x P x +-''-= ; m n =时,11()()mn P x P x dx -=⎰。
7、 已知()n J x 和()n N x 分别为n 阶贝塞尔函数和n 阶诺依曼函数(其中n 为整数),那么可知(1)()n H x = 。
(2)()n H x = 。
8、 定解问题2222000(0,0)|0,||0,|0x x ay y bu ux a y b x y u u V u u ====⎧∂∂+=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩的本征函数为 ,本征值为 。
数理方程期末试题及答案

带入微分方程求解得:
k
a2
A 2
则得通解
T1
t
C1
cos
n l
a
t
D1
sin
n l
a
t
a2
A 2
sin t
带入初始条件得: C1
0,
D1
A a2 2
l a
则原定解问题的解为
u x,t
A a2 2
l sin a t cos
a l
l
x
2、 求解下列初值问题:(10 分)
uuttx,0u
xx
数; (3) 将形式解带入泛定方程以及初始条件,求解待定函数 Tn(t).
4、试述行波法的适用范围,并写出无限长弦自由振动的达朗贝尔公式。 答:行波法(特征线法)对双曲型方程是有效的,沿着双曲型方程两条特征线做
自变量替换总可以把双曲型方程化为可积形式,获得通解,由此行波法仅适用于
无界条件的波动方程。
3x x ,t sin x,ut x,0 x
0
解:应用达朗贝尔公式: u 1 (x at) (x at) 1
xat
( )d
其中
2
2a xat
,
x sin x, x x ,带入上式得:
u
1 2
sin
x
at
sin
x
at
1 2a
xat
d
xat
sin x cos at t
数学物理方程期末试题答案
一、 简述题:(每题 7 分,共 28 分) 1、 简述数学物理中的三类典型方程,并写出三类方程在一维情况下的具体形
式。
答:波动方程:
2u t 2
数学物理方程试题

考生注意:所有答题务必书写在考场提供的答题纸上,写在本试题单上的答题一律无效(本题单不参与阅卷)。
一、(本题20分)。
设细杆因外界原因而产生纵振动,以(,)u x t 表示其静止时x 点处在时刻t 离开原位置的偏移,并假设振动过程中所发生的张力服从虎克定律,即x 处单位面积受到的张力(,)(,)u x t p x t E x
∂=∂,其中E 为细杆的杨氏模量.令()x ρ为细杆的密度,试写出该振动所满足的偏微分方程.
二、(本题20分)。
判定方程
0623222222=∂∂+∂∂+∂∂-∂∂∂+∂∂y u x u y y x u x u
的类型并化简.
三、(本题10分)。
设有圆域r R <上的Laplace 方程的第二边值问题
0sin [0,2]4r R
u u n θθπ=∇=⎧⎪∂⎨=∈⎪∂⎩ 请讨论此方程是否有解(其中,(r ,θ)是该园域所在的二维空间的极坐标表示).
四、(本题10分)。
试用齐次化原理导出平面非齐次波动方程2()(,,)tt xx yy u a u u f x y t -+=在齐次初
始条件0000
t t t u u ==⎧=⎪⎨=⎪⎩下的求解公式.
