二重积分的计算方法

合集下载

二重积分的计算方法

二重积分的计算方法
线与区域边界相交不多于两个交点.
若区域如图, 则必须分割.
在分割后的三个区域上分别 使用积分公式
D3 D1
D2
.
D
D1
D2
D3
例 1
改变积分
1
dx
1 x
f ( x, y)dy 的次序.
00
解 积分区域如图
原式
1 1 y
dy f ( x, y)dx.
(6)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(7)若D对称于直线y x,则 f ( x, y)d f ( y, x)d .
D1
D2
(或 f ( x, y)d f ( y, x)d ). 对称于直线y x

(t

1 2
sin
2t
)

|04
1
4 说明:
(11分)
形如积分 f ( x, y) d , max{ f ( x, y), g( x, y)}d ,
D
D
min{ f ( x, y), g( x, y)}d , sgn{ f ( x, y) g( x, y)}d
D
D
等的被积函数均应当做分区域函数看待,利用积分的
的可加性分区域积分。
(17)(本题满分 11 分)2008 年数学二、三 y
计算 max{xy,1}dxdy,其中
D
D={(x, y) | 0 x 2,0 y 2}.
解 曲线xy 1将区域D分成
2
D2 D1
o
2x
两个区域D1和D2
D

二重积分的几种计算方法

二重积分的几种计算方法

二重积分的几种计算方法二重积分是数学分析的重要组成部分,二重积分是定积分的推广,是二元函数在一个平面的一个区域的积分。

计算二重积分的一般原则是将二重积分化为二次积分(即累次积分)加以计算。

求积的困难主要来自两个方面:一是被积函数的复杂性,二是积分区域的多样寻。

不同顺序二次积分计算的难易程度往往是不同的,又是错选积分顺序导致积分无法计算,有的二重积分必须通过换元才能求出。

计算二重积分的一般步骤如下:1) 画出积分区域D 的草图; 2) 求交点;3) 选择直角坐标系下计算,或极坐标系下计算; 4) 选择积分次序;5) 化二重积分为二次积分; 6) 计算。

一.二重积分的直接计算方法所谓连续函数(,)f x y 展步在有限封闭可求积二位域Ω内的二重积分乃是指数max 0max 0(,)lim(,)iji j x ijy f x y dxdy f x yx y ∆→Ω∆→=∆∆∑∑⎰⎰其中11,i i i j j j x x x y y y --∆=-∆=-,而其和为对所有j i ,,使Ω∈),(j i y x 的那些值来求的。

若域Ω有下面的不等式所给出,b x a ≤≤ )()(21x y y x y ≤≤其中)(1x y 和)(2x y 为闭区间[]b a ,上的连续函数,则对应的二重积分可按下面的公式计算⎰⎰⎰⎰Ω=bax y x y j i dy y x f dx dxdy y x f )()(21),(),(例1. 计算⎰⎰Dxydxdy,其中区域D 是由直线x y =与抛物线2x y =所围成的区域。

解: 积分区域D 如图1所示,有定义D 是简单区域,边界x y =与2x y =得交点为)0,0(和)1,1(。

若选择先对y 积分,则过x 轴上)1,0(内的任一点p 作y 轴的平行线,该线的与D 下边界交点在2x y =上,与D 上边界交点在x y =上,所求积分为2211002xxx x Dy xydxdy dx xydy x dx ⎡⎤==⋅⎢⎥⎣⎦⎰⎰⎰⎰⎰241)(211053=-=⎰dx x x 若选择先对x 积分,同理可得⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡==1021021yyyyDy x xydx dy xydxdy241)(211053=-=⎰dx y y图1若求二重积分时,遇到复杂区域,应将复杂区域化成若干个简单区域,然后根据)(,),(),(),(2121D D D y x f y x f dxdy y x f D D D+=+=⎰⎰⎰⎰⎰⎰,来计算。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法二重积分是微积分中的一个重要概念,用于计算平面上某个区域的面积、质量、质心等问题。

在本文中,我们将介绍二重积分的计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分。

一、直角坐标系下的二重积分计算方法在直角坐标系下,二重积分的计算通常通过累次积分的方式进行。

设有一个二元函数 f(x, y) 在某一闭区域 D 上连续,则 D 可以表示为水平投影区域 D' 在直角坐标系上的投影区域,并且可以将 D 划分成许多小的面积 dA。

