二重积分的计算法48979
二重积分的计算法

( x)
( x)
( x)
f ( x, y ) d y 2
( x)
0
f ( x, y ) d y
( x)
f ( x, y ) d y
y
f ( x, y) d y
2
[2
a
b
( x)
0
f ( x, y ) d y ]d x 2
若 f ( x , y) f ( x, y), 则 ( x ) f ( x, y ) d y 0 ( x) b 则 D f ( x, y) d a 0 d x 0 当区域关于 y 轴对称, 函数关于变量 x 有奇偶性时, 仍 在第一象限部分, 则有 2 2 ( x y ) d x d y D ( x y ) d x d y 0
1
(2) f ( x , y) f ( x, y), 则 f ( x, y ) d 0
D
( x)
证明域D 关于x 轴对称,故不妨记为 则
0 y ( x ) D1 : a xb
( x) y ( x) a xb
故
D1
f ( x, y ) d
b
a
d x
( x)
0
f ( x, y) d y
D f ( x, y) d a d x ( x ) f ( x, y ) d y
b
( x)
若 f ( x , y) f ( x, y), 则
则 D f ( x, y ) d d x a
x
结束
(3)对称性 在闭区域上连续, 域D 关于x 轴对称, 设函数 y D 位于 x 轴上方的部分为D1 , 在 D 上 ( x) (1) f ( x , y) f ( x, y), 则 D1 b D f ( x, y) d 2D f ( x, y) d a o D x
二重积分的计算方法

二重积分的计算方法二重积分是微积分中的一个重要概念,用于计算平面上某个区域的面积、质量、质心等问题。
在本文中,我们将介绍二重积分的计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分。
一、直角坐标系下的二重积分计算方法在直角坐标系下,二重积分的计算通常通过累次积分的方式进行。
设有一个二元函数 f(x, y) 在某一闭区域 D 上连续,则 D 可以表示为水平投影区域 D' 在直角坐标系上的投影区域,并且可以将 D 划分成许多小的面积 dA。
二重积分的计算可以表示为:∬Df(x, y)dA = ∫∫Df(x, y)dxdy其中,D 表示闭区域 D 上的面积,f(x, y) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(x, y)dxdy = ∫[a, b]∫[c(x), d(x)]f(x, y)dydx其中,[a, b] 表示 x 的取值范围,c(x) 和 d(x) 分别表示 D' 在 x 轴上的投影区间的下边界和上边界。
根据具体问题,我们可以选择先对 x进行积分,再对y 进行积分,或者先对y 进行积分,再对x 进行积分。
通过这样的累次积分方式,可以计算得到二重积分的结果。
二、极坐标系下的二重积分计算方法在某些问题中,使用极坐标系进行二重积分的计算更加方便。
对于闭区域 D 在极坐标系下的表示,我们可以将二重积分的计算公式改写为:∬Df(x, y)dA = ∫∫Df(r, θ)rdrdθ其中,D 表示闭区域 D 上的面积,f(r, θ) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(r, θ)rdrdθ = ∫[α, β]∫[g(θ), h(θ)]f(r, θ)rdrdθ其中,[α, β] 表示θ的取值范围,g(θ) 和h(θ) 分别表示 D 在极坐标系下的投影区间的内半径和外半径。
同样地,通过选择先对θ进行积分,再对r进行积分,或者先对r进行积分,再对θ进行积分的方式,可以计算得到二重积分的结果。
二重积分的算法

二重积分的算法二重积分是微积分中的重要概念之一,它在许多科学和工程领域中都有广泛的应用。
二重积分的算法是求解二重积分的方法和步骤,下面将介绍二重积分的算法。
一、二重积分的定义二重积分是对二元函数在有界闭区域上的积分。