五、(本题10分)。
求解热传导方程的初值问题
0(,0)sin t xx u u u x x -=⎧⎨=⎩
六、(本题20分)。
求解下列弦振动方程的定解问题
()200,0(,0)0,(,0)()(0,)(,)0tt xx t u a u x l t u x u x x l x u t u l t ⎧-=<<<⎪==-⎨⎪==⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012学年第二学期数学与物理方程期末试卷出卷人:欧峥、长度为 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为 的弹性支承上面;初始位移为(),x ϕ初始速度为().x ψ试写出相应的定解问题。
分、长为l 的均匀杆,侧面绝热,一端温度为 度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是()2x l x -,试写出其定解问题。
分、试用分离变量法求定解问题 分 :⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===x t x x ut u u u u t x x 2,0,00,40,04022、分离变量法求定解问题 分222sin cos ,(0,0)(0,)3,(,)64(,0)31,(,0)sin tt xxtu a u x x x l t l l u t u l t x u x u x x l l πππ⎧=+<<>⎪⎪⎪==⎨⎪⎛⎫⎪=+= ⎪⎪⎝⎭⎩、利用行波法,求解波动方程的特征问题(又称古尔沙问题) 分 :⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x ux u x u a t u at x at x ψϕ ())0()0(ψϕ=、用达朗贝尔公式求解下列一维波动方程的初值问题( 分)⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u、用积分变换法求解定解问题( 分):⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x uy u y x y x u、用积分变换法求解定解问题 分 :⎩⎨⎧==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt、用格林函数法求解定解问题 分 :222200, y 0, () , .y u ux y u f x x =⎧∂∂+=<⎪∂∂⎨⎪=-∞<<+∞⎩、写出格林函数公式(三维)及满足的条件,并解释其物理意义。
分考试内容分析用数理方程研究物理问题的一般步骤;数理方程的建立 导出 包括三类典型方程的建立 导出 推导过程。
这里的 两道题就是考察学生在实际物理背景下能否写出定解问题。
这些定解问题并不复杂,主要就是让学生了解一下。
两道题主要考察分离变量法的精神、解题步骤和适用范围。
第 题是最基本的分离变量法的运用,分离变量法的主要思想 、将方程中含有各个变量的项分离开来,从而原方程拆分成多个更简单的只含 个自变量的常微分方程; 、运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程; 、利用高数知识、级数求解知识、以及其他巧妙方法,求出各个方程的通解; 、最后将这些通解“组装”起来。
第 题是非齐次方程,主要考察学生对非齐次方程的处理能力。
, 两道题是考察行波法。
第 题就是书本中一维波动方程的 公式的推导,是最最基础的东西,在这里考察学生平时的基础,题目不难但是能很好的考察学生对行波法的理解。
第 题考察了 公式的应用,同时又因为方程式非齐次的,也考察了方程的齐次化。
第 两道题是对积分变换法的考察。
第 题是对拉普拉斯变换的考察拉普拉斯变换的基本概念以及常见函数的拉普拉斯正变换;利用拉普拉斯变换的基本定理,拉普拉斯变换表以及部分分式展开法对常见函数进行拉普拉斯反变换。
第 题主要考察傅里叶变换的基本定理及其性质。
两道题是考察格林函数法。
第 题有些难度,是一道二维拉普拉斯的狄利克雷问题,主要考察对第二格林公式的理解及其应用。
第 题看似比较简单,但是也是大家比较容易忽略的问题,不一定能将其完整的解答。
这里还要求你写出其物理意义,意图当然不言而喻了,就是想体现数学物理方程这门课的意义 将数学与物理结合起来,了解古典方程的类型,明白其物理意义和现象。
答案及分析、解 这是弦的自由振动,其位移函数(,)u x t 满足2,tt xx u a u = ( 分) 其中2Ta ρ=由于左端开始时自由,以后受到强度为sin A t ω的力的作用,所以(0,0)0,(0,)sin 0,0,x x u Tu t A t t ω=+=>因此 sin (0,),0.x A tu t t Tω=-≥ ( 分) 又右端系在弹性系数为 的弹性支承上面,所以(,)(,)0,x Tu l t ku l t --= 即 (,)(,)0.x Tu l t ku l t += ( 分) 而初始条件为 0(),().t tt ux u x ϕψ==== ( 分)因此,相应的定解问题为200,0,0,sin (0,),(,)(,)0,0.