济源四中高二上学期期中数学(必修5)考试试题
高二数学期中考试必修5试题及答案

高二数学期中考试必修5试题及答案一、选择题(每题5分,共40分)1. 有七名同学站成一排拍毕业照,其中甲必须站在正中间,乙和丙两位同学必须站在一起,则不同的站法一共有()A. 180种B. 90种C. 60种D. 30种2. 若集合A中元素的个数是4,集合B中元素的个数是3,则从集合A到集合B的不同映射的个数是()A. 12B. 64C. 81D. 2563. 设函数f(x) = log2(x - 1),下列结论正确的是()A. f(x)在(0, +∞)上是增函数B. f(x)在(1, +∞)上是增函数C. f(x)在(0, 1)上是减函数D. f(x)在(1, +∞)上是减函数4. 已知函数f(x) = x^2 - 2x + 3,则函数f(x)的单调递增区间是()A. (-∞, 1]B. [1, +∞)C. (-∞, 1)D. (1, +∞)5. 已知函数f(x) = x^3 - 3x,则f(x)在区间()内是减函数。
A. (-∞, 0)B. (0, 1)C. (1, 2)D. (2, +∞)6. 若等差数列{an}的前n项和为S_n,且S_n = 2n^2 - n,则该数列的通项公式为()A. an = 2n - 3B. an = 2n - 1C. an = 2n + 1D. an = 3n - 27. 若等比数列{an}的前n项和为S_n,且S_n = 2^n - 1,则该数列的通项公式为()A. an = 2n - 1B. an = 2n - 2C. an = 2n - 3D. an = 2n8. 一个长方体的长、宽、高分别是3,4,5,则它的对角线长度的平方是()A. 50B. 64C. 36D. 25二、填空题(每题5分,共30分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调递减区间。
10. 已知等差数列{an}的通项公式为an = 2n + 1,求该数列的前10项和。
最新高中必修五数学上期中试卷(带答案)(1)

最新高中必修五数学上期中试卷(带答案)(1)一、选择题1.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102002.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸3.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S4.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或75.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .16.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 km B .3 kmC .105 kmD .107 km 7.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .368.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣9.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .210.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13+C .12+D .411.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <二、填空题13.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.14.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 15.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.16.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________ 17.已知三角形中,边上的高与边长相等,则的最大值是__________.18.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?19.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______. 20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.三、解答题21.如图,游客从某旅游景区的景点A 处下上至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50/min m .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C ,假设缆车匀速直线运动的速度为130/min m ,山路AC 长为1260m ,经测量12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问:乙出发多少min 后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?22.已知数列{}n a 的首项123a =,且当2n ≥时,满足1231312n n a a a a a -++++=-L . (1)求数列{}n a 的通项公式; (2)若2n n nb a =,n T 为数列{}n b 的前n 项和,求n T . 23.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD . 24.已知{}n a 为等差数列,前n 项和为()*n S n N∈,{}nb 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}221n n a b -⋅的前n 项和.25.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .26.已知等差数列{}n a 的前n 项和为n S ,且1250,15a a S +==,数列{}n b 满足:12b a =,且131(2).n n n n n nb a b a b ++++=(1)求数列{}n a 和{}n b 的通项公式;(2)若211(5)log n n n c a b +=+⋅,求数列{}n c 的 前n 项和.n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.2.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
人教A版高中数学必修五第一学期 期中考试高二数学试卷.doc