二重积分的计算可以表示为:∬Df(x, y)dA = ∫∫Df(x, y)dxdy其中,D 表示闭区域 D 上的面积,f(x, y) 是定义在 D 上的二元函数,dA 表示面积元素。

根据累次积分的原理,上式可以改写为:∬Df(x, y)dxdy = ∫[a, b]∫[c(x), d(x)]f(x, y)dydx其中,[a, b] 表示 x 的取值范围,c(x) 和 d(x) 分别表示 D' 在 x 轴上的投影区间的下边界和上边界。

根据具体问题,我们可以选择先对 x进行积分,再对y 进行积分,或者先对y 进行积分,再对x 进行积分。

通过这样的累次积分方式,可以计算得到二重积分的结果。

二、极坐标系下的二重积分计算方法在某些问题中,使用极坐标系进行二重积分的计算更加方便。

对于闭区域 D 在极坐标系下的表示,我们可以将二重积分的计算公式改写为:∬Df(x, y)dA = ∫∫Df(r, θ)rdrdθ其中,D 表示闭区域 D 上的面积,f(r, θ) 是定义在 D 上的二元函数,dA 表示面积元素。

根据累次积分的原理,上式可以改写为:∬Df(r, θ)rdrdθ = ∫[α, β]∫[g(θ), h(θ)]f(r, θ)rdrdθ其中,[α, β] 表示θ的取值范围,g(θ) 和h(θ) 分别表示 D 在极坐标系下的投影区间的内半径和外半径。

同样地,通过选择先对θ进行积分,再对r进行积分,或者先对r进行积分,再对θ进行积分的方式,可以计算得到二重积分的结果。

二重积分的算法

二重积分的算法

二重积分的算法二重积分是微积分中的重要概念之一,它在许多科学和工程领域中都有广泛的应用。

二重积分的算法是求解二重积分的方法和步骤,下面将介绍二重积分的算法。

一、二重积分的定义二重积分是对二元函数在有界闭区域上的积分。

设函数f(x,y)在闭区域D上有定义,其中D是一个有界闭区域,D的边界可以用一组参数方程x=x(t),y=y(t),a≤t≤b表示。

则称函数f(x,y)在闭区域D 上的二重积分为:∬D f(x,y) dxdy二、二重积分的计算方法二重积分的计算方法有多种,常见的有直角坐标系下的直接计算法和极坐标系下的极坐标变换法。

1. 直接计算法直角坐标系下的直接计算法是将二重积分转化为两个一重积分的叠加,按照积分的定义逐个计算。

具体步骤如下:(1)确定积分区域D的范围和方向;(2)将二重积分转化为两个一重积分,先对y进行积分,再对x进行积分;(3)根据积分区域D的范围和方向,确定积分的上下限;(4)按照一重积分的定义计算每个一重积分;(5)将两个一重积分的结果相加,得到二重积分的结果。

2. 极坐标变换法极坐标系下的极坐标变换法是通过极坐标系下的变换公式将二重积分转化为极坐标系下的一重积分。

具体步骤如下:(1)确定积分区域D的范围和方向;(2)通过极坐标变换公式将直角坐标系下的二重积分转化为极坐标系下的一重积分;(3)根据积分区域D的范围和方向,确定极坐标下的积分范围和方向;(4)按照一重积分的定义计算极坐标下的一重积分;(5)得到极坐标下的一重积分后,根据极坐标变换公式将其转化为直角坐标系下的二重积分。

