二极管实训报告
二极管实训报告范文

二极管实训报告范文一、实训目的和意义:二极管是电子技术中常见的一种电子元器件,具有正向导通和反向截止的特性。
通过本次实训,旨在让学生掌握二极管的特性和基本应用,培养学生动手实践能力和解决问题的能力,同时加深对电子器件的认识和了解,为进一步学习电子技术奠定基础。
二、实训内容和步骤:1.实训器材准备准备实训所需的二极管、电源、示波器、万用表等实验仪器设备。
2.实验一:二极管的基本特性测量连接电路,调整示波器和电源的参数,测量二极管的伏安特性曲线,观察和比较常见二极管的特性。
3.实验二:二极管的整流和滤波特性搭建整流电路和滤波电路,观察并测量不同二极管工作状态下的输出波形,分析其特点和应用场景。
4.实验三:二极管的高低电平切换电路设计根据实验要求,设计一个满足输入条件下二极管能够切换到不同工作状态的电路,并进行测试。
5.实验四:二极管的直流稳压电路设计根据实验要求,设计一个具有稳定输出电压的直流稳压电路,观察实验结果并分析电路的特点和问题所在。
6.实验总结和思考总结本次实训的内容和过程,思考在实验中遇到的问题和解决方法,并分享自己的体会和收获。
三、实训结果和分析:通过本次实训,我成功地掌握了二极管的基本特性和常见应用,对二极管的工作原理和特点有了更深入的理解。
在测量二极管的伏安特性曲线和观察输出波形的过程中,我发现不同类型的二极管在工作时有着不同的特点,对于不同的应用场景有着不同的要求。
在设计电路的过程中,我不仅学会了按照要求设计电路,还学会了通过实际测试和分析结果来调整和改进电路的方法。
此外,通过实验总结和思考,我明白了实验过程中出现的问题和解决方法对于电子技术学习的重要性,同时也增强了自己的动手实践和问题解决的能力。
由于时间和设备限制,本次实训只涉及了二极管的基本特性测量、整流和滤波特性、高低电平切换电路以及直流稳压电路设计等方面。
在以后的学习中,我将继续深入研究和学习二极管的更多应用,提升自己的电子技术能力。
电工电子应用技术 二极管(实验报告)

实训二二极管、三极管的判别与检测一、实训目的1.学会用万用表判别晶体二极管和三极管的管脚。
2.学会用万用表检测晶体二极管和三极管质量的好坏。
二、实训原理1.晶体二极管(1)晶体二极管(以下简称二极管)是内部具有一个PN结,外部具有两个电极的一种半导体器件。
对二极管进行检测,主要是鉴别它的正、负极性及其单向导电性能。
通常其正向电阻小为几百欧,反向电阻大为几十千欧至几百千欧。
(2)二极管极性的判别根据二极管正向电阻小,反向电阻大的特点可判别二极管的极性。
指针式万用表:将万用表拨到R⨯100或R⨯1k的欧姆档,表棒分别与二极管的两极相连,测出两个阻值,在测得阻值较小的一次测量中,与黑表棒相接的一端就是二极管的正极。
同理在测得阻值较大的一次测量中,与黑表棒相接的一端就是二极管的负极。
数字式万用表:红表笔插在“V·Ω”插孔,黑表笔插在“COM”插孔。
将万用表拨到二极管档测量,用两支表笔分别接触二极管两个电极,若显示值为几百欧,说明管子处于正向导通状态,红表笔接的是正极,黑表笔接的是负极;若显示溢出符号“1”,表明管子处于反向截止状态,黑表笔接的是正极,红表笔接的是负极。
(3)二极管质量的检测一个二极管的正、反向电阻差别越大,其性能就越好。
用上述方法测量二极管时,如果双向电阻值都较小,说明二极管质量差,不能使用;如果双向阻值都为无穷大,说明该二极管已经断路;如果双向阻值均为零,则说明二极管已被击穿。
在这三种情况下二极管就不能使用了。
2.晶体三极管(1)三极管的结构可以看成是两个背靠背的PN结,如图2-1所示。
对NPN管来说,基极是两个PN结的公共阳极,对PNP管来说,基极是两个PN结的公共阴极。