(),().tt xx xx t t t u a u x l t A t u t Tu l t ku l t t T u x u x ωϕψ==⎧=<<>⎪⎪=-+=≥⎨⎪==⎪⎩ ( 分)、解:侧面绝热,方程为 2,0,0t xx u a u x l t =<<> ( 分)边界条件为 00,,0x xx lquu t k====> ( 分)初始条件为 0(),02t x l x ux l =-=<< ( 分)因此,相应的定解问题为:( 分)、解 令)()(),(t T x X t x u =( 分),代入原方程中得到两个常微分方程:0)()('=+t T t T λ,0)()(''=+x X x X λ( 分),由边界条件得到0)4()0(==X X ,对λ的情况讨论,只有当0>λ时才有非零解,令2βλ=,得到22224πβλn ==为特征值,特征函数4sin )(πn B x X n n = 分 ,再解)(t T ,得到16;22)(t n n n e C t T π-=( 分),于是,4sin(),(16122x n eC t x u tn n n ππ-∞=∑=( 分)再由初始条件得到140)1(164sin 242+-==⎰n n n xdx n x C ππ(分),所以原定解问题的解为,4sin)1(16),(161122xn e n t x u t n n n πππ-+∞=-=∑( 分)、解:令(,)(,)()u x t V x t W x =+ ( 分)将其代入定解问题可以得到:2,(0,0)(0,)0,(,)0.....(1)4(,0)31(),(,0)sintt xx t V a V x l t V t V l t x V x W x V x x l l π⎧⎪=<<>⎪⎪==⎨⎪⎛⎫⎪=+-= ⎪⎪⎝⎭⎩( 分)222()sin cos 0(2)(0)3,()6a W x x x l l W W l ππ⎧''+=⎪⎨⎪==⎩ ( 分)的解为:2224()sin 3132l x W x x al l ππ⎛⎫=++ ⎪⎝⎭( 分) 对于 ,由分离变量法可得一般解为1(,)cos sin sin n n n n at n at n x V x t a b l l l πππ+∞=⎛⎫=+ ⎪⎝⎭∑ ( 分) 由初始条件可求得:222444(,)cos sin sin 324l a l at xV x t t al a l l πππππ⎛⎫=-+ ⎪⎝⎭ 分 所以,原定解问题的解为:2222224444(,)cos sin sin sin 3132432l a l at x l x u x t t x a l a l l a l l πππππππ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭分、解: ( 分)令 得 )(x ϕ ( ) ( ) ( 分) 令 得 )(x ψ ( )( 分)所以 )2(xψ ( ) )2(x ϕ( 分)且 ( ) ).0()0(ψϕ= ( 分) 所以 (ϕ)2at x + )2(atx -ψ ).0(ϕ( 分)即为古尔沙问题的解。
、解令)(),(),(x w t x v t x u += 分 ,代入原方程中,将方程齐次化,因此x a x w x x w a x x w x v a t v cos 1)(0cos )(cos )]([2''2''22222=⇒=+⇒++∂∂=∂∂ 分 ,再求定解问题⎪⎪⎩⎪⎪⎨⎧=∂∂-=>∂∂=∂∂==,0),(cos 12sin 0,02022222t t tvx xw a x t xv a t v v 分 由达朗贝尔公式得到以上问题的解为atx a at x at x aat x at a a at x t x v cos cos 1cos sin 0)]cos(1)(2sin )cos(1)(2[sin 21),(222-=+---++-+= 分故.cos 1cos cos 1cos sin ),(22x a at x a at x t x u +-=分、解 对 取拉普拉斯变换),()],([p x U y x u L = 分 ,对方程和边界条件同时对 取拉普拉斯变换得到p p U pdx dU px 11,120+=== 分 ,解这个微分方程得到p p x p p x U 111),(22++=分 ,再取拉普拉斯逆变换有1),(++=y yx y x u 分所以原问题的解为1),(++=y yx y x u 分、解:对于初值问题关于 作 变换,得:⎪⎩⎪⎨⎧==>∈+0)0,(ˆ),(sin )0,(ˆ0,),,(ˆd ),(ˆd 2222ωωωωωt u x F u t R x t u a t t u( 分)该方程变为带参数ω的常微分方程的初值问题。
解得t ja t ja e C e C t uωωω-+=21),(ˆ( 分)于是0)()0,(ˆ,)(sin )0,(ˆ2121=-=+==C C ja u C C x F u t ωωω( 分)则由)(sin 2121x F C C ==,得:))((sin 21),(ˆt ja t ja e e x F t uωωω-+=。
( 分) 作像函数),(ˆt uω的 逆变换 []at x at x at x e e x F F t uF t x u t ja t ja cos sin )]sin()[sin(21))((sin 21)],(ˆ[),(11=++-=+===---ωωω( 分)、解:设),(000y x M 为下半平面中任意一点。
已知二维调和函数的积分表达式为dS nur r n M u M u MM MM )1ln )1(ln )((21)(000∂∂-∂∂-=⎰Γπ 分 设v 为调和函数,则由第二格林公式知0)()(22=∂∂-∂∂=∇-∇⎰⎰⎰ΓΩdS nuv n v u d u v v u σ ( ) ( )+( )可得dS n u v r dS r n n v M u M u MM MM ])1ln 21(])1(ln 21)(([)(000⎰⎰ΓΓ∂∂-+∂∂-∂∂=ππ 分 若能求得v 满足⎪⎪⎩⎪⎪⎨⎧=<=∇==00201ln 210,0y MM y rv y v π ( )则定义格林函数v r M M G MM -=01ln 21),(0π,则有 dS nG M u M u ⎰Γ∂∂-=)()(0 分由电象法可知,),(001y x M -为),(000y x M 的象点,故可取11ln 21MM r v π=分显然其满足( )。