二重积分的计算方法
第9章 二重积分的计算方法 9.2

y
2
y
x y
D
2
(4, 2) x y2
O 1
x
(1, 1)
图9.14
第9章 重积分及其应用
§ 9.2 二重积分的计算方法
方法二 把区域 D 看成是X—型区域,则积分区域 D 分成
D1 和 D2 两部分,如图9.15.
其中 D1 与 D2 可表示为
y
D1 :0 x 1, x y x; D2 :1 x 4, x 2 y x .
y
y 2 ( x)
y 1 ( x )
o a
x — 型区域
bx
第9章 重积分及其应用
§ 9.2 二重积分的计算方法
Y—型区域:D ( x, y ) c y d , 1 ( y ) x 2 ( y )
其中 1 ( y) 与 2 ( y) 在区间 [c, d ] 上连续.
先介绍所谓的X—型区域和Y—型区域的概念. X—型区域:D ( x, y ) a x b, 1 ( x ) y 2 ( x ) 其中 1 ( x) 与
D
2 ( x) 在区间 [ a, b] 上连续
.
这种区域的特点是: 穿过区域且平行于y 轴的直线与区域的边界 至多有两个交点.
1 x [ ( xy 2 ) ] dx 1 2 x2
4
1 4 2 x x( x 2) 2 dx 2 1 1 4 2 (5x x 3 4x) dx 2 1
1 5 3 1 4 45 2 4 ( x x 2x ) 2 3 4 1 8
y
y x
§ 9.2 二重积分的计算方法
二重积分的计算法

I f ( x, y)dxdy
D
y
d y
x1 (y)
c
x2(y)
D
0 x
I=
x ( y) f ( x , y)dx x ( y )
二重积分计算的两种积分顺序
D: x1(y) x x2(y) cyd
I f ( x, y)dxdy
D
y
d y
x1 (y)
I =
d
dy
x ( y) f ( x , y)dx
c
x ( y )
I=
y ( x) f ( x, y)dy y ( x )
二重积分计算的两种积分顺序
D: x1(y) x x2(y) cyd
I f ( x, y)dxdy
D
D: y1(x) y y2(x)
axb
y
d y
x1 (y)
c
cyd
z
0
c
z=f (x,y)
y
x=(y)
d
y
D
x=(y) x
I f ( x, y)dxdy
D
D: (y) x (y)
cyd
ψ( y)
Q( y ) = f ( x, y)dx φ( y) d I = c Q( y)dy
x
z
z f (x, y)
y y
.
z=f (x,y)
0
c
Q( y) x=(y)
D
D1
D2
D3
例1 求 ( x2 y)dxdy,其中D是抛物线y x2和
D
x y2 所围平面闭区域. 解 两曲线的交点
y
y x2
x (1,1)
二重积分的计算

二重积分的计算一、利用直角坐标计算二重积分1.X 型区域1) 定义:先把x 看做常数,f(x,y)只看做y 的函数,对f(x,y)计算从1ϕ(x)到2ϕ(x)的定积分,然后把所得结果(为x 的函数)再对x 从a 到b 计算定积分,称其为X 型积分。
2) 积分区域D={(x,y)|21,ϕϕ≤≤≤≤y b x a },称为X 型区域。
3) 记作:⎰⎰⎰⎰⎰⎰⎰==⎥⎦⎤⎢⎣⎡=)(2)(1)(2)(1),(),(),(),(x x Db a Db a x x dy y x f dx d y x f dx dy y x f d y x f ϕϕϕϕσσ4) 例题1注意:积分限:由下向上作平行为y 轴的直线,先经过的为积分下限,后经过的为积分上限。
.2,1,所围闭区域及:由其中计算xy x y D xyd D===⎰⎰σ⎩⎨⎧≤≤≤≤xy x D X 121:2211[]2xy x dx =⋅⎰89)22(213=-=⎰dx x x 211xDxyd dx xydyσ=⎰⎰⎰⎰解: 12 oxyy=xy=1Dx2.Y 型区域1)定义:先对x ,后对y 的二次积分,称之为Y 型积分。
2)积分区域D={})()(,),(21y x y d x c y x ϕϕ≤≤≤≤,称之为Y 型区域。
3)记作:⎰⎰⎰⎰⎰⎰⎰==⎥⎦⎤⎢⎣⎡=)(2)(1)(2)(1),(),(),(),(y y Dd c Dd c y y dx y x f dy d y x f dy dx y x f d y x f ϕϕϕϕσσ4)例题2注意:积分限:由左向右做平行于x 轴的直线,先经过的为积分下限,后经过的为积分上限。
.2,1,所围闭区域及:由其中计算xy x y D xyd D===⎰⎰σ⎩⎨⎧≤≤≤≤221:x y y D Y 2221[]2y x y dy =⋅⎰89)22(213=-=⎰dy y y 221yDxyd dy xydxσ=⎰⎰⎰⎰解:12 o xy x = y x=2D y1 2例题3所围闭区域及:由其中计算2,2-==⎰⎰x y x y D xyd Dσ[法1]⎩⎨⎧+≤≤≤≤-221:2y x y y D Y 232511(44)2y y y y dy -=++-⎰46322114[2]2436y yy y -=++-13[12]24=-=2221y y D xyd dy xydx σ+-=⎰⎰⎰⎰22221[]2y y x y dy +-=⎰458[法2]⎩⎨⎧≤≤-≤≤x y x x D 10:1⎩⎨⎧≤≤-≤≤xy x x D 241:2⎰⎰⎰⎰⎰⎰+=21DD D xyd σ=+=⎰⎰⎰⎰--xx x x xydydx xydy dx 24110845例题四 计算()22Dxy dxdy +⎰⎰其中D 是以y x y x a y a ==+=,,和()30y a a =>为边的平行四边形区域。
二重积分计算法