图2-1 晶体三极管结构示意图(2)三极管基极与管型的判别将指针式万用表拨到R⨯100或R⨯1k欧姆档,用黑表棒接触某一管脚,用红表棒分别接触另两个管脚,如表头读数都很小,则与黑表棒接触的那一管脚是基极,同时可知此三极管为NPN型。
二极管测试电路实验报告

二极管测试电路实验报告一、实验目的本次实验的主要目的是深入了解二极管的特性,并通过设计和搭建测试电路,对二极管的正向导通特性、反向截止特性以及其他相关参数进行测量和分析。
二、实验原理1、二极管的基本特性二极管是一种具有单向导电性的半导体器件。
当二极管正向偏置时(阳极接高电位,阴极接低电位),它呈现低电阻状态,电流能够顺利通过;而当二极管反向偏置时(阳极接低电位,阴极接高电位),它呈现高电阻状态,只有极小的反向漏电流。
2、二极管的伏安特性二极管的伏安特性是指通过二极管的电流 I 与二极管两端的电压 V 之间的关系。
其正向特性曲线在起始阶段电流增加缓慢,当电压超过阈值电压(通常为 05 07V 左右,具体取决于二极管的类型)后,电流迅速增加。
反向特性曲线在反向电压较小时,反向电流很小;当反向电压超过一定值(反向击穿电压)时,反向电流急剧增加。
三、实验设备与材料1、实验设备直流电源:提供稳定的电压输出。
数字万用表:用于测量电压、电流等参数。
示波器:观察电压和电流的变化波形。
2、实验材料不同型号的二极管若干(如硅二极管 1N4007、锗二极管 1N4733 等)。
电阻、电容、导线等。
四、实验电路设计1、正向特性测试电路电路组成:将直流电源、限流电阻和二极管串联连接。
通过调节电源电压,测量不同电压下通过二极管的电流。
2、反向特性测试电路电路组成:将直流电源、二极管和电阻串联连接,电源反接。
测量不同反向电压下的反向电流。
五、实验步骤1、正向特性测试按照设计的正向特性测试电路连接好实验设备。
从 0V 开始,逐步增加直流电源的输出电压,每次增加 01V 或 02V,记录对应的电流值。
当电流增长过快时,适当减小电压增量,以获取更准确的数据。
2、反向特性测试按照设计的反向特性测试电路连接好实验设备。
从 0V 开始,逐步增加直流电源的反向输出电压,每次增加 1V 或2V,记录对应的反向电流值。
注意观察反向电流的变化,当接近反向击穿电压时,小心操作,避免损坏二极管。
二极管实训报告范文

二极管实训报告范文一、实验目的1.掌握二极管的引线及标志。
2.熟悉二极管的正向、反向工作特性。
3.学会使用万用电表测试二极管参数。
二、实验仪器及材料1.二极管样品2.万用表3.直流电源4.电阻箱三、实验原理二极管是一种半导体器件,由正负两个电极组成。
根据材料的不同,又可以分为硅二极管和锗二极管。
二极管的一个特点是只允许电流从正极流向负极,反向时电流几乎为零。
这个特性导致了二极管在电路中的各种应用。
四、实验步骤1.首先,将二极管引线与实验台的对应孔连接。
2.将电源接入电路,设置为适当的电压。
3.使用万用表,依次测量二极管的正向电压和反向电压。
4.调节电阻箱,改变电路中的电阻值,观察二极管工作状态的变化。
5.对不同类型的二极管重复实验步骤3和4五、实验结果与数据处理在实验中,我们选择了两种不同类型的二极管进行测试,分别是硅二极管和锗二极管。
1.硅二极管实验结果如下:正向电压(Vf):0.7V反向电压(Vr):约10V2.锗二极管实验结果如下:正向电压(Vf):约0.2V反向电压(Vr):约30V根据实验结果,我们可以得出以下结论:硅二极管的正向电压一般在0.6-0.7V之间,而反向电压一般较低,约在10V左右。
锗二极管的正向电压要低于硅二极管,在0.2-0.3V之间,而反向电压较高,约在30V左右。
六、实验分析与讨论通过实验我们可以发现,二极管的正向电压和反向电压是与其材料类型相关的。
这是由于不同材料的能带结构和禁带宽度不同,导致了材料对电流的导通和阻挡能力不同。
