极坐标系中二重积分的计算
合集下载
高等数学:第三讲 极坐标系下二重积分的计算

解:画出积分区域,极点 在区域 D 的外部 区域 D可表示为
D {(r, ) | 2 r 3, 0 2 }
因此Biblioteka ex2y2dxdy 2d
3 er2 rdr
D
0
2
y
2 r 3
4 x2 y2 9
O
x
0 2
例2
2 0
[
1 2
er2
] |32
d
2 ( 1 e9 1 e4 )d
D
o
i1 i
i
r ri1 r ri
x
极坐标系下计算二重积分
再由直角坐标与极坐标的关系
x r cos , y r sin
可得
D f ( x, y)dxdy D f ( x, y)d D f (r cos , r sin )rdrd
D
o
i1
i
r
ri 1
i
r ri
x
极坐标系下计算二重积分
因此
O
x
x2 y2dxdy
d
2sin
r rdr
D
0
0
例3
0
[
1 3
r
3
]
|2sin
0
d
8 sin3 d
30
32 9
y
x2 y2 2y
2 sin
•
0
O
x
谢谢
此时
D f (r cos , r sin )rdrd
r ( )
= d 0 f (r cos , r sin )rdr
r r( )
D
o x
例1
计算
D1
1 x2
利用极坐标系计算二重积分

π 2 π 2 a cos θ 0
f ( r , θ)dr ( a ≥ 0).
思考题解答
π π ≤θ≤ D: 2 2 , 0 ≤ r ≤ a cos θ
I = ∫ dr ∫
0 a r arccos a r arccos a
y
θ = arccos
D
r a r = a cosθ
a x
o
f ( r ,θ )dθ .
D
示为极坐标形式的二次积分为______________. 示为极坐标形式的二次积分为______________. 3 、 将 ∫ dx ∫
0 2 3x x
x2
f ( x 2 + y 2 )dy 化为极坐标形式的二
次积分为______________________. 次积分为______________________. 4 、 将 ∫ dx ∫
∫∫ e
D
x2 y2
dxdy = ∫ dθ∫ e
0 0
2π
a
r2
rdr
= π(1 e
a2
).
例3
求广义积分∫0 e
2
∞
x2
dx .
2
解 D1 = {( x , y ) | x + y ≤ R }
2
D2 S
D2 = {( x , y ) | x + y ≤ 2 R }
2 2 2
D1
D S2 D
二、利用极坐标系计算二重积分
∫∫ f ( x , y )dxdy
D
r = ri + ri
θ = θ i + θ i
ηi )xi yi
λ →0 i 1 = n
f ( r , θ)dr ( a ≥ 0).
思考题解答
π π ≤θ≤ D: 2 2 , 0 ≤ r ≤ a cos θ
I = ∫ dr ∫
0 a r arccos a r arccos a
y
θ = arccos
D
r a r = a cosθ
a x
o
f ( r ,θ )dθ .
D
示为极坐标形式的二次积分为______________. 示为极坐标形式的二次积分为______________. 3 、 将 ∫ dx ∫
0 2 3x x
x2
f ( x 2 + y 2 )dy 化为极坐标形式的二
次积分为______________________. 次积分为______________________. 4 、 将 ∫ dx ∫
∫∫ e
D
x2 y2
dxdy = ∫ dθ∫ e
0 0
2π
a
r2
rdr
= π(1 e
a2
).
例3
求广义积分∫0 e
2
∞
x2
dx .
2
解 D1 = {( x , y ) | x + y ≤ R }
2
D2 S
D2 = {( x , y ) | x + y ≤ 2 R }
2 2 2
D1
D S2 D
二、利用极坐标系计算二重积分
∫∫ f ( x , y )dxdy
D
r = ri + ri
θ = θ i + θ i
ηi )xi yi
λ →0 i 1 = n
用极坐标计算二重积分

D
x 2 y 2 4 dxdy
D1 D2
o
2
x
D1
(4 x 2 y 2 )dxdy
2
D2
( x 2 y 2 4)dxdy
3
0 0
d
2
( 4 ) d d
3
2
0 2
3 3
2
( 2 4 ) d
41 2 (4 )d 2 ( 4 )d . 0 2 2
2 3a 1 a . [ sin6 ] 6 0 4 2 6
2
作变换 x u, v , y u, v , 其中 C
1
2 u , v R
,
C
1
,
且
x, y u v 0 u, v u v f x, y d x, y f u , v , u , v u, v dudv
2
例 4.球体 x 2 y 2 z 2 a 2 被圆柱面 x 2 y 2 ax (a 0) 所截得的(含在圆柱面内的部分)立体的体积.
解:由对称性,得
z
x 2 y2 z 2 a 2
V 2
D
a 2 x 2 y 2 dxdy
4
D1
a 2 x 2 y 2 dxdy
2 3
例 2.将二次积分
0 dx 1 x
1
1 x 2
f ( x , y )dy 化为极坐标
下的二次积分.
二重积分的极坐标计算方法

