ICP发射光谱法的特点
icp原子发射光谱

icp原子发射光谱ICP原子发射光谱(Inductively Coupled Plasma Atomic Emission Spectroscopy),简称ICP-AES,是一种广泛应用于分析化学领域的仪器分析技术,可以用来分析和确定样品中的各种元素及其含量。
它是在电感耦合等离子体(ICP)的激发条件下,利用原子发射光谱技术对样品进行分析的一种方法。
ICP-AES的工作原理是通过将待测样品喷入高温的等离子体中,将样品中的元素原子激发至高能级,并通过分析元素原子发射的特征光谱来确定元素的类型和含量。
在ICP中,通过电磁感应使产生高温等离子体,这种等离子体具有高温、高离子浓度和高电子能级的特点,能够将样品中的大部分元素原子激发至高能级。
当元素原子被激发至高能级时,会通过自发辐射的方式向低能级跃迁,放出特定波长的光谱线。
每个元素都有独特的光谱线,通过测量样品发射光谱的强度、频率和波长,可以准确地确定样品中的元素种类和含量。
在ICP-AES中,需要注意的是使用光栅光谱仪进行光谱测量,光栅光谱仪能够分散不同波长的光线,并测量其相对强度。
通过与已知元素的光谱线进行比对,可以准确地确定样品中的元素种类和含量。
ICP-AES有许多优点,也适用于许多领域。
首先,ICP-AES具有非常高的分析灵敏度和准确度,可以检测到微量元素的存在。
其次,ICP-AES具有宽线性范围和多元素分析能力,对于复杂样品的分析效果显著。
此外,ICP-AES还具有高分辨率、高样品处理速度和样品破坏小的特点。
ICP-AES在许多领域都有广泛的应用。
例如,它可以用于环境监测,对于水、土壤和空气中的污染物进行检测和分析。
它也可以应用于生物医学研究,分析生物体中的元素含量及其在生物过程中的分布和转化。
此外,ICP-AES还可以用于材料分析、冶金、食品安全等领域。
虽然ICP-AES是一种强大的分析技术,但也存在一些局限性。
首先,样品制备要求较高,特别是对于固体样品和复杂样品,需要进行前处理来提取或溶解样品中的元素。
简述原子发射光谱法中电感耦合等离子体(icp)光源的特点。

简述原子发射光谱法中电感耦合等离子体(icp)光源的特点。
原子发射光谱法中电感耦合等离子体(ICP)光源的特点主要有以下几个方面:
1.高效能:ICP光源具有很高的能量,可以同时激发多个原子或离子,产生大量的光谱线。
因此,它可以在较短的时间内对样品进行全面的元素分析。
2.稳定性好:ICP光源的稳定性非常好,可以长时间稳定运行,从而保证了分析的精密度和准确度。
3.宽广的应用范围:ICP光源可以用于分析各种不同种类的元素,包括金属元素、非金属元素以及有机物等。
此外,它还可以用于分析不同形态的样品,如固体、液体和气体。
4.较低的检出限:ICP光源产生的光谱线非常纯净,没有基体干扰,因此具有较低的检出限,可以检测出样品中微量的元素。
5.环保型:ICP光源的运行过程中不会产生有害物质,因此是一种环保型的技术。
6.需要使用惰性气体:为了维持等离子的稳定性,ICP光源需要使用惰性气体(如氩气或氮气)作为工作气体。
7.设备成本高:ICP光谱仪的设备成本较高,而且需要专业的技术人员进行操作和维护。
总的来说,电感耦合等离子体(ICP)光源是一种非常有效的元素分析方法,具有广泛的应用前景。
ICP测试及样品前处理