在实验中,我们还观察到当电阻值改变时,二极管的工作状态也会发生变化。
这是因为电阻值的改变会改变整个电路的电压和电流分布情况,从而影响到二极管的正向和反向工作状态。
总之,通过这次实验,我们深入了解了二极管的工作原理和特性,并且掌握了测试二极管参数的方法。
对于今后的电子工程设计和实际应用中,这些知识和技巧将会起到重要的指导作用。
七、实验总结通过这次实验,我对二极管的工作原理和特性有了更深入的了解。
二极管应用实验报告

二极管应用实验报告二极管应用实验报告引言:二极管是一种重要的电子元件,具有单向导电性质,广泛应用于电子电路中。
本实验旨在通过实际操作和观察,探究二极管在不同应用场景下的特性和效果。
实验一:二极管的整流特性实验目的:通过搭建整流电路,观察二极管在交流电源下的整流效果,并分析其特性。
实验步骤:1. 准备材料:二极管、变压器、电阻、电容、示波器等。
2. 搭建整流电路:将二极管串联在交流电源电路中,通过变压器调节电压大小。
3. 接入示波器:将示波器连接到电路中,观察输出波形。
实验结果:在交流电源下,二极管实现了电流的单向导通,输出波形呈现出明显的半波整流效果。
通过调节电压大小,我们发现输出波形的峰值与输入电压呈线性关系。
实验分析:二极管的整流特性使其在电源转换和电路稳定性方面具有重要应用。
通过实验,我们验证了二极管在交流电源下的整流效果,并了解了其在电路中的作用。
实验二:二极管的稳压特性实验目的:通过搭建稳压电路,研究二极管在稳定电压输出方面的应用。
实验步骤:1. 准备材料:二极管、电阻、电容、稳压二极管等。
2. 搭建稳压电路:将稳压二极管与电阻、电容等元件连接,形成稳压电路。
3. 测量输出电压:通过示波器或万用表等工具,测量稳压电路输出的电压大小。
实验结果:在稳压电路中,二极管通过调节电流大小,实现了稳定的输出电压。
我们发现,无论输入电压如何变化,稳压二极管都能保持输出电压的稳定性。
实验分析:二极管的稳压特性使其在电源稳定和电路保护方面起到重要作用。
通过实验,我们深入了解了稳压二极管的工作原理,并验证了其在稳压电路中的应用效果。
实验三:二极管的信号调制特性实验目的:通过搭建调制电路,研究二极管在信号传输和调制方面的应用。
实验步骤:1. 准备材料:二极管、电容、电阻、信号发生器等。
2. 搭建调制电路:将信号发生器与二极管、电容、电阻等元件连接,形成调制电路。
3. 观察输出信号:通过示波器等工具,观察调制电路输出的信号波形。
二极管实习报告

二极管实习报告篇一:二极管实习报告篇一:《二极管的识别与检测》实训报告实训报告1《二极管的识别与检测》2节课[ 岗位描述]实际工作中,电子元器件检测是第一道电子产品质量控制点。
一般大中型电子企业都设有专门从事电子元器件检测的部门。
因此掌握电子元器件的识别与检测技能,即可胜任电子企业质量检测部门相关岗位。
[ 实训目的 ]1. 掌握普通二极管的识别与简易检测方法。
2.掌握专用二极管的识别与简易检测方法。
[ 实训器材 ]表1.普通单色二极管的检测:a.正向导通电压外加电压越大越亮。
注意实际电压不能使led超过其最大工作电流。
b. 检测时,要用r×10k挡(因内电池电压为9v),方法同普通二极管,只是正向电大得多,甚至测量时还微微发光。
2.稳压二极管的检测:a.工作在反压状态,具有稳压作用,检测方法同普通二极管。
b.不同处:用r×1k挡测反向电阻很大,换用r×10k, 其反向电阻减小很多。
若换挡电阻基本不变,说明是普通二极管。
变化则为稳压二极管。
[ 原理 ] 使用r×10k 挡内电池9v,若稳压二极管反向击穿电压比<9v,则因击穿而电阻减小很多。
而普通二极管反向击穿电压比普通管大得多,不会击穿。
3.普通光电二极管的检测:a.光电二极管工作在反向偏置状态。