⇒ D = { ( r ,θ ) 0 ≤ θ ≤
π
y=x
4
, 0 ≤ r ≤ f (θ ) }
D
1
4
D 由直线 y = x , y = 4 , 及 x = 0 围成的平面区域。 D = D x = { ( x , y ) 0 ≤ x ≤ 4, x ≤ y ≤ 4 }
1 x = 1 ⇒ r cos θ = 1 ⇒ r = ≡ f (θ ) cos θ 1 π ⇒ D = { ( r ,θ ) 0 ≤ θ ≤ , 0 ≤ r ≤ } 4 cos θ
2
7. 用极坐标系下计算二重积分的判断原则 i) 积分区域是圆的一部分或与圆有关; 积分区域是圆的一部分或与圆有关; ii) 被积函数适合在极坐标下的定积分计算(在直角坐标 被积函数适合在极坐标下的定积分计算( 下的定积分计算不便或根本无法计算)。 下的定积分计算不便或根本无法计算)。
计算二重积分
D = { (r,θ )
( x − 2) 2 + y 2 ≤ 4 }
−
π
-0.5
-1
2 2 (x − 2)2 + y2 = 4 ⇒ (r cosθ − 2)2 + r 2 sin2 θ = 4 2 ⇒ r − 4r cosθ = 0 ⇒ r = 4 cosθ ≡ f (θ ) π π ∴ D = { (r , θ ) − ≤ θ ≤ ,0 ≤ r ≤ 4 cosθ }
2. 二重积分在极坐标系下的形式
∫∫ f ( x, y)dσ = ∫∫ f (r cosθ , r sin θ ) ⋅ r ⋅ drdθ
D D
3. 平面曲线与平面区域在极坐标系下的表示形式
平面曲线的极坐标方程 :r = g (θ ) , 其中 g 为已知函数。 直角坐标曲线方程转换 为极坐标曲线方程:
π
y=x
4
, 0 ≤ r ≤ f (θ ) }
D
1
4
D 由直线 y = x , y = 4 , 及 x = 0 围成的平面区域。 D = D x = { ( x , y ) 0 ≤ x ≤ 4, x ≤ y ≤ 4 }
1 x = 1 ⇒ r cos θ = 1 ⇒ r = ≡ f (θ ) cos θ 1 π ⇒ D = { ( r ,θ ) 0 ≤ θ ≤ , 0 ≤ r ≤ } 4 cos θ
2
7. 用极坐标系下计算二重积分的判断原则 i) 积分区域是圆的一部分或与圆有关; 积分区域是圆的一部分或与圆有关; ii) 被积函数适合在极坐标下的定积分计算(在直角坐标 被积函数适合在极坐标下的定积分计算( 下的定积分计算不便或根本无法计算)。 下的定积分计算不便或根本无法计算)。
计算二重积分
D = { (r,θ )
( x − 2) 2 + y 2 ≤ 4 }
−
π
-0.5
-1
2 2 (x − 2)2 + y2 = 4 ⇒ (r cosθ − 2)2 + r 2 sin2 θ = 4 2 ⇒ r − 4r cosθ = 0 ⇒ r = 4 cosθ ≡ f (θ ) π π ∴ D = { (r , θ ) − ≤ θ ≤ ,0 ≤ r ≤ 4 cosθ }
2. 二重积分在极坐标系下的形式
∫∫ f ( x, y)dσ = ∫∫ f (r cosθ , r sin θ ) ⋅ r ⋅ drdθ
D D
3. 平面曲线与平面区域在极坐标系下的表示形式
平面曲线的极坐标方程 :r = g (θ ) , 其中 g 为已知函数。 直角坐标曲线方程转换 为极坐标曲线方程:
在极坐标系下计算二重积分

解: (1) 利用对称区间奇偶性,得 I x2dxdy D
Q D x 2d xdy D y 2dyd x
y
I1 (x2y2)dxdy 2D
D o 1x
1 2d 1r3dr
20 0
4
二重积分
综合题: 计算 I (x2xyex2y2)dxdy,其中: D
o
A
D
f
(x,
y)dxdy d
2()f(rcos,
1()
rsin)rdr.
二重积分
例 1 计算 x2 y2 d , D {( x, y) | 2 x2 y2 4 2}.
D
y
解:D 在极坐标系下可表示为
{ ( r ,) |0 2 , r 2 }
O
x
x2 y2d r rdrd
D
D
2d 2r2dr
0
2
0
r3
(
3
)
|2
d
2 7 3d 1 4 4
03
3
二重积分
例2. 计算 (x2y2)dxdy, 其中D 为由圆 x2 y2 2y, D
x2 y2 4y及直线 y 3x 0, x 3y 0, 所围成的
x
x y
1 x2 y2
是关于Y的奇函数,
D
xy 1x2 y2
dxdy0
D
xy1 1x2 y2
dxdy
D
1 1x2 y2
dxdy
2
2d
0
1r 0 1r2 dr
3_二重积分的计算(极坐标)

