二重积分的计算法
二重积分的计算法

I f ( x, y)dxdy
D
y
d y
x1 (y)
c
x2(y)
D
0 x
I=
x ( y) f ( x , y)dx x ( y )
二重积分计算的两种积分顺序
D: x1(y) x x2(y) cyd
I f ( x, y)dxdy
D
y
d y
x1 (y)
I =
d
dy
x ( y) f ( x , y)dx
c
x ( y )
I=
y ( x) f ( x, y)dy y ( x )
二重积分计算的两种积分顺序
D: x1(y) x x2(y) cyd
I f ( x, y)dxdy
D
D: y1(x) y y2(x)
axb
y
d y
x1 (y)
c
cyd
z
0
c
z=f (x,y)
y
x=(y)
d
y
D
x=(y) x
I f ( x, y)dxdy
D
D: (y) x (y)
cyd
ψ( y)
Q( y ) = f ( x, y)dx φ( y) d I = c Q( y)dy
x
z
z f (x, y)
y y
.
z=f (x,y)
0
c
Q( y) x=(y)
D
D1
D2
D3
例1 求 ( x2 y)dxdy,其中D是抛物线y x2和
D
x y2 所围平面闭区域. 解 两曲线的交点
y
y x2
x (1,1)
二重积分的计算方法

若区域如图, 则必须分割.
在分割后的三个区域上分别 使用积分公式
D3 D1
D2
.
D
D1
D2
D3
例 1
改变积分
1
dx
1 x
f ( x, y)dy 的次序.
00
解 积分区域如图
原式
1 1 y
dy f ( x, y)dx.
(6)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(7)若D对称于直线y x,则 f ( x, y)d f ( y, x)d .
D1
D2
(或 f ( x, y)d f ( y, x)d ). 对称于直线y x
(t
1 2
sin
2t
)
|04
1
4 说明:
(11分)
形如积分 f ( x, y) d , max{ f ( x, y), g( x, y)}d ,
D
D
min{ f ( x, y), g( x, y)}d , sgn{ f ( x, y) g( x, y)}d
D
D
等的被积函数均应当做分区域函数看待,利用积分的
的可加性分区域积分。
(17)(本题满分 11 分)2008 年数学二、三 y
计算 max{xy,1}dxdy,其中
D
D={(x, y) | 0 x 2,0 y 2}.
解 曲线xy 1将区域D分成
2
D2 D1
o
2x
两个区域D1和D2
D
二重积分计算法

2
12
22
dy f (x, y)dx dy f (x, y)dx
11
1 y2
2y
计算二重积分时,可以先对x积分后对y积分,也
可以先对y积分后对x积分,先对哪个变量积分,要视
积分域D及被积函数f(x,y)的不同情况而定.
例8 求两个底圆半径相等的直角圆柱面所围成的立体 的体积. 解 : 设圆柱的底半径为R,两个圆柱面的方程为
x2 y2 R2, x2 z2 R2 它们在第一象限的图形如下
二、利用极坐标系计算二重积分
由二重积分的定义知
n
D
f
(x,
y)d
lim
0 i 1
f
(i ,i ) i
极坐标与直角坐标之间的关系
__
__
i ri cos i , i ri sin i
n
lim
0
i1
f
(i
,i
)
i
n_
__ _ _
D
c 1(y)
上式右端的积分叫做先对x、后对y的二次积分,这
个积分也常记作
d 2 (y)
f (x,y)d dy f (x, y)dx 2'
Dc 1(y)来自二重积分化为二次积分时,确定积分限是解题关键.
若将其交换积分次序,先对x积分后对y积分,则其积分 区域如下图
交换积分次序为
2x
dx f (x, y)dy
lim
0
i1
f
(ri
cosi
,
ri
sin
i
)
ri
ri
i
即: f (x, y)d f (r cos ,r sin )rdrd
二重积分的计算法