设函数f(x,y)在闭区域D上有定义,其中D是一个有界闭区域,D的边界可以用一组参数方程x=x(t),y=y(t),a≤t≤b表示。
则称函数f(x,y)在闭区域D 上的二重积分为:∬D f(x,y) dxdy二、二重积分的计算方法二重积分的计算方法有多种,常见的有直角坐标系下的直接计算法和极坐标系下的极坐标变换法。
1. 直接计算法直角坐标系下的直接计算法是将二重积分转化为两个一重积分的叠加,按照积分的定义逐个计算。
具体步骤如下:(1)确定积分区域D的范围和方向;(2)将二重积分转化为两个一重积分,先对y进行积分,再对x进行积分;(3)根据积分区域D的范围和方向,确定积分的上下限;(4)按照一重积分的定义计算每个一重积分;(5)将两个一重积分的结果相加,得到二重积分的结果。
2. 极坐标变换法极坐标系下的极坐标变换法是通过极坐标系下的变换公式将二重积分转化为极坐标系下的一重积分。
具体步骤如下:(1)确定积分区域D的范围和方向;(2)通过极坐标变换公式将直角坐标系下的二重积分转化为极坐标系下的一重积分;(3)根据积分区域D的范围和方向,确定极坐标下的积分范围和方向;(4)按照一重积分的定义计算极坐标下的一重积分;(5)得到极坐标下的一重积分后,根据极坐标变换公式将其转化为直角坐标系下的二重积分。
3. 其他计算方法除了直接计算法和极坐标变换法外,还有其他一些特殊情况下的计算方法,如利用对称性、变量替换等方法进行计算。
具体使用哪种方法取决于具体的问题和积分区域的特点。
三、二重积分的性质二重积分具有一些重要的性质,包括线性性、保号性、保序性、可加性等。
这些性质在计算二重积分时起到了重要的作用,可以简化计算过程和提高计算效率。
二重积分的计算方法

二重积分的计算方法二重积分是微积分中的一个重要内容,用于计算平面上各种形状的曲线或曲面与坐标平面的“面积”。
在实际应用中,二重积分常常与物理、几何、概率统计等学科密切相关。
本文将详细介绍二重积分的计算方法,包括定积分的计算、计算面积和质量等应用问题,以及换元积分、极坐标系、重积分等高阶积分方法。
一、定积分的计算定积分是二重积分的基础,因此首先需要掌握如何计算定积分。
定积分可以通过定义式或者积分的性质计算。
1.定义式计算定积分的定义式如下:∫a^b f(x) dx = lim(n→∞) ∑(k=1,n) f(xi)Δx其中[a,b]是定积分的区间,f(x)是被积函数,x_i是区间[a,b]上的等间距点,Δx是x_i与x_i+1之间的距离。
当被积函数f(x)是连续函数时,可以通过定义式计算定积分。
具体方法是将区间[a, b]等分成n个小区间,取每个小区间的中点作为x_i,计算f(xi)Δx的和,然后取极限即可。
2.积分的性质计算定积分具有一些特殊的性质,可以利用这些性质计算定积分。
(1)和函数性质:∫a^b [f(x) + g(x)] dx = ∫a^b f(x) dx + ∫a^b g(x) dx(2)积分常数性质:∫a^b c f(x) dx = c∫a^b f(x) dx(3)分段函数性质:∫a^b ([f(x)]_a^c + [f(x)]_c^b) dx = ∫a^b f(x) dx(4)奇偶函数性质:当f(x)是奇函数时,∫-a^a f(x) dx = 0当f(x)是偶函数时,∫-a^a f(x) dx = 2∫0^a f(x) dx根据这些性质,可以将复杂的定积分化简为简单的定积分来计算。
二、计算面积二重积分还可以用于计算平面上一些特定形状的曲线与坐标平面的“面积”。
具体可以分为以下两种情况。
1.曲线位于坐标平面的上方:设z=f(x,y)是定义在区域D上的连续函数,且在区域D上始终大于等于0,若D的边界由曲线C所围成,则D的面积可以用二重积分来计算:∬D dσ = ∬D dxdy = ∬D dA = ∫∫D dxdy其中,dσ表示微面积元素,dA表示微面积。
二重积分的计算方法

D
x 2( y)
f ( x, y)d
d
dy
2 ( y) f ( x, y)dx.
D
c
1( y)
Y型区域的特点:穿过区域且平行于x轴的直
线与区域边界相交不多于两个交点.
对非X、Y型区域
若区域如图, 则必须分割. 在分割后的三个区域上分别 使用积分公式
.