b.无光照时,光电二极管与普通管一样,反向电流小,反向电阻大(几十兆以上);有光照时,反向电流明显增加,反向电阻明显减小(几千-几十千),反向电流与光照成正比。
检测有无光照电阻相差很大。
检测结果相差不大说明已坏或不是光电二极管。
[ 实训步骤 ]1.普通二极管的识别与检测。
在下表中填好检测结果。
【注意】a.塑封白环一端为负极,玻璃封装黑环一端为负极。
b.检测时两手不能同时接触两引脚,表至于r×1k挡,并欧姆调零。
调零时间不能太长。
c.读数要用平面镜成像规律。
2.专用二极管的识别与检测。
在下表中填好测量结果。
二极管的实训报告

二极管的实训报告以下是关于二极管实训的报告:实验名称:二极管的基本实验实验目的:1. 了解二极管的基本原理和特性;2. 掌握二极管的正向工作状态和反向截止状态;3. 学习如何在电路中正确使用二极管。
实验仪器和材料:1. 二极管(常见的有硅二极管和锗二极管);2. 直流电源;3. 电压表;4. 电流表;5. 阻焊板;6. 电线等。
实验步骤:1. 连接电路:将二极管和电源、电压表、电流表连接在阻焊板上,确保连接正确。
2. 正向工作状态测量:调整电源的正向电压,记录电压表和电流表的数值,观察二极管的正向工作状态的灯光等变化。
3. 反向截止状态测量:调整电源的反向电压,记录电压表和电流表的数值,观察二极管的反向截止状态的灯光等变化。
4. 实验数据记录与分析:根据实验数据,计算电流和电压之间的关系,并分析二极管在正向工作状态和反向截止状态下的特性。
实验结果与讨论:实验数据记录如下:正向电压(V) | 电流(mA)-----------------0.5 | 2.51.0 | 5.01.5 | 7.52.0 | 10.0反向电压(V) | 电流(uA)-----------------0.5 | 0.51.0 | 1.01.5 | 1.52.0 | 2.0根据实验数据,我们可以看出在正向工作状态下,电流与电压呈线性关系,而在反向截止状态下,电流非常小,可以基本忽略不计。
这说明二极管在正向工作状态下具有导电性,而在反向截止状态下具有非导电性。
这是由于二极管的结构和物理特性所决定的。
实验总结:通过本次实验,我们对二极管的基本原理和特性有了更深入的了解。
我们了解到二极管在电路中的作用,掌握了如何使用二极管,并通过实验数据分析得出了二极管在正向工作状态和反向截止状态下的特性。
这对我们今后在电子电路设计与应用中起到了重要的指导作用。
二极管实验报告

二极管实验报告引言:二极管作为一种常见的电子元件,广泛应用于各种电路中。
本次实验旨在通过实验验证二极管的特性和工作原理,并探索其在电路中的应用。
一、实验装置和方法1. 实验装置:本实验所使用的装置包括:二极管、直流电源、电阻、示波器以及电线等。
2. 实验方法:首先,将二极管正确连接到电路中。
二极管的端口分别插在电阻和直流电源的正负极之间。
然后,将示波器连接到二极管的两端,通过观察示波器上的波形来观察二极管的特性。
二、实验结果和讨论1. 实验结果:在实验过程中,我们观察到以下几个现象:a) 在直流电源的正向电压下,二极管正常导通;b) 在直流电源的反向电压下,二极管正常截断。
2. 结果分析:通过实验观察结果,我们可以得出以下结论:a) 正向电压下,二极管通过,电流正常流动;b) 反向电压下,二极管关断,电流无法流动。
这是因为二极管是一种引入了PN结的半导体器件。
当二极管的正极连接在P区,负极连接在N区时,称为正向偏置,此时二极管的PN结处于导通状态,电流正常流动。
而当二极管的正极连接在N区,负极连接在P区时,称为反向偏置,此时二极管的PN结处于截断状态,电流无法流动。
3. 工作原理:二极管的工作原理基于PN结的电流传导规律。