二重积分的计算法二重积分(Double integral)是微积分中的一种重要计算方法,用于计算平面区域上一些函数在该区域上的积分值。
在二维平面上,我们可以将区域划分为无数个小矩形,然后计算每个小矩形内函数的函数值乘以其面积,再将所有小矩形的积分值求和,即可得到二重积分的近似值。
为了更好地理解和计算二重积分,我们将其分为三个部分进行讨论:积分区域的确定、积分函数的选择和积分计算方法。
一、积分区域的确定:确定二重积分的积分区域是计算的第一步。
在平面上,积分区域可以是一个有界闭区域、一个有界开区域或者无穷区域。
积分区域的确定需要根据具体问题进行分析、绘图和建立坐标系。
对于有界闭区域,通常可以直接利用给定的区域边界方程建立坐标系,进而确定积分区域。
对于有界开区域,可以通过给定的边界方程建立坐标系,然后再引入限制条件来确定积分区域。
例如,给定条件是$x>0$,$y>0$,则可以建立第一象限坐标系,并按照给定的边界方程绘制积分区域。
对于无穷区域,可以通过适当的变量替换将其转化为有界区域,然后再进行积分计算。
例如,将积分区域$x>0$,$y>0$转换为极坐标系下的∞半径的极坐标区域。
二、积分函数的选择:选择正确的积分函数是二重积分计算的关键。
积分函数的选择需要根据具体问题中函数的性质和所要计算的目的进行合理选择。
常见的积分函数包括多项式函数、三角函数、指数函数和对数函数等。
对于具体问题,可以根据函数的性质选择合适的积分函数。
在选择积分函数时,还需要考虑积分区域的特点。
如果积分区域对称,可以考虑选择合适的奇偶函数进行积分计算,减少计算量。
三、积分计算方法:根据实际情况,二重积分可以采用不同的计算方法。
1.直角坐标系下的二重积分:在直角坐标系下,可以通过定积分的计算方法进行二重积分的计算。
其中,积分区域可以用水平边界和垂直边界的方程表示,从而确定积分的上下限。
如果积分区域为有界区域,可以采用上下限函数的自变量依次固定的方法进行计算。
二重积分的计算法

24 3
6 1 8
整理ppt
15
例6. 计算 sinxdxdy, 其中D 是直线 yx,y0, Dx
x所围成的闭区域.
解: 由被积函数可知, 先对 x 积分不行,
因此取D 为X – 型域 sinxdxdy Dx
:
0
D
:
0
dx
0
x
y x
x sin x 0x
d
y
y yx
D x
o x
0
sinxdx
x
x x yd 1
y 2 1
1 2
x
y
2
x dx
1
2 y
yx
1
2
1
12x312xdx
9 8
解法2. 将D看作Y–型区域,
则D
:
1y2o yx2
1 x2x
2
I d y
1
2yx y d
x
2 1
1 2
x
2
y
2
2
dy
y
1
2y1 2y3
dy
9 8
整理ppt
14
例5. 计算 Dxyd, 其中D 是抛物线
解 y 2ax x y 2
2a
y 2axx2 xaa2y2 2a
Dx:
0x2a 2axx 2axx2
a 2a
整理ppt
12
0 ya
Dy1
: y2 2a
x
a
a2 y2
2a
Dy2:2ax0ayaa2y2
a
a y 2a
Dy3
:
y2 2a
x
2a
a 2a
= 原式
二重积分的计算方法

二重积分的计算方法二重积分是微积分中的一个重要概念,用于计算平面上某个区域的面积、质量、质心等问题。
在本文中,我们将介绍二重积分的计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分。
一、直角坐标系下的二重积分计算方法在直角坐标系下,二重积分的计算通常通过累次积分的方式进行。
设有一个二元函数 f(x, y) 在某一闭区域 D 上连续,则 D 可以表示为水平投影区域 D' 在直角坐标系上的投影区域,并且可以将 D 划分成许多小的面积 dA。
二重积分的计算可以表示为:∬Df(x, y)dA = ∫∫Df(x, y)dxdy其中,D 表示闭区域 D 上的面积,f(x, y) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(x, y)dxdy = ∫[a, b]∫[c(x), d(x)]f(x, y)dydx其中,[a, b] 表示 x 的取值范围,c(x) 和 d(x) 分别表示 D' 在 x 轴上的投影区间的下边界和上边界。
根据具体问题,我们可以选择先对 x进行积分,再对y 进行积分,或者先对y 进行积分,再对x 进行积分。
通过这样的累次积分方式,可以计算得到二重积分的结果。
二、极坐标系下的二重积分计算方法在某些问题中,使用极坐标系进行二重积分的计算更加方便。
对于闭区域 D 在极坐标系下的表示,我们可以将二重积分的计算公式改写为:∬Df(x, y)dA = ∫∫Df(r, θ)rdrdθ其中,D 表示闭区域 D 上的面积,f(r, θ) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(r, θ)rdrdθ = ∫[α, β]∫[g(θ), h(θ)]f(r, θ)rdrdθ其中,[α, β] 表示θ的取值范围,g(θ) 和h(θ) 分别表示 D 在极坐标系下的投影区间的内半径和外半径。
同样地,通过选择先对θ进行积分,再对r进行积分,或者先对r进行积分,再对θ进行积分的方式,可以计算得到二重积分的结果。
计算二重积分的几种简便方法