第二节 二重积分的计算
二、利用极坐标计算二重积分
*三、二重积分的换元法
机动
目录
上页
下页
返回
结束
二 极坐标下二重积分的计算
(一)极坐标知识回顾
1定义:在平面取一点O称为原点, 从原点出发作一条射线
称为极轴. 平面上任意点P 与原点距离为 r , 向量O P与极轴为夹角为 , 则点P由数组 , r 唯一确定, 称数组 , r 是点P的极坐标.
例2续计算
其中D 为 1 x 2 y 2 4
y
0 2 解: 在极坐标系下 D : 1 r 2
D3 D1
0
D2
D
x
故
I r rdrd
2 D
D4
d
0
2
2
1
r dr
3
1 4 2 15 2 r |1 2 4
I
D1 D2 D3 D4
. .
D: =1和 =2
围成
: 0 2
0
1
D
2 x
此题用直角系算 麻烦,需使用极 坐标系!
I
D
f ( x , y )dxdy
2π
0
dθ f ( r cosθ , r sin θ )rdr
2 1
机动 目录 上页 下页 返回 结束
例 如图 直线
2 法一 r sin
y2
2
y
r
P , r
l
0
x
法二: 由直线直角坐标方程为 y 2 得 r sin 2 2 故直线极坐标方程为 r 0 sin
二、利用极坐标计算二重积分
*三、二重积分的换元法
机动
目录
上页
下页
返回
结束
二 极坐标下二重积分的计算
(一)极坐标知识回顾
1定义:在平面取一点O称为原点, 从原点出发作一条射线
称为极轴. 平面上任意点P 与原点距离为 r , 向量O P与极轴为夹角为 , 则点P由数组 , r 唯一确定, 称数组 , r 是点P的极坐标.
例2续计算
其中D 为 1 x 2 y 2 4
y
0 2 解: 在极坐标系下 D : 1 r 2
D3 D1
0
D2
D
x
故
I r rdrd
2 D
D4
d
0
2
2
1
r dr
3
1 4 2 15 2 r |1 2 4
I
D1 D2 D3 D4
. .
D: =1和 =2
围成
: 0 2
0
1
D
2 x
此题用直角系算 麻烦,需使用极 坐标系!
I
D
f ( x , y )dxdy
2π
0
dθ f ( r cosθ , r sin θ )rdr
2 1
机动 目录 上页 下页 返回 结束
例 如图 直线
2 法一 r sin
y2
2
y
r
P , r
l
0
x
法二: 由直线直角坐标方程为 y 2 得 r sin 2 2 故直线极坐标方程为 r 0 sin
经济数学在极坐标系下二重积分的计算

A
D
( )
d f (r cos ,r sin )rdr.
0
(4)区域如图4
0 2, 0 r ( ).
r ( ) D
o
A
f (r cos ,r sin )rdrd
D
图4
2
( )
d f (r cos ,r sin )rdr.
0
0
如果积分区域D为圆、半圆、圆环、扇形域等, 或被积函数f(x2+y2)形式,利用极坐标常能简化计算.
解 由对称性,可只考虑第一象限部分,
D1
D 4D1
注意:被积函数也要有对称性.
sin( x2 y2 )
dxdy 4
sin( x2 y2 )
dxdy
D
x2 y2
D1
x2 y2
4
2 d
2 sin r
rdr 4.
0
1r
例 5 计算 ( x2 y2 )dxdy,其中 D 为由圆
D
x2 y2 2 y, x2 y2 4 y及直线 x 3y 0,
定r的 上 下 限 :
任意作过极点的半射线与平面区域相交, 由穿进点,穿出点的极径得到其上下限.
具体地(如图)
(1)区域如图1
r 2()
,
r 1()
D
1( ) r 2( ).
o
A
f (r cos ,r sin )rdrd
图1
D
d
2( ) f (r cos , r sin )rdr.
解 根据对称性有 D 4D1
在极坐标系下
D1
x2 y2 a2 r a,
( x2 y2 )2 2a2( x2 y2 ) r a 2cos2 ,
二重积分的极坐标计算方法