3. 其他计算方法除了直接计算法和极坐标变换法外,还有其他一些特殊情况下的计算方法,如利用对称性、变量替换等方法进行计算。

具体使用哪种方法取决于具体的问题和积分区域的特点。

三、二重积分的性质二重积分具有一些重要的性质,包括线性性、保号性、保序性、可加性等。

这些性质在计算二重积分时起到了重要的作用,可以简化计算过程和提高计算效率。

计算二重积分的几种简便方法

计算二重积分的几种简便方法

计算二重积分的几种简便方法
1. 直接计算法:
这是最常见的计算二重积分的方法。

直接按照积分的定义,将被积函数与微元面
积相乘后进行求和即可。

一般来说,要根据具体的被积函数和积分区域的形状,选择合适
的坐标系来进行计算。

3. 对称性法:
如果被积函数在某个轴或者平面上具有一定的对称性,可以利用对称性简化计算。

如果被积函数关于某个轴对称,可以将积分区域分成两部分,然后只计算其中一部分的积分,最后再乘以2。

类似地,如果被积函数关于某个平面对称,可以将积分区域分成两个
对称的部分,然后只计算其中一个部分的积分,最后再乘以2。

4. 等值线法:
对于一些复杂的被积函数,可以通过画出函数的等值线图来简化计算。

通过观察
等值线的形状和分布,可以选择合适的积分路径和积分限,使得函数在该路径上的积分更
容易计算。

5. 枚举法:
当积分区域非常复杂、函数表达式非常复杂或者积分路径不容易选择时,可以考
虑使用枚举法进行计算。

将积分区域分成若干个简单的子区域,然后分别计算每个子区域
的积分,最后将它们相加得到最终的积分值。

二重积分的计算方法

二重积分的计算方法
c
D
x 2( y)
f ( x, y)d
d
dy
2 ( y) f ( x, y)dx.
D
c
1( y)
Y型区域的特点:穿过区域且平行于x轴的直
线与区域边界相交不多于两个交点.
对非X、Y型区域
若区域如图, 则必须分割. 在分割后的三个区域上分别 使用积分公式
.
D
D1
D2
D3
例 1
改变积分
1
dx
1x f ( x, y)dy 的次序.
00
解 积分区域如图
原式
1 1 y
dy f ( x, y)dx.
00
例 2 改变积分
1
dx
2 x x2
f ( x, y)dy
2
dx
2x f ( x, y)dy的次序.

0
0
1
0
解 积分区域如图
原式
1
2 y
dy
0
1
1 y2
f ( x, y)dx.
D
例8 解 先去掉绝对值符号,如图
D3
D1
D2
1
dx
x2 ( x2 y)dy
1
dx
1
( y x2 )dy
11.
1 0
1
x2
15
更多练习题
注意:
1、奇偶性
2、轮换性
f ( x, y)dxdy f ( y, x)dxdy
D
D
1 sin2( x y)dxdy cos( x y) dxdy
平面的方程
点 x0, y0, z0 到平面Ax By Cz D 0的距离
d | Ax0 By0 Cz0 D | A2 B2 C2

计算二重积分的几种简便方法

计算二重积分的几种简便方法

计算二重积分的几种简便方法一、极坐标法在二维平面上,如果点P在直角坐标系中的坐标为(x,y),那么以O点为极点,OP 线段所在直线为极轴的极坐标(r,θ)满足以下关系式:x=r*cosθy=r*sinθ将函数f(x,y)转化为g(r,θ)表示,则有:根据二重积分的定义式,可以得到用极坐标表示的二重积分:∬Df(x,y)dxdy=∬g(r*cosθ,r*sinθ)rdrdθ其中,D为定义域,r为极径。

二、对称性法对称性法即利用函数在定义域内的对称性简化计算。

具体方法如下:1. 翻折对称:如果定义域D为一个轴对称图形,那么可以将积分区域缩小一半,只计算一侧再乘以2。

3. 奇偶性:如果函数f(x,y)满足奇偶性,即满足f(-x,y)=-f(x,-y)或f(-x,-y)=f(x,y),则可以将定义域限定在一个象限内(通常是第一象限),依次计算再乘以4或2。