D
D1
D2
D3
例 1
改变积分
1
dx
1x f ( x, y)dy 的次序.
00
解 积分区域如图
原式
1 1 y
dy f ( x, y)dx.
00
例 2 改变积分
1
dx
2 x x2
f ( x, y)dy
2
dx
2x f ( x, y)dy的次序.
0
0
1
0
解 积分区域如图
原式
1
2 y
dy
0
1
1 y2
f ( x, y)dx.
D
例8 解 先去掉绝对值符号,如图
D3
D1
D2
1
dx
x2 ( x2 y)dy
1
dx
1
( y x2 )dy
11.
1 0
1
x2
15
更多练习题
注意:
1、奇偶性
2、轮换性
f ( x, y)dxdy f ( y, x)dxdy
D
D
1 sin2( x y)dxdy cos( x y) dxdy
平面的方程
点 x0, y0, z0 到平面Ax By Cz D 0的距离
d | Ax0 By0 Cz0 D | A2 B2 C2
二重积分的计算方法

x2
11 ( x y )dy dx 2 ( y x )dy . 1 x 15
1 0
x 1
e
t 2
1 dt , 求0 f ( x )dx.
1 解(一): f ( x )dx [ xf ( x )] 0 xf ( x )dx 1 0
f (1) xe
1 0
x2
dx [ 1 e x ]1 1 (e 1 1). 0 2 2
2
解(二) I ( e dt )dx
1 x 0 1
t 2
t
2 t t 0
( e dt )dx dt e dx
1 0 1 x
1 0
t 2
1 t 2 e tdt 0
1 1 (e 1). 2
练习设 f ( x ) 在[0,1] 上连续,并设 f ( x )dx A ,
1 0
求 dx f ( x ) f ( y )dy .
解
2a
y 2ax
y 2ax x 2 x a a 2 y 2
a
2a
a
原式 = dy 2 y 0
a
a a2 y2
f ( x , y )dx
2a 2a
0 dy a
a
2a
2a
a y
2 2
f ( x , y )dx a dyy 2 f ( x , y)dx.
x
f ( x )dx f ( y )dy,
0
故2 I
f ( x )dx
1 0
1
x
f ( y )dy f ( x )dx f ( y )dy
二重积分的基本计算方法

二重积分的基本计算方法二重积分是微积分中的重要概念之一,用于计算平面上某个区域内的面积、质量、质心等物理量。
在本文中,我们将介绍二重积分的基本计算方法。
我们来看二重积分的定义。
对于二元函数f(x,y),在平面上的一个闭区域D上,可以定义二重积分为:∬D f(x,y) dA其中,dA表示平面上的面积元素,可以表示为dx dy或者dy dx。
二重积分的计算方法主要有两种:先对x进行积分,再对y进行积分;或者先对y进行积分,再对x进行积分。
第一种方法是先对x进行积分,再对y进行积分。
具体步骤如下:1. 将区域D在x轴上的投影为[a, b],在y轴上的投影为[c, d],则二重积分可以表示为:∬D f(x,y) dA = ∫[a,b]∫[c,d] f(x,y) dy dx2. 针对y进行积分时,将x看作常数,即将f(x,y)中的x替换为常数,然后对y进行积分。
积分的上限为d,下限为c。
3. 最后对x进行积分,将y看作常数,即将上一步得到的结果作为一个关于x的函数,然后对x进行积分。
积分的上限为b,下限为a。
第二种方法是先对y进行积分,再对x进行积分。
具体步骤如下:1. 将区域D在y轴上的投影为[c, d],在x轴上的投影为[a, b],则二重积分可以表示为:∬D f(x,y) dA = ∫[c,d]∫[a,b] f(x,y) dx dy2. 针对x进行积分时,将y看作常数,即将f(x,y)中的y替换为常数,然后对x进行积分。
积分的上限为b,下限为a。
3. 最后对y进行积分,将x看作常数,即将上一步得到的结果作为一个关于y的函数,然后对y进行积分。
积分的上限为d,下限为c。
无论采用哪种方法,最终的结果都是相同的。
在实际计算中,可以根据具体情况选择合适的积分顺序,以简化计算过程。
除了基本的计算方法之外,还可以利用二重积分来计算一些特殊区域的面积、质量、质心等物理量。
例如,对于平面上的一个闭区域D,可以使用二重积分来计算该区域的面积。
第二节二重积分的计算方法

D
ϕ 1 (θ ) ≤ r ≤ ϕ 2 (θ ).
o
βα
A
∫∫ f ( r cosθ , r sinθ )rdrdθ
D
= ∫ dθ ∫
α
β
ϕ2 (θ )
ϕ1 (θ )
f (r cosθ , r sinθ )rdr.