sin cos
转换 x , y
r 2 cos2 r 2 sin 2 1 r 1
即此曲线(圆)的极坐标方程为 r g( ) 1 .
例如 : 抛物线 y x2
r sin r2 cos2 r g( ) tan sec
平面区域的极坐标表示形式:
D { ( r, ) , g ( ) r g ( ) }
y
例 计算二重积分 I e xy d ,其中 D 由直线 x = 0 , y = 0 与
x + y = 1 所围成。 D
解:区域 D 如图所示.
y
D
易见,D { (x, y) 0 x 1 , 0 y 1 x }
{ (r, ) 0 , 0 r
1
}
2
sin cos
x
1
y
1
2
无穷条射线(段)束的组合
-2
-1
-1
-2
1
2
-2
1 0.5
2 1.5
1 0.5
-1
1
2
-0.5
0.5
1
1.5
2
-1
0.5 0.4 0.3 0.2 0.1
0.2
0.4
0.6
0.8
1
4 3 2 1
-2 -1
1
2
1 0.8 0.6 0.4 0.2
0.1
0.2
0.3
0.4
0.5
1
yx
D
1
4
D
yx
d d
4a2 x2 y2
0
r
rdr
4a2 r 2
4
2 a sin 0
r 2 asin t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
目录 上一页 下一页 退 出
(3)若极点O在区域D′内,且D′的边界曲线为连续封 闭曲线r=r(θ) (0≤θ≤2π),如下图所示,则
D ({ r,︱) 0 2 ,0 r r( )},
2π
r( )
f (r cos, r sin )rdrd 0 d f (r cos, r sin)rdr
2 32 32
32
3
一般地,当二重积分的积分区域为圆域或圆域一部分,
被积函数为
f ( x 2 ,y 2 ) f或( y ) f等(x形) 式时,用
极坐标计算较方便.
x
y
目录 上一页 下一页 退 出
再根据平面上的点的直角坐标(x,y)与该点的极坐标 (r,θ)之间的关系:
目录 上一页 下一页 退 出
x=rcosθ,y=rsinθ, 得
f (x , y )dσ f (r cos θ,r sin θ)rdrdθ
D
D
其中D′是将D变换成极坐标(r,θ)所对应的区域.
D的三种情形
(1) 若极点O在区域D′之外,且D′由射线θ=α,θ=β和
x
D
D
4π
2cos θ
3 2π
dθ
1
tan θrdr
3
4π 3 2π 3
t
an
θ(
1 2
r
2
2cos 1
θ
)dθ
4π 3 2π 3
t
an
θ(2cos2
θ
1)dθ 2
目录 上一页 下一页 退 出
( 1 cos 2θ 2
1 ln 2
cos θ )
4π 3 2π 3
1 cos 8π 1 cos 4π 1 ln cos 4π 1ln cos 2π 0
)
2 0
d
1 2
2π
(1
e4 )d
π(1
e4 ).
0
目录 上一页 下一页 退 出
例2
计算二重积分
y x
dσ
,其中积分区域
D
D ({ x, y︱)1 x2 y2 2x}.
解 画出积分区域D如下图所示,D用极坐标表示为
D' {(r,︱) 4 ,1 r 2cos},
3
3
于是
y dσ tan θ r drdθ
§8.3 极坐标系中二重积分的计算
当积分区域为圆或圆的一部分时,用极坐标计算二重 积分可能会比较简单. 如右图所示,设有极坐标系下的积分区 域D,我们用一组以极点为圆心的同心 圆(r =常数)及过极点的一组射线(θ=常 数)将区域D分割成n个小区域.易证得
rr· (r 0, 0). 从而小区域的面积元素为 d rdrd.
两条连续曲线 则
r r1( ),围r 成r2.(如) 下图所示,
目录 上一页 下一页 退 出
D {(r, ) | , r1( ) r r2 ( )},
dθ
r2(θ) f (r cos θ,r sin θ)rdr
D
α
r1 (θ)
(2) 若 r1( ) 0,即极点O在区域D′的边界上,且D′由
射线θ=α,θ=β和连续曲线r=r(θ)所围成,如下图所示, 则
D ({ r,|) ,0 r r( )},
β
r (θ)
f (r cos θ,r sin θ)rdrdθ α dθθ f (r cos θ,r sin θ)rdr
D'
目录 上一页 下一页 退 出
例1 计算 e y2 x2 dxdy,D为圆x2 y2 4所围成的区域. D
解 积分区域是一个圆域,且
D ({ r,︱) 0 2 ,0 r 2},
于是
ey2x2 dxdy
er2 rdrd
2π
d
2 rer2 dr
0
0
D
D'
2π ( 1 er2 02