轮换对称法即利用极坐标系下的轮换对称性简化计算。

对于一个n边形,将其边每隔2π/n取一条,则这些边的边长相等,角度之和为2π,因此在极坐标系下具有轮换对称性。

具体方法如下:1. 将定义域D分成n份,每份的极角为(k-1)2π/n和k2π/n(k=1,2,...,n)。

2. 对于每份,取中心点和每条边上的一个点,计算这些点构成的区域上的积分。

3. 最后将n份的积分相加即得到原积分。

四、正交性法正交性法即根据正交性定理,将一些特殊的函数乘在被积函数上,使之变成正交函数的线性组合,从而简化计算。

常用的正交函数有勒让德多项式、柯西-斯瓦茨函数等。

1. 将f(x,y)表示为一些正交函数的线性组合。

2. 考虑在正交函数构成的正交系下计算积分。

3. 利用正交性定理,将积分转化为正交基上的系数计算,从而得到简化后的积分表达式。

五、变换法变换法即通过适当的变换将一些定义域较为复杂的积分转化为更加简单的形式。

常见的变换有参数化、奇异变换、极坐标变换等。

1. 找到适当的变换使定义域变得简单。

求二重积分的方法

求二重积分的方法

求二重积分的方法在数学中,二重积分是一种重要的积分形式,它在物理、工程、经济学等领域都有广泛的应用。

求解二重积分的方法有很多种,本文将介绍几种常见的方法,希望能够帮助大家更好地理解和掌握二重积分的计算技巧。

一、直角坐标系下的二重积分。

在直角坐标系下,二重积分的计算通常采用先对x进行积分,再对y进行积分的方法。

对于给定的二元函数f(x,y),其在有界区域D上的二重积分可以表示为:∬f(x,y)dxdy。

其中积分区域D可以用不等式形式表示为D={(x,y)|a≤x≤b,g1(x)≤y≤g2(x)},此时二重积分可以表示为:∬f(x,y)dxdy=∫(∫f(x,y)dy)dx。