计算二重积分的几种简便方法
1. 直接计算法:
这是最常见的计算二重积分的方法。
直接按照积分的定义,将被积函数与微元面
积相乘后进行求和即可。
一般来说,要根据具体的被积函数和积分区域的形状,选择合适
的坐标系来进行计算。
3. 对称性法:
如果被积函数在某个轴或者平面上具有一定的对称性,可以利用对称性简化计算。
如果被积函数关于某个轴对称,可以将积分区域分成两部分,然后只计算其中一部分的积分,最后再乘以2。
类似地,如果被积函数关于某个平面对称,可以将积分区域分成两个
对称的部分,然后只计算其中一个部分的积分,最后再乘以2。
4. 等值线法:
对于一些复杂的被积函数,可以通过画出函数的等值线图来简化计算。
通过观察
等值线的形状和分布,可以选择合适的积分路径和积分限,使得函数在该路径上的积分更
容易计算。
5. 枚举法:
当积分区域非常复杂、函数表达式非常复杂或者积分路径不容易选择时,可以考
虑使用枚举法进行计算。
将积分区域分成若干个简单的子区域,然后分别计算每个子区域
的积分,最后将它们相加得到最终的积分值。
二重积分计算方法

二重积分计算方法
二重积分是指同时计算两个复杂变量,如空间或一维时间尺度上均有复杂变量,即进行双重多元积分运算。
二重积分法是科学研究和工程分析的β解析最常用的
计算方法。
由于经常需要解决复杂的数学问题,因此二重积分的计算在现代科学和工程领域有着广泛的应用。
二重积分计算方法是以一维自变量再组合成双维自变量,它首先将单重积分划
分为两个子题,即沿着一个方向进行单重积分,其次再沿着另一个方向进行单重积分。
例如,有一个变量专为u,如果将u偏导后的复杂函数用二维变量X和y来表示,则:
du=f(x,y)dxdy
二重积分可以通过两个步骤来完成:在第一步中,x先作为自变量,上下限的
特定的h, k ,f (x, y) 求定积分,第二步中,y作为自变量,对每一个固定的x,求解特定h, k 等积分。
二重积分法在微分方程、概率理论、拟静力学,拉格朗日
方法以及费马多元法等领域得到了广泛应用。
此外,二重积分法可以进行在线计算,在互联网领域有着重要应用。
现代技术
在二重积分法方面取得了新的进展,特别是机器学习等技术对二重积分法的计算和应用有着深远的影响。
现有的技术可以更加聪明的理解和处理信息,这也大大提高了利用二重积分法研究互联网数据的效率。
综上所述,二重积分计算方法是一种数学运算的技术,在现代科学和工程领域,它被广泛应用于多种多样的领域,特别是在互联网领域,二重积分法为研究者提供了更大的可能性,研究互联网数据更快更有效地获取信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
VaA(x)dx
即得
D D ff( (x ,y ) )d d a b a [ b d x 1 2 (( x x ) )1 2 (f( x x ) ()x f,y () x d ,y y ]) d d x y .
公式1
上式称为 y后先 x对 的对 二次积分
几点小结
Df(x ,y )d x d ya b [ 1 2 (( x x ))f(x ,y )d y ]d x
①通过体积作 ,实为 现过 了渡 二重积 计分 算的 方一 法种
通过计算两次(单 定积 积)来 分 分求. 解
②二重积分的计算关定键限是:投影穿线法
定限口诀
D X : a x b , 1 ( x ) y 2 ( x ).
后积先定限(投影)
(后积变量上下限必为常数)
限内划条线(穿线) 先交下限写
§10.2 二重积分的计算法(一)
一 利用直角坐标计算二重积分 二 小结 思考题
复习与回顾
n
(1)二重积分 Df(x,y)dl i0m i 1f(i,i) i
(2)回顾一元函数定积分的应用
平行截面面积为已知的立体的体积的求法
在点x处的平行截面的面积为: A(x)
oa
体积元素 dVA (x)dx A(x)
(2)[Y-型域] cyd, 1 (y ) x2 (y ).
d
x1(y)
c
D x2(y)
d
x1(y) D
c
x2(y)
[Y—型区域的特点]穿过区域且平行于x 轴的直线与区 域边界相交不多于两个交点.
(3) [既非X-型域也非Y-型域]
则必须分割.
在分割后的三个区域上分别都 是X-型域(或Y—型域)
2(2yy3)dy11
1
2
8
1
o1
2x
例2 计算 y1x2y2d,D:由 yx,x1,
D
和 y1所围闭 . 区域
y
解 D 既是X—型域又是—Y型域 法1 DX :x1yx11