区域特征如图
r = ϕ1(θ )
D
α ≤θ ≤ β,
r = ϕ2 (θ )
ϕ 1 (θ ) ≤ r ≤ ϕ 2 (θ ).
第二节 二重积分的计算方法
二重积分的计算可以按照定义来进行, 二重积分的计算可以按照定义来进行, 同定积分按照定义进行计算一样, 同定积分按照定义进行计算一样,能够按照 定义进行计算的二重积分很少, 定义进行计算的二重积分很少,对少数特别 简单的被积函数和积分区域来说是可行的, 简单的被积函数和积分区域来说是可行的, 但对于一般的函数和积分区域却不可行。 但对于一般的函数和积分区域却不可行。 本节介绍一种计算二重积分的方法—— 本节介绍一种计算二重积分的方法 二重积分化为二次单积分(定积分) 把 二重积分化为二次单积分(定积分)来 计算。 计算。
z = f (x, y)
o
a
x
x + dx
b
x
a
o
已知平行截面面积 A ( x ) 的立体的体积
α
y
x
b
x
V = ∫a A(x)dx.
b
y
o
x
a
b
x
∵ 当 f ( x , y ) > 0时 , ∫∫ f ( x , y )dxdy 的值等于以 D 为底,以 为底,
D
为曲顶柱体的体积. 曲面 z = f ( x , y ) 为曲顶柱体的体积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin x
xdx或
1 ln x
dx;
ⅲ、二重积分恒等式证明。
④、积分原则:与定积分计算基本一致;
(先对 x 积分,视 y 为常量, 对y 积分,视 x 为常量)
⑤、何时不得不将积分域D分块? 穿入穿出不唯一。
例 1
改变积分
1
dx
1x f ( x, y)dy 的次序.
00
解 积分区域如图
0 x1 Dx : 0 x 1 x
d
x
2 y
yx
1
2
1
1 2
x3
1 2
x
dx
9 8
解法2. 将D看作Y–型区域,
则
D
:
1 y 2o yx2
1 x 2x
I
2
dy
1
2yxyd x
2
1
1 2
x
2
y
2d
y
y
2 1
2
y
1 2
y3
dy 9
8
例5. 计算 D xyd , 其中D 是抛物线
y2 x 及直线 y x 2 所围成的闭区域.
c
d
x 1( y)
c
D
x 2( y)
则
f (x, y) dxdy
d
dy
2(y)
f (x, y) dx
D
c
1(y)
当被积函数 f (x, y)在D上变号时, 由于
f (x, y) f (x, y) f (x, y) f (x, y)
f (x, y)
2
2
f1(x, y)
f2 (x, y) 均非负
A( x0 )
2 ( x0 ) 1 ( x0 )
f
(
x0
,
y)dy.
y
A(x0 )
由此得:
y 2(x)
a
x0
yb
x
1
(
x
)
则
f (x, y) dx dy
b
dx
2 (x) f (x, y) dy
D
a
1( x)
若D为Y –型区域
D
:
1(
y) c
x y
d
2
(
y)
d
x 1( y) D x 2( y)
y 2(x)
D
y 1( x)
D
:
1
(
x) a
y x
2
b
(
x)
a
b
y 2(x)
D
y 1( x)
a
b
f ( x, y)d 的值等于以D为底,以曲面z f ( x, y)
D
为顶的圆柱体的体积,
z f ( x0, y)
z f (x, y)
应用计算“平行截
z
面面积为已知的立
体求体积”的方法,
第二节 二重积分的计算法
一、利用直角坐标计算二重积分
X-型积分区域 Y-型积分区域
二、利用极坐标计算二重积分
将二重积分化为二次积分 与直系下二次积分互化
一、利用直角坐标计算二重积分
直角坐标系下化二重积分为二次积分
由曲顶柱体体积的计算可知,
当被积函数 f (x, y) 0
且在D上连续时, 若D为 X – 型区域
x
d
dy
2(y)
f (x, y) dx
c
1(y)
y d
y 2(x)
x
y
c
1
(
y) y
x
D
1(
x)
2
(
y)
o a x bx
为计算方便,可选择积分序, 必要时还可以交换积分序.