在正向偏置下,P区的正空穴和N区的电子会发生复合,形成电流。
而在反向偏置下,P区的空穴和N区的电子受到电场的影响,被分开而无法形成电流。
三、二极管的应用1. 整流器:二极管可以用于整流,即将交流信号转换为直流信号。
交流信号通过二极管后,正向半个周期时,二极管导通,电流通过;反向半个周期时,二极管截断,电流无法通过。
通过这种方式,可以实现交流电的整流。
2. 信号检测器:二极管也可以用作信号检测器,在收音机等设备中常见。
当无线电频率信号通过二极管时,根据二极管正向偏置和反向截断的特性,可以将高频信号转换成低频信号,用于处理和放大。
3. 发光二极管(LED):LED是一种特殊的二极管,具有发出可见光的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实训报告1 《二极管的识别与检测》2节课[ 岗位描述] 实际工作中,电子元器件检测是第一道电子产品质量控制点。
一般大中型电子企业都设有专门从事电子元器件检测的部门。
因此掌握电子元器件的识别与检测技能,即可胜任电子企业质量检测部门相关岗位。
[ 实训目的 ] 1. 掌握普通二极管的识别与简易检测方法。
2.掌握专用二极管的识别与简易检测方法。
[ 实训器材 ] 表11.普通单色二极管的检测:a.正向导通电压1.5-2.5v.外加电压越大越亮。
注意实际电压不能使led超过其最大工作电流。
b. 检测时,要用r×10k挡(因内电池电压为9v),方法同普通二极管,只是正向电大得多,甚至测量时还微微发光。
2.稳压二极管的检测:a.工作在反压状态,具有稳压作用,检测方法同普通二极管。
b.不同处:用r×1k挡测反向电阻很大,换用r×10k, 其反向电阻减小很多。
若换挡电阻基本不变,说明是普通二极管。
变化则为稳压二极管。
[ 原理 ] 使用r×10k挡内电池9v,若稳压二极管反向击穿电压比<9v,则因击穿而电阻减小很多。
而普通二极管反向击穿电压比普通管大得多,不会击穿。
3.普通光电二极管的检测:a.光电二极管工作在反向偏置状态。
b.无光照时,光电二极管与普通管一样,反向电流小,反向电阻大(几十兆以上);有光照时,反向电流明显增加,反向电阻明显减小(几千-几十千),反向电流与光照成正比。
检测有无光照电阻相差很大。
检测结果相差不大说明已坏或不是光电二极管。
[ 实训步骤 ] 1.普通二极管的识别与检测。
在下表中填好检测结果。
【注意】a.塑封白环一端为负极,玻璃封装黑环一端为负极。
b.检测时两手不能同时接触两引脚,表至于r×1k挡,并欧姆调零。
调零时间不能太长。
c.读数要用平面镜成像规律。
2.专用二极管的识别与检测。
在下表中填好测量结果。
【注意】a.测试发光二极管,应用r×10k挡并调零。
b.测稳压二极管时,用r×1k或r ×10k,分别测反向电阻。
如果稳压值大于9v就测不出来,另外查资料。
(?)c.测光电二极管时要遮住受光窗,接受光时,光线不能太强,否则会损坏二极管的。
3.实训结束,整理好本次实训器材、仪表,清理工作台,打扫实训室。
[ 思考题 ](1)如何判断硅二极管、锗二极管?(2)查资料,总结硅、锗二极管分别适合什么场合?(3)查资料找出本次实训用二极管可替代的进口二极管管型、进口二极管可替代的国产管型。
[ 实训总结性练习 ] (1)对实训数据进行总结归纳,判断二极管的好坏。
(2)说说如何用数字万用表检测二极管。
(3)填写下表3.实训评价表篇二:晶体二极管实验报告实验一晶体二极管特性分析1.根据图示电路图,在multisim中进行仿真分析,得到二极管的伏安特性。
伏安特性曲线如下:2.根据图示二极管半波整流电路,在multisim 中进行仿真分析,得到输出电压随不同参数的变化情况。