其中内层积分是对y进行积分,外层积分是对x进行积分。

在实际计算中,可以先对y进行积分,再对x进行积分,也可以反过来进行计算,选择合适的积分顺序可以简化计算过程。

二、极坐标系下的二重积分。

在某些情况下,使用极坐标系进行二重积分的计算会更加方便。

对于给定的二元函数f(x,y),其在极坐标下的二重积分可以表示为:∬f(x,y)dxdy=∫(∫f(rcosθ,rsinθ)rdrdθ。

其中积分区域D可以用极坐标形式表示为D={(r,θ)|α≤θ≤β, h1(θ)≤r≤h2(θ)}。

在极坐标系下,二重积分的计算可以简化为对r和θ的积分,适用于一些具有极向对称性的函数。

三、变量代换法。

对于一些复杂的二重积分,可以通过变量代换的方法来简化计算。

常见的变量代换包括直角坐标系到极坐标系的转换、直角坐标系到柱坐标系的转换、直角坐标系到球坐标系的转换等。

通过适当的变量代换,可以将原积分区域D变换为一个更简单的区域,从而简化积分的计算。

四、二重积分的性质。

在计算二重积分时,还可以利用二重积分的性质来简化计算。

例如,二重积分具有线性性质,可以将一个复杂的二重积分拆分为若干个简单的二重积分相加;二重积分的积分区域可以进行分割,将原积分区域分割为若干个简单的子区域,分别计算再相加等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆三峡学院数学分析课程论文二重积分的计算方法院系数学与统计学院专业数学与应用数学(师范)姓名年级 2010级学号指导教师刘学飞2014年5月二重积分的计算方法(重庆三峡学院数学与统计学院10级数本1班)摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算引言二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.1. 预备知识1.1二重积分的定义设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niiii f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且(),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰.1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰.1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且()12,D D f x y d σ⎰⎰()()12,,D D f x y d f x y d σσ=±⎰⎰⎰⎰1.3在矩形区域上二重积分的计算定理设(),f x y 在矩形区域D [][],,a b c d =⨯上可积,且对每个[],x a b ∈,积分(),dcf x y dy ⎰存在,则累次积分(),bdacdx f x y dy ⎰⎰也存在,且(),Df x y d σ⎰⎰(),b dacdx f x y dy =⎰⎰.同理若对每个[],y c d ∈,积分(),baf x y dx ⎰存在,在上述条件上可得(),Df x y d σ⎰⎰(),d bcady f x y dx =⎰⎰2.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型、Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法.2.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y y x a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则(),Df x y d σ⎰⎰()()()21,by x ay x dx f x y dy =⎰⎰即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有(),Df x y d σ⎰⎰()()()21,dx y cx y dx f x y dy =⎰⎰例1求两个底面半径相同的直交圆柱所围立体的体积V .解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积. 第一卦限部分的立体式以z =为曲顶,以四分之一圆域D:00,y x a ⎧⎪≤≤⎨≤≤⎪⎩为底的曲顶柱体,所以2230012()83a a DV dx a x dx a σ===-=⎰⎰于是3163V a =. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.2.2 二重积分的变量变换公式定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D,函数(),x x u v =,(,)y y u v =在∆内分别具有一阶连续偏导数且它们的函数行列式 ()()(),,0,x y J u v u v ∂=≠∂, (),u v ∈∆,则()()()()(),,,,,Df x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰.用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例2 求x y x yDedxdy -+⎰⎰,其中D 是由0x =,0y =,1x y +=所围区域.解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =+,1()2y u v =-,则 ()11122,011222J u v ==>-. 即111100111()2224x y u u v x yvvv De e edxdy e dudv dv e du v e e dv ---+-∆-==-=⎰⎰⎰⎰⎰⎰⎰ 例3 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ(0,0)m n αβ<<<<.解 D 的面积()DD dxdy μ=⎰⎰.为了简化积分区域,作变换T : 2u x v =,u y v=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ∆=⨯.由于()234212,01uu v v J u v u v vv-==>-,(),u v ∈∆, 所以()()22334433()6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--====⎰⎰⎰⎰⎰⎰ 2.3 用极坐标计算二重积分定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立()(),cos ,sin (,)Df x y dxdy f r r J r drd θθθθ∆=⎰⎰⎰⎰.其中cos sin (,)sin cos r J r r r θθθθθ-==.当积分区域是源于或圆域的一部分,或者被积函数的形式为()22,f x y 时,采用该极坐标变换.二重积分在极坐标下化累次积分的计算方法:(i )若原点O D ∉,且xy 平面上射线θ=常数与D 边界至多交与两点,则∆必可表示成12()()r r r θθ≤≤,αθβ≤≤,于是有21()()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则∆必可表示成12()()r r θθθ≤≤,12r r r ≤≤,所以2211()()(,)(cos ,sin )r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰.(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成0()r r θ≤≤,02θπ≤≤.所以2()(,)(cos ,sin )r Df x y dxdy d f r r rdrπθθθθ=⎰⎰⎰⎰.(iii)若原点O 在D 的边界上,则∆为0()r r θ≤≤,αθβ≤≤, 于是()(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰例4 计算22()xy DI e d σ-+=⎰⎰,其中D 为圆域: 222x y R +≤.解 利用极坐标变换,由公式得2220(1)Rr R I re dr e ππ--==-⎰⎰.与极坐标类似,在某些时候我们可以作广义极坐标变换:T :cos sin x ar y br θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤, cos sin (,)sin cos a ar J r abr b br θθθθθ-==.如求椭球体2222221x y z a b c++≤的体积时,就需此种变换.2.4利用二重积分的几何意义求其积分当(,)0f x y ≥时,二重积分(,)Df x y dxdy ⎰⎰在几何上就表示以(,)z f x y =为曲顶,D 为底的曲顶体积.当(,)1f x y =时,二重积分(,)Df x y dxdy ⎰⎰的值就等于积分区域的面积.例5计算:DI σ=,其中D :22221x y a b +≤.解因为被积函数z =0≥,所以I 表示D为底的z =为顶的曲顶柱体体积.由平行xoy 面的截面面积为()(1)A x ab z π=-,(01)z ≤≤,根据平行截面面积为已知的立体体积公式有101(1)3I ab z dz ab ππ=-=⎰2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算2.51利用变量代换计算设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a =时,t α=;当x b =时,t β=。