(2) 若积分域较复杂,可将它分成若干 y
D2
X-型域或Y-型域 ,则
D1
D D1 D2 D3
D3
o
x
X型区域的特点: 穿过区域且平行于y 轴的
解: 为计算简便, 先对 x 后对 y 积分,
则
D
:
y
1
2
y x
2 y
2
2 y2
D xyd 1dyy2 xy d x
y
2 y2 x
y
o 1
D
4x
y x2
2 1
1 2
x
2
y
y2
y2 dy
1 2
2 [ y( y 2)2 y5 ] dy
1
1 y4 4 y3 2 y2 1 y6 2 45
直线与区域边界相交不多于两个交点.
Y型区域的特点: 穿过区域且平行于x 轴的
直线与区域边界相交不多于两个交点.
计算中的技巧(问题): ①、先画积分区域草图; ②、有无奇偶对称性:
f x, y 关于x奇,D关于y轴对称
0,
f x, y
关于y奇,D关于x轴对称
D
f
x,
y dxdy
2
f
x,
0 y1 Dy : 0 x 1 y
y 1 x
原式
1 1 y
dy f ( x, y)dx.
00
例 2 改变积分
1
dx
2 x x2
f ( x, y)dy
2
dx
2x f ( x, y)dy的次序.
0
0
1
0
解 积分区域如图
Dx1
:
0
0 x
x1 2x
x2
1 x2 Dx2 : 0 x 2 x
D f (x, y) d x d y D f1(x, y) d x d y
D f2 (x, y) d x d y
因此上面讨论的累次积分法仍然有效 .
说明: (1) 若积分区域既是X–型区域又是Y –型区域 ,
则有
D f (x, y) dx dy
b
dx
a
2 (x) 1( x)
f (x, y) dy
y dxdy
f x, y 关于x偶,
D关于y轴对称
D`1
f x, y 关于y偶,
D关于x轴对称
f x, y f ( x, y), 称f(x,y)关于x为奇, f x, y f ( x, y), 称f(x,y)关于x为偶,
③、交换积分次序:
ⅰ、题目本有要求;
ⅱ、出现
eax2 dx或
2a
Dx
:
0 x 2a 2ax x 2ax x2
a 2a
0 ya
Dy1
:
y2
2a
x
a
a2 y2
2a
Dy2
:
2a
0 y xa
a a2
y2
a
a y 2a
Dy3
:
y2 2a
x
2a
a 2a
= 原式
a
dy
0
a y2
a2 y2
f ( x, y)dx
a
2a
dy 0
a a2 y2
f ( x, y)dx
2a
2a
2a
a dy y2 f ( x, y)dx.
2a
例4. 计算 I xyd , 其中D 是直线 y=1, x=2, 及 D
y=x 所围的闭区域. 解法1. 将D看作X–型区域,
则D
:
1 1x y2来自xyI 2
dx
1
x x
yd
y
1
2 1
1 2
xy2
x
1
Dy
:
1
0 y1 1 y2 x 2 y
原式
1
2 y
dy
0
1
1 y2
f ( x, y)dx.
y2 x y 2x x2
例 3
改变积分 2a dx 0
2ax
2axx2 f ( x, y)dy (a 0)
的次序.
解 y
y2
2ax x
2a
y 2ax x2 x a a2 y2
24 3
6 1 8
例6. 计算 sin x dxdy, 其中D 是直线 y x, y 0, Dx
x 所围成的闭区域.
解: 由被积函数可知, 先对 x 积分不行,
因此取D 为X – 型域 :
sin x dxdy
Dx
0 x
D : 0 y x
dx
x sin x
0
0x
y y
dy o