1
D y=x
-1 x o
1x
上 式 1 d x1y1 x2 y2 d y 1 x
12
1dx1(1x2y2)1 2d(1x2y2)
1 x
1 2
法2
DY
:11
y1 xy
原 式 1d yyy1 x 2 y 2 d x -1 D 1 1
1
y
yd y
1x2y2d x
1
1
y
1
y y=x
o
1x
-1
注意到先对x 的积分较繁,故应用法1较方便
注意两种积分次序的计算效果!
例3 计 x 算 d y ,其 D : 中 y2 由 x及 yx2 所围.闭
xyd0 1d xxxxd y1 4d xx x 2xd y
D
D1
D2
计算较繁
本题进一步说明两种积分次序的不同计算效果!
小结
以上三例说明,在化二重积分为二次积 分时,为简便见需恰当选择积分次序; 既要考虑积分区域 D 的形状,又要考 虑被积函数的特性(易积)
5.【简单应用】
例4
求两个底圆半径都等于R的直交圆柱面所围成的立体的
D
解 D既是X—型域 又是Y—型域 先求交点
由 y2x (11, 或 ) (4,2) yx2
法1
1y2 DY :y2 xy2
xd y2dyy2xd yx 1 y2
D
2
y2
ydy xdx
5
5
1
y2
8
法2 视为X—型域 D1:0xx1y x
则必须 D分 D 1D 割 2 1x4
D2:x2y x
x0[a,b]
作平x面 x0
x0[a,b]
yy22((xxz))z
yy
2(x0)
作平x面 x0
zzff((xx,,yy))
AA((xx0 )0 )
1(x0) oo aa xx00
xx
bbyy1(1x()x)
1(x0)
2(x0)
A A ((x x0)) 1 2 1 (2 ((x(x x)x 0 )0 ))ff(x (,xy 0,)y d)ydy
体积为
b
V A(x)dx
a
x xdx b
x
一、利用直角坐标系计算二重积分
1. [预备知识]
(1)[X-型域]
axb, 1 (x )y 2 (x ).
y2(x)
D
y1(x)
a
b
y2(x)
D
y1(x)
a
b
其中函数 1(、x) 在2(x区) 间 上[a连,b续] .
[X—型区域的特点] 穿过区域且平行于y 轴的直线与区 域边界相交不多于两个交点.
该线平行于坐Βιβλιοθήκη y标轴且同向后交上限见
oa
b
f
D
(x,
y)d
dx a
2(x)
f (x,y)d y
1(x)
y2(x)
D
y1(x)
x bx
(2)若积分 Y域 型为 域 :
y x1y
d
cyd, 1 (y ) x2 (y ). y
D x2y
c
f(x,y)dxdy d d y 2(y) f(x,y)dx
D3 D1
D2
由二重积分积分区域的可加性得
.
D
D1
D2
D3
2.【二重积分公式推导】
(1) 若积分区域为X-型域: axb, 1 (x )y2 (x ).
且f设 (x,y)0
则f (x, y)d的值等于D为 以底,以曲面
D
z f(x,y)为曲顶的曲顶柱积体.的体
方法 根据二重积分的几何意义以及计算“平行截面面积 为已知的立体的体积”的方法来求.
为计算方便,可选择积分次序, 必要时还可交换积分次序. (见后续补充例题)
(3) 若积分域较复杂,可将它分成若干 X-型域(或Y-型域)
D
D1
D2
D3
y D2
D1 D3
o
x
4. 【例题部分】
例1 计算 x d y ,其D : 中 y 由 1 ,x2 及 yx所围. 闭
D
解 Ⅰ
看作X-型域
DX
:
1 1
体积V.
z x2y2R2
解 设两个直圆柱方程为
x2y2R2, x2z2R2
R
利用对称性, 考虑第一卦限部分,
D
c
1(y)
o 公式2
x
即化二重积分 x后为 对 y的 先二 对次.积分
3.【二重积分的计算步骤可归结为】
①画出积分域的图形,标出边界线方程; ②根据积分域特征,确定积分次序; ③根据上述结果,化二重积分为二次积分并计算。
[说明] (1) 使用公式1必须是X-型域,公式2必须是Y-型域. (2) 若积分区域既是X–型区域又是Y –型区域 ,
x y
2 x
y
y=x D
Dxd y1 2dx1 xxd y y1 2[xy 2 2]1 xdx
2(x3x)dx11
12 2
8
o
y
1
y =1 x2
x
解Ⅱ
看作Y-型域
1 y 2 DY :y x 2
2
y
x=y
D
x=2
Dxd y1 2dyy 2xd y x1 2[yx 2 2]2 ydy