设(,)f x y 在D 上连续,且存在(,)P x y ,(,)x y D ∈使得(,)Pf x y y∂=∂,则 '(,){[(),()][(),]}()Df x y dxdy P t t P t c t dt βα=Φψ-ΦΦ⎰⎰⎰2.52利用格林公式计算定理 若函数(,)P x y ,(,)Q x y 在闭区域D 上连续,且有连续的一阶偏导数,则有()LDQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰这里L 为区域D 的边界线,并取正方向. 计算步骤:(1)构造函数(,)P x y ,(,)Q x y 使Q x ∂∂(,)Pf x y y∂-=∂,但(,)P x y ,(,)Q x y 在D 上应具有一阶连续偏导数;(2)利用格林公式化曲线积分求之. 例6计算34Dx y dxdy ⎰⎰,D 是由椭圆cos x a θ=,sin y b θ=所围成.解法一(利用变量代换)设1D 为D 在第一象限,则135242425353520444cos ,sin cos sin (sin )5564D D a b x y dxdy x y dxdy x y dx x a y b a b d ππθθθθθθ====-=⎰⎰⎰⎰⎰⎰作变换 解法二(利用格林公式)令2515P x y =-,0Q =,则24P x y y ∂=-∂,0Q x ∂=∂. 352242525011(cos )(sin )(sin )5564L Da b x y dxdy x y dx a b a d ππθθθθ=-=--=⎰⎰⎰⎰ 2.7 积分区域具有对称性的二重积分的简便算法2.71积分区域关于坐标轴对称性质1 若(,)f x y 在区域D 内可积,且区域D 关于y 轴(或x 轴)对称,则二重积分满足下列性质:10,(,)(,)2(,),(,)DDf x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为关于(或)的奇函数为关于(或)的偶函数 其中1D 为区域D 被y 轴(或x 轴)所分割的两个对称子域之一. 例7 计算(23)Dh x y dxdy --⎰⎰,其中D 是由222xy R +=所围成的闭区域.解 由于积分区域D 关于x 轴、y 轴均对称性,只需考虑被积函数(,)23f x y h x y =--关于x 或y 的奇偶性.易见,(,)f x y 关于x 或y 既非奇函数,也非偶函数.若记()2f x x =-,()3f y y =-,则(,)()()f x y h f x f y =++且()f x 为x 的奇函数,()f y 为y 的奇函数.由此由性质1,有41122000cos()cos()0222cos()2cos()12yy D dxdy LDy y xx x y x y x y D D x y dxdy dy x y dx ππππππ-=====≤+=≤++≤=+=+=-⎰⎰⎰⎰,20Dhdxdy hR π=⎰⎰故有(,)Df x y dxdy =⎰⎰()Df x dxdy ⎰⎰+()Df y dxdy ⎰⎰+Dhdxdy ⎰⎰=Dhdxdy ⎰⎰=2hR π2.72积分区域关于某直线L 对称性质2 若(,)f x y 在区域D 内可积,且区域D 关于L 对称,则二重积分满足下列性质:10,(,)(,)2(,),(,)DD f x y L f x y dxdy f x y dxdy f x y L ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为关于直线的奇函数为关于直线的偶函数其中1D 为区域D 被L 所分割的两个对称子域之一. 例8 求,其中D 由直线0y =,y x =,2x π=围成.解 对任意(,)x y D ∈,有0x y π≤+≤.而当02x y π≤+≤时,cos()0x y +≥.当2x y ππ≤+≤时,cos()0x y +≤.故作直线L :2x y π+=,把D 分成1D 和2D 两部分,而1D 和2D 关于直线L 对称.又cos()x y +关于直线L 偶对称.故}cos()Dx y dxdy +⎰⎰41202cos()2cos()12yyD x y dxdy dy x y dx πππ-=+=+=-⎰⎰⎰⎰2.8 运用导数的定义求极限 例9 计算)0(ln )ln(lim0>-+→h xhx h x思路:对具有000)()(limx x x f x f x --→或h x f h x f h )()(lim 000-+→形式的极限,可由导数的定义来进行计算. 解:原式=hx h x 1|)'(ln == 2.9运用定积分的定义求极限]3[例10计算01lim 1cosn n→++ 思路:和式极限,利用定积分定义10011lim ()()n n i if f x n n →==∑⎰dx 求得极限.解:原式11lim2nninxdxπ→=====⎰⎰2.10 运用微分中值定理求极限例11:计算sinlimsinx xxe ex x→--思路:对函数()f x在区间[sin,]x x上运用拉格朗日中值定理,即可求得.解:原式lim1eαα→==(其中α在[sin,]x x区间内)总上所述,在不同的类型下,所采用的技巧是各不相同的,求极限时,可能有多种求法,有难有易,也可能在求题的过程中,需要结合上述各种方法,才能简单有效的求出,因此学会判断极限的类型,另外对以上的解法能活学活用,是必要的.参考文献:[1]华东师范大学数学系. 数学分析(第五版)[M]. 高等教育出版社,2001.[2]钱志良. 谈极限的求法[J]. 常州信息职业技术学院学报,2003.[3]李占光. 函数极限的计算方法[J]. 长沙民政职业技术学院学报,2004.Calculation Method of Double Integral(Class one of Grand 2010, Mathematics and Application Mathematics, School of Mathematics and Statistics, Chongqing Three Georges University)Abstract:The write sums up in this article several ways of exacting the limit by the means of definition, formula,nature, theorem and so on.Key Words:function limit;computing method;L’Hospita l rules; four fundamental rules10。

相关文档
最新文档