原子发射光谱定量分析原理
• • • • 被激发的原子和离子发射出很强的原子谱线和离子谱线,各元素发射的 特征谱线及其强度经过分光、光电转换、检测和数据处理。 设激发光源中被测定的元素基态原子数和激发态原子数分别为N0和Ni, 应遵循玻尔兹曼分布定律。 Ni=K N0 e(-Ei/kT) 式中K为统计常数,k为玻尔兹曼常数,T是等离子体的温度。而在两能 级之间的跃迁所产生的谱线强度Iij与基态原子数目Ni成正比,基态原子数与试 样中该元素浓度成正比。因此,在一定的条件下谱线强度与被测元素浓度成 正比,可以得到谱线强度Iij与含量c的函数关系式: Iij=acb 这个关系式称为罗马金公式,是光谱定量分析依据的基本公式。式中a 、b在一定条件下为常数。a是与试样的蒸发、激发过程和试样组成有关的一 个参数。B称为自吸系数,它的数值与谱线自吸收有关。当谱线强度不大没有 自吸时,b=1;反之,有自吸时,b<1,且自吸越大,b值越小。
电感耦合等离子发射光谱仪Varian 715-ES
在ICP –AES定量分析 过程中,试样由载气带入 雾化系统进行雾化,以气 溶胶形式进入炬管轴内通 道,在焰炬的高温作用下 和惰性氩气气氛中,溶质 的气溶胶经历多种物理化 学过程而被迅速原子化、 激发和电离。被激发的原 子和离子发射出很强的原 子谱线和离子谱线。各元 素发射的特征谱线及其强 度经过分光、光电转化、 检测和数据处理,最后经 电脑计算出各元素的含量。
ICP测试及样品前处理
方修忠
PartⅠ The basic principles of ICP
什么是原子发射光谱法
• 原子发射光谱法(Atomic Emission Spectrometry, AES)是 根据原子的特征发射光谱来研究物质的结构和测定物质的 化学成分的一种重要的光学分析方法。分析测试时,利用 物质在热激发或电激发下,每种元素的原子或离子的外层 电子受激发而跃迁至更高能级的激发态,处于高能级的原 子或分子在向较低能级跃迁时产生辐射,将多余的能量发 射出去形成原子发射光谱。
ICP

ICP-AES是电感耦合等离子体原子发射光谱仪的英文简称,它是原子发射光谱分析的一种,主要根据试样物质中气态原子(或离子)被激发以后,其外层电子由激发态返回到基态时,辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。
等离子体包括ICP(inductively coupled plasma)电感耦合等离子体、DCP(direct-current plasma)直流等离子体、MWP(microwave plasma)微波等离子体。
原子发射光谱仪分析的波段范围与原子能级有关,一般位于紫外-可见光区,即200-850nm。
ICP的发展经历了单道、多道、单道扫描到现在广泛采用的全谱直读,其理论为:众所周知原子由居中心的原子核和外层电子组成,外层电子围绕原子核在不同能级运行,一般情况下外层电子处于能量最低的基态,当基态外层电子受到外界能量(如电弧、电火花、高频电能等)作用下吸收一定特征的能量跃迁到能量高的另一定态(激发态),处于激发态的电子并不稳定,大约10-8秒将返回基态或者其他较低的能级,并将电子跃迁时吸收的能量以光的形式释放出来。
这就是我们通常的原子发射的产生原理;原子发射光谱分析过程主要分三步,即激发、分光和检测。
第一步是利用激发光源将试样蒸发气化,离解或分解为原子状态,第二步原子也可能进一步电离成离子状态,原子及离子在光源中激发发光。
电感耦合等离子体发射光谱仪(ICP-AES)主要用于无机元素的定性及定量分析;电感耦合等离子体发射光谱ICP-AE1000Ⅲ型1、仪器特点:检出限低,检出灵敏度高。
(可检出ng/ml级含量)分析精密度高。
(例:被分析元素的浓度为其检出限的100倍时,精密度可达1%)分析动态范围小。
(工作曲线的直线范围可达4-5个数量级)基体效应小。
多元素同时分析,分析速度快。
操作简单,使用安全。
2、应用范围:主要用于微量元素的分析,可分析的元素为大多数的金属和硅、磷、硫等少量的非金属,共72种。
icp-aes