a.改变负载电阻大小表1-1:b.改变负载电容大小表1-2:波形截图如下:c.根据仿真实验数据,给出输出电压的平均值和纹波电压与负载和负载电容的相互关系。
(1)负载电阻越大,输出电压平均值越大,输出纹波峰峰值越小;(2)负载电容越大,输出电压平均值基本不变,输出纹波峰峰值越小。
3.根据图示二极管交流特性实验电路,在multisim中进行仿真分析,得到二极管电路在不同输入信号幅度情况下的失真情况,认识二极管的非线性特性。
输入信号幅度为0.05v时:输入信号幅度为0.1v时:输入信号幅度为0.2v时:篇三:模电实验报告二极管使用模拟电路实验二——二极管实验报告111270040 石媛媛1、绘制二极管的正向特性曲线(测试过程中注意控制电流大小): 一开始,我用欧姆表测量了二极管电阻,正向基本无电阻,反向电阻确实是很大。
然后我们测量其输出特性曲线,发现很吻合:1、在电压小于某一值时确实没有电流,之后一段电流很小(几毫安~几十毫安);2、当二极管两端电压大于0.6v左右时电流急剧增大(后测试二极管正向压降约为0.55v),这个就是其正向导通电压。
二极管被导通后电阻很小,(图中可看出斜率很大,近似垂直)相当于短路。
3、当我们使电压反向,电流基本为零,但是当电压大于某一值(反向击穿电压)时电流又开始增大。
2、焊接半波整流电路,并用示波器观察其输入输出波形,观察正向压降对整流电路的影响;电路图:方波正弦波三角波半波整流电路的效果:输出信号只有正半周期(或负半周期),这就把交流电变为直流电。
这是由于二极管的单向导电性。
但是电的利用效率低,只有一半的线信号被保留下来。
3、焊接桥式整流电路,并用示波器观察其输入输出波形;电路图:桥式整流电路是全波整流,在电压正向与反向时,分别有两个管子处于正向导通区、两个管子在反向截止区,从而使输出电压始终同向。
而且电压在整个周期都有输出,效率高。
但是发现桥式整流电路的输出信号(尤其是三角波时)未达到理想波形,应该是电路板焊接的焊接点不够牢固或其他问题导致信号的微失真。
5、使用二极管设计一个箝位电路,能把信号(0-10v)的范围限制在3v~5v之间:设计的电路:电路原理:当输入信号在0—4v时,4v>u1,二极管正向导通;输出电压稳定在4v左右当输入信号在4v—10v时,二极管反偏,相当于断路,此时电路由电源,1k电阻,51ω电阻构成。
因为要想使输出值小于5v,所以我选择了一个较小阻值电阻和一个大阻值电阻串联,这样51ω电阻分压小,故输出电压一直小于5v,起到了钳位效果。
实验数据:输入电压/v1.82.44.65.666.77.48.19.19.510 输出电压/v 3.9 4 4.1 4.1 4.19 4.22 4.25 4.29 4.37 4.61 4.82实验心得:1、焊接心得: a、锡越少越牢固,不要在一点反复焊接,很容易使之前的焊点虚焊。
b、焊接前做好规划,把该点处要连的元件和导线尽量一次连好。
c、短距离连接可以用元件本身(如电阻两端的细锡线)或点连,长距离链接要用带皮的导线。
d、电源线正负要区分好颜色,方便后续操作。
这样就可以避免出现这次我们组因为焊接技术不到位,在一点出反复焊接,又丑又不牢靠从而在桥式整流电路的效果中出现误差的错误了。
2、对于数据的记录上感受更深入了。
实验数据记录是为了得出实验结论的需要,没有确定的比例,不需要事先给自己规定好每隔多少取值。
比如二极管一开始我们取1v,2v,都没有什么电流,这段的数据就可以间隔很大的略记,而后面二极管被导通后,电流变化很快,这一段就要在小间隔下记录,才能绘制出理想的二极管输出曲线。
3、对于自己设计电路,我觉得首先要理解电路的功能,比如一开始我们就从网上找了很多钳位电路的例子但是都是对交流电的,而在本次实验中,处理的应该是直流电,这就不适用了。
第二,要好好学好模拟电路的课程,明白原理才能更好的设计。