2
12
22
dy f (x, y)dx dy f (x, y)dx
11
1 y2
2y
计算二重积分时,可以先对x积分后对y积分,也
可以先对y积分后对x积分,先对哪个变量积分,要视
积分域D及被积函数f(x,y)的不同情况而定.
例8 求两个底圆半径相等的直角圆柱面所围成的立体 的体积. 解 : 设圆柱的底半径为R,两个圆柱面的方程为
x2 y2 R2, x2 z2 R2 它们在第一象限的图形如下
二、利用极坐标系计算二重积分
由二重积分的定义知
n
D
f
(x,
y)d
lim
0 i 1
f
(i ,i ) i
极坐标与直角坐标之间的关系
__
__
i ri cos i , i ri sin i
n
lim
0
i1
f
(i
,i
)
i
n_
__ _ _
D
c 1(y)
上式右端的积分叫做先对x、后对y的二次积分,这
个积分也常记作
d 2 (y)
f (x,y)d dy f (x, y)dx 2'
Dc 1(y)来自二重积分化为二次积分时,确定积分限是解题关键.
若将其交换积分次序,先对x积分后对y积分,则其积分 区域如下图
交换积分次序为
2x
dx f (x, y)dy
lim
0
i1
f
(ri
cosi
,
ri
sin
i
)
ri
ri
i
即: f (x, y)d f (r cos ,r sin )rdrd
10.2 二重积分的计算

∫∫D
b a d
f (x, y) dx dy
ϕ2 ( x)
1
= ∫ d x ∫ (x) f (x, y) dy ϕ = ∫ d y∫
c
ψ 2 ( y)
ψ 1( y) y)
f (x, y) dx
y y = ϕ (x) 2 d x =ψ2 ( y) x =ψ1( y) D y y = ϕ1(x) c o a x bx
§10.2 二重积分的计算
一、利用直角坐标计算二重积分 二、利用极坐标计算二重积分 三、二重积分的换元法
1
一、利用直角坐标计算二重积分
由曲顶柱体体积的计算可知, 被 函 由曲顶柱体体积的计算可知 当 积 数 f (x, y) ≥ 0 且在D上连续时 且在 上连续时, 若D为 X – 型区域 上连续时 为 ϕ1(x) ≤ y ≤ ϕ2 (x) D: a ≤ x ≤b
I = ∫∫ f (x, y) d x d y = ∫ dy ∫
D
2
8− y2 2y
0
f (x, y)dx
8
例5. 计算 所围成. y = 4 − x2, y = −3x, x =1 所围成. 解: 令f (x, y) = x ln(y + 1+ y )
2
其中D 由
4
y = −3x
y
y = 4 − x2
令ρ = ∆u + ∆v , 则
2 2
T
y
M4
M3
D
M1
M2
o
x
∂x x2 − x1= x(u + ∆u, v) − x(u, v)= ∆u + o(ρ) ∂u (u, v)
18
∂x x4 − x1= x(u, v + ∆v) − x(u, v) = ∆v + o(ρ) ∂v (u, v) 同理得 y2 − y1 = ∂ y ∆u + o(ρ) ∂u (u, v) ∂y y4 − y1 = ∆v + o(ρ) ∂v (u, v) 充分小时, 当∆u, ∆v充分小时 曲边四边形 M1M2M3M4 近似于平行四 充分小时
二重积分计算方法