icp-aes
电感耦合等离子体原子发射光谱法(ICP-AES)是一种以电感耦合等离子体矩为激发光源的光谱分析方法。
它具有高精度,高精密度,低检测限,测定速度快,线性范围宽等优点。
同时测定多种元素的优点已在国外广泛用于环境样品以及岩石,矿物,金属样品中数十种元素的测定。
电感耦合等离子体炬的温度可达6000〜8000K。
当样品从采样器引入雾化器并通过氩气载气进入炬管时,样品中的成分被雾化,离子化和激发,并以光的形式发出能量。
当不同元素的原子在激发或电离后返回基态时,它们会发射出不同波长的特征光谱,因此可以根据特征光的波长进行定性分析。
当元素的含量不同时,发射的特征光的强度也不同。
对于定量分析,可以通过以下公式表示定量关系:
其中:I-发射特性光谱的强度;
C-被测元素的浓度;
与样品成分,形状和测量条件有关的a系数;
b-自吸收系数,b≤1
水样品的预处理:确定溶解的元素,取样后立即用0.45μm滤膜过滤,取所需体积的滤液,加硝酸消解。
确定元素的总量,采集所需体积的均匀水样,然后用硝酸消化。
消化后,应将体积调整为原始采样体积,并将溶液保持在5%的硝酸中。
配置标准溶液和试剂空白溶液。
测量:调整仪器的工作参数,选择两种标准溶液进行两点校准,然后将试剂空白溶液和水样喷入ICP火焰中进行测定。
减去空白值后元素的测量值就是水样中
元素的浓度。
ICP发射光谱分析

ICP发射光谱分析ICP (Inductively Coupled Plasma)发射光谱分析是一种常用的无机分析技术,用于确定不同元素在样品中的浓度和存在形式。
它结合了无机分析的灵敏度和选择性,以及光谱分析的高分辨率和多元素分析能力,被广泛应用于环境监测、地质矿产、冶金、农业、生物医学等领域。
ICP发射光谱分析的基本原理是将待测样品通过高温等离子体体系中,将样品中的元素原子激发成电离态,并从高温等离子体中发射出特定波长的光线。
这些光线经过光学装置,分散成谱线,并通过光电探测器测量其强度。
根据样品中元素原子电离态的浓度和发射谱线的强度,可以计算出样品中元素的浓度。
ICP发射光谱分析的优点之一是其高分辨率。
由于谱线分散性能好,ICP能够同时测量多个元素的发射光谱,从而实现对多个元素的分析,极大地提高了分析效率。
此外,ICP发射光谱分析还具有灵敏度高、线性范围广、准确度高等特点。
它可以检测到微gram到nanogram级别的元素含量,且能够进行定量分析。
ICP发射光谱分析的应用非常广泛。
在环境监测领域,可以用于分析水、土壤、空气等样品中的有毒金属、重金属等元素含量,以进行环境污染的评估与监测。
在地质矿产领域,可以用于矿石、土壤、矿砂等样品中不同金属元素的测定,以指导矿产资源的开发利用。
同时,在冶金、农业、生物医学等领域也有广泛的应用,如矿石熔炼过程中的元素控制、土壤中营养元素的含量测定、医学检验中血清中元素的分析等。
然而,ICP发射光谱分析也存在一些限制。
首先,样品制备过程对分析结果有很大影响,样品的前处理工作需要严格控制,以保证分析结果的准确性。
此外,由于ICP发射光谱分析的仪器设备复杂,操作难度较大,需要经验丰富的专业人员进行操作和解读结果。
另外,ICP发射光谱分析的仪器设备和耗材成本较高,对于一些实验室和企业来说可能存在经济压力。
总之,ICP发射光谱分析是一种重要的无机分析技术,在各领域具有广泛的应用前景。
电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。
样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。
根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。
本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。
1、对仪器的一般要求电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。
样品引入系统按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。
样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分一般为蠕动泵,也可使用自提升雾化器。
要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。
雾化部分包括雾化器和雾化室。
样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。
要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。
常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。
实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。
电感耦合等离子体(ICP)光源电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。
样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。
根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。
等离子体发射光谱法