比如钳位中,我们首先想到的应该是用到二极管的单向导电性,以及一个固定电源的作用,知道了这些,设计变得更有目的,才能快而准确。
不过这次实验也给我们带来了很大的惊喜,没想到自己设计的电路一下子就能工作了,体会到了工科学生那种在纸上演算,觉得原理上一定能实现,结果一做果然符合自己预期的快感。
感觉很有成就感。
篇四:pn结与二极管的实验报告实验报告一、实验题目:pn结与二极管二、实验目的:1、对半导体二极管的伏安特性有一些感性认识,测绘二极管伏安特性曲线;2、了解pn结测温原理,测绘pn结正向压降随温度变化的曲线。
三、实验原理:1、晶体二极管的导电特性晶体二极管无论加上正向电压或者反向电压,当电压小于一定数值时只能通过很小的电流,只有电压大于一定数值时,才有较大的电流出现,相应的电压可以称为导通电压。
正向导通电压小(锗管约0.3v,硅管约0.5v),反向导通电压(又称“击穿电压”,“耐压”)相差很大(几伏到几百伏)。
当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。
在这次实验中,就是要用伏安法测绘晶体二极管的正向、反向导电特性曲线。
测量电路如下:(a) ma表外接(a) ma表内接图1二极管正向伏安特性测量线路(a) ma表外接(a) ma表内接图2二极管反向伏安特性测量线路2、pn结正向压降随温度变化的变化。
pn结温度传感器相对于其他温度传感器说,具有灵敏度高、线性好、热响应快、易于实现集成化等优点。
pn结温度传感器的原理如下:pn结正向压降(vf )是正向电流(if)和温度(t)的函数:kbkrvf?vg(0)?(ln)t?lnteife其中,e是电子电荷,k是波尔兹曼常数,b是与结面积、掺杂浓度有关与温度无关的常数,r是常数(r?3.4),t是绝对温度,vg(0) 是绝对零度时pn结材料的导带底和价带顶的电势差。
kb上式中有两项,线性项:vl?vg(0)?(ln)t eif 1非线性项:vnl??ke可以证明,在恒流供电情况下,当温度较高(室温)时,pn结的vf 对t的依赖关系取lntr决于线性项vl,即pn结正向压降随温度升高而线性下降,这就是pn结测温原理。
在这次实验中,我们将测绘pn结正向压降随温度变化的曲线。
四、实验仪器: 1、仪器记录电阻元件v-a特性实验仪;pn结正向压降特性实验仪;加热测温装置。
2、仪器使用实验注意事项:(一)、电阻元件v-a特性实验仪的使用:(1)、在测量中电流不得大于2 (ma). (二)、pn结正向压降特性实验仪的使用:(1)、仪器的连线较多,芯线较细,所以要注意使用,不可用力过猛。
(2)、除加热线无极性区别外,其余都有极性区别,连接时不要接反。
特别注意,加热线绝对不要接错位置,否则一定会损毁仪器的。
o(3)、加热装置温度不要超过100c,长期过热使用,会造成连接线老化。
(4)、使用完毕后切断电源。
五、实验内容和步骤:. 1、测定正向特性曲线依照图1,正确连接线路后,[电压表用“2v”档,电流表用“2ma”挡],打开电源开关,将电源电压调至最小,逐步减小限流电阻,直到毫安表显示1.9999ma为止,记下相应的电流和电压。
然后调节电源或限流电阻,将电压表最后一位读数调成0,记录电压,电流。
以后按每降低0.010v测一次数据,直到伏特表的读数为0.5500v为止。
正向电流不用修正。
2、测定反向特性曲线依照图2,正确连接线路后,[电压表用“2v”档,电流表用“2ma”挡,接通线路开关,将电源电压逐步调大,同时逐步减小限流电阻,直到毫安表显示1.9999ma为止,记下相应的电流和电压。
然后调节电源电压或者限流电阻,在将电流调节为 1.8006,1.6006,1.4006、……….ma的情况下,记录相应的电压;其中0.0006ma为伏特计的电流,记录电流时应该自行减去。