二重积分计算方法
二重积分是指同时计算两个复杂变量,如空间或一维时间尺度上均有复杂变量,即进行双重多元积分运算。
二重积分法是科学研究和工程分析的β解析最常用的
计算方法。
由于经常需要解决复杂的数学问题,因此二重积分的计算在现代科学和工程领域有着广泛的应用。
二重积分计算方法是以一维自变量再组合成双维自变量,它首先将单重积分划
分为两个子题,即沿着一个方向进行单重积分,其次再沿着另一个方向进行单重积分。
例如,有一个变量专为u,如果将u偏导后的复杂函数用二维变量X和y来表示,则:
du=f(x,y)dxdy
二重积分可以通过两个步骤来完成:在第一步中,x先作为自变量,上下限的
特定的h, k ,f (x, y) 求定积分,第二步中,y作为自变量,对每一个固定的x,求解特定h, k 等积分。
二重积分法在微分方程、概率理论、拟静力学,拉格朗日
方法以及费马多元法等领域得到了广泛应用。
此外,二重积分法可以进行在线计算,在互联网领域有着重要应用。
现代技术
在二重积分法方面取得了新的进展,特别是机器学习等技术对二重积分法的计算和应用有着深远的影响。
现有的技术可以更加聪明的理解和处理信息,这也大大提高了利用二重积分法研究互联网数据的效率。
综上所述,二重积分计算方法是一种数学运算的技术,在现代科学和工程领域,它被广泛应用于多种多样的领域,特别是在互联网领域,二重积分法为研究者提供了更大的可能性,研究互联网数据更快更有效地获取信息。
二重积分的计算法

式,其中积分区域
{( x, y ) | 1 x y 1 x 2 , 0 x 1}. D
解
在极坐标系下 x r cos y r sin
x y 1
2 2
所以圆方程为
r 1,
1 直线方程为 r , sin cos
x y 1
d
x 1( y)
D
x 1( y) x 2( y)
D
x 2( y)
c
c
D
f ( x , y )d
d
dy
c
1
2
( y)
f ( x , y ) dx .
( y)
X型区域的特点: 穿过区域且平行于y轴的直线与区域 边界相交不多于两个交点.
Y型区域的特点:穿过区域且平行于x轴的直线与区域边 界相交不多于两个交点.
D
f ( x , y ) dxdy
2
d
0
1 1
f ( r cos , r sin ) rdr .
sin cos
例2
计算
e
D
x2 y2
dxdy ,其中
D 是由中心在
原点,半径为 的圆周所围成的闭区域
解
.
在极坐标系下
D: 0 r a , 0 2 .
D
f ( x , y ) dxdy
D
f [ x ( u , v ), y ( u , v )] J ( u , v ) dudv .
y x
例1
计算
e
D
y x
二重积分的概念与计算

二重积分的概念与计算二重积分是微积分中的重要概念,在数学和物理学等领域有广泛应用。
本文将介绍二重积分的基本概念和计算方法,帮助读者更好地理解和应用该概念。
一、二重积分的基本概念二重积分是对二元函数在给定区域上的积分运算。
通常表示为∬_Df(x,y)dxdy,其中D为积分区域。
二重积分的结果是一个实数。
二、二重积分的计算方法1. 通过迭代积分计算如果积分区域D可以表示为两个范围有限的连续函数g(x)和h(x)之间的交集,即D={(x,y)|a≤x≤b,g(x)≤y≤h(x)},则二重积分可以通过先计算内层积分再计算外层积分的方式进行计算。
具体计算步骤如下:步骤1:计算内层积分将变量y看作常数,将二元函数f(x,y)带入到内层积分中,进行y 的积分运算。
得到一个关于x的函数。
步骤2:计算外层积分将步骤1得到的关于x的函数带入到外层积分中,进行x的积分运算。
得到最终的结果。
2. 通过坐标变换计算在某些情况下,二重积分的计算可以通过坐标变换来简化。
常见的坐标变换包括极坐标变换和直角坐标变换。
以极坐标变换为例,如果积分区域D可以用极坐标表示,则可以通过将二元函数f(x,y)转化为二元函数g(r,θ)来计算二重积分。
具体计算步骤如下:步骤1:进行坐标变换将二元函数f(x,y)用极坐标变换的公式来表示,并计算坐标变换的Jacobi行列式。
步骤2:计算新函数的二重积分将坐标变换后得到的二元函数g(r,θ)进行二重积分计算,得到最终结果。
三、二重积分的应用二重积分在数学和物理学中有广泛的应用。
以下是一些常见的应用场景:1. 几何体的面积二重积分可以用来计算平面上有界区域的面积。
对于给定区域D和一个常数函数f(x,y)=1,在D上进行二重积分即可得到该区域的面积。
2. 质量和质心的计算已知二元函数f(x,y)表示平面上的质量密度分布,二重积分∬_Df(x,y)dxdy可以用来计算平面上有界区域D的质量。
质心的坐标可以通过以下公式计算:x_0=1/m∬_Dxf(x,y)dxdyy_0=1/m∬_Dyf(x,y)dxdy其中m为区域D的总质量。