等离子体发射光谱法等离子体发射光谱法,又称原子发射光谱法,是一种广泛应用的光谱分析技术。
它基于原子或分子内部能态的电子跃迁过程,利用激发能将样品中原子或分子中的电子激发到高电子能态,再由高电子能态跃迁到低电子能态时所释放的光能进行分析。
该技术具有高分辨率、灵敏度高、适用范围广、无需前处理等优点,广泛应用于材料检测、环境监测、医学诊断等领域。
等离子体发射光谱分析主要分为电弧放电、射频感应等离子体、电感耦合等离子体(ICP)发射光谱法。
电弧放电法是最早应用的等离子体发射光谱法之一。
该方法将样品放置在一对电极间,通过电弧放电的方式激发样品原子,利用分析样品所产生的光谱来确定其中元素的存在和含量。
该方法简便易行,但存在容易形成烟雾、易污染仪器的缺点。
射频感应等离子体法是一种非接触式等离子体发射光谱法,它通过射频电磁场在样品中产生等离子体,使样品原子或分子激发并发射光谱信号。
该方法具有射频感应器简单、样品可以传送等优点,但对于高浓度盐类或有机物质等强吸收样品存在分析复杂度较高的缺点。
电感耦合等离子体发射光谱法是目前广泛应用的一种光谱分析技术,该方法使用射频辐射场激励样品,将样品原子或分子离子化,形成等离子体,由此提供较高的分辨率和灵敏度,同时可以扩展到更广泛的化学元素范围,并具有较低的背景信号和较高的重现性等优点。
ICP还可以与质谱仪结合,形成ICP-MS系统,进一步提高检测的极限和精度。
在等离子体发射光谱分析中,还经常使用样品前处理技术来提高检测结果的准确性。
如氧化、还原、燃烧、溶解、虑滤等处理方法,以及结合色谱和电化学分析等技术。
等离子体发射光谱法是一种重要的光谱分析技术,具有广泛应用的前景,在工业检测、环境检测、医药等行业的研究中发挥着重要作用。
在环境监测领域,等离子体发射光谱法可以用于测定地下水、土壤和大气中各种元素的含量,以评估环境污染状况。
利用ICP-OES测定土壤中的重金属含量,可以确定污染源和污染程度,为环境治理决策提供了有力的数据支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ICP发射光谱法的特点
ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点: 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。
对于多数元素,其检出限一般为0.1~100ng/ml。
2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。
3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。
这是ICP光谱法最主要的优点之一。
4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。
5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。
6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。
ICP发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面:
1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。
2. 因为工作时需要消耗大量Ar气,所以运转费用高。
3. 因目前的仪器价格尚比较高,所以前期投入比较大。
4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。
ICP发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。
ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。
截止到上世纪80年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。
ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。
ICP发射光谱法包括了三个主要的过程,即:
由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;
将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;
用检测器检测光谱中谱线的波长和强度。
由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。
优点:
1. 多元素同时检出能力。
可同时检测一个样品中的多种元素。
一个样品一经激发,样品中各元素都各自发射出其特征
谱线,可以进行分别检测而同时测定多种元素。
2. 分析速度快。
试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。
3. 选择性好。
由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。
如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。
4. 检出限低。
一般可达0.1~1ug•g-1,绝对值可达10-8~10-9g。
用电感耦合等离子体(ICP)新光源,检出限可低至数量级。
5. 用ICP光源时,准确度高,标准曲线的线性范围宽,可达4~6个数量级。
可同时测定高、中、低含量的不同元素。
因此ICP-AES已广泛应用于各个领域之中。
6. 样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。
缺点:
1. 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。
2. 含量(浓度)较大时,准确度较差。
3. 只能用于元素分析,不能进行结构、形态的测定。
4. 大多数非金属元素难以得到灵敏的光谱线。
1 因为工作时需要消耗大量Ar气,所以运转费用高。
2 因目前的仪器价格尚比较高,所以前期投入比较大。
3 ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。
原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。
ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。
因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。
发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。
当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。
特别值得一提的是现在很多的商品仪器已经采用了中阶梯光栅的二维色散方式,使光的色散率和谱线的分辨率得到了明显的提高,这无疑又为我们选择分析线创造了更好的条件。