第一学期 期中考试高二数学试卷一.选择题(本大题共10小题,每小题5分,共50分.在每小题的四个选项中只有一项是符合题目要求的.)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60° D .60°或120°2 若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A A sin B A cosC A tanD A tan 13.不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 A.右下方B.右上方C.左下方D.左上方4.不等式0322≥-+x x 的解集为( ) A.{|13}x x x ≤-≥或 B.}31|{≤≤-x x C.{|31}x x x ≤-≥或 D.}13|{≤≤-x x5.等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于A245 B 12 C 445D 6 6.在等差数列{a n }中,a 5=33,a 45=153,则201是该数列的第( )项 A .60 B .61 C .62 D .637.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )A 10B 10-C 14D 14-8.已知0>x ,则xx y 43+=有 ( )A.最大值34B.最小值34C.最大值32D.最小值329.等比数列{}n a 中,73=a ,前三项之和213=S ,则公比q 的值为( )A.. 1B. 21-C. 1或21- D. -1或2110.已知等比数列}{n a 的各项均为正数,公比1≠q ,设293a a P +=,75a a Q •=, 则P 与Q 的大小关系是 ( )A.Q P >B. Q P <C. Q P =D.无法确定 二.填空题(每小题5分,共20分) 11. 数列{}n a 中,1111,1n na a a +==+,则=4a . 12.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a ;前n 项和n S = . 13.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________14.已知不等式240x ax ++<的解集为空集,则a 的取值范围是_______________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程)15.(本小题满分12分)在ABC △中,已知3a =,2b =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin()A B -的值。
2020-2021高中必修五数学上期中试卷(含答案)(13)

2020-2021高中必修五数学上期中试卷(含答案)(13)一、选择题1.下列命题正确的是 A .若 a >b,则a 2>b 2 B .若a >b ,则 ac >bc C .若a >b ,则a 3>b 3D .若a>b ,则1a <1b2.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)3.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n+B .2533n n+C .2324n n+D .2n n +4.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( )A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦5.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A .2BC .2D .46.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-7.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,c =,30B =︒,则AB 边上的中线的长为( )A .2B .34C .32或2D .34或28.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1 B .3C .6D .99.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c <<B .c a b <<C .c b a <<D .b a c <<10.若a ,b ,c ,d∈R,则下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若a >b ,c >d ,则a+c >b+dC .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d11.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13+C .12+D .412.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .21二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .14.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 15.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 16.若数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S ,则lim n n S →∞=______. 17.已知函数()3af x x x=++,*x ∈N ,在5x =时取到最小值,则实数a 的所有取值的集合为______.18.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos23C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .19.如图所示,在平面四边形ABCD 中,2AB =,3BC =,AB AD ⊥,AC CD ⊥,3AD AC =,则AC =__________.20.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .三、解答题21.在ABC ∆中,角,,A B C 的对边分别为,,a b c,且sin 1cos a CA=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积ABC S ∆=a 的值. 22.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.23.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .24.已知n S 是数列{}n a 的前n 项之和,*111,2,n n a S na n N +==∈.(1)求数列{}n a 的通项公式; (2)设211(1)n n n n a b a a ++=-⋅⋅,数列{}n b 的前n 项和n T ,若112019n T +<,求正整数n 的最小值.25.在数列{}n a 中,n S 为{}n a 的前n 项和,223()n n S n a n N *+=∈.(1)求数列{}n a 的通项公式; (2)设11n n n n a b a a ++=⋅,数列{}n b 的前n 项和为n T ,证明14n T <.26.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】对于A ,若1a =,1b =-,则A 不成立;对于B ,若0c =,则B 不成立;对于C ,若a b >,则33a b >,则C 正确;对于D ,2a =,1b =-,则D 不成立.故选C2.A解析:A 【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。
2020-2021高中必修五数学上期中试卷含答案(5)

2020-2021高中必修五数学上期中试卷含答案(5)一、选择题1.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④2.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+3.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或54.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S5.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .86.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A .2BC.2D .47.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .98.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<10.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2311.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12 B .12-C .14D .14-12.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.14.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________15.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .16.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.17.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 18.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 19.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =ABC ∆的面积;(2)若5sin 5CAD ∠=,4=AD ,求CD 的长. 22.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.23.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积. 24.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .25.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值. 26.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C.【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。
2020-2021高中必修五数学上期中试卷(及答案)

那么: =4a+ .
∵a<0,
∴-(4a+ )≥2 = ,即4a+ ≤-
故 的最大值为 .
故选D.
点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.
【详解】
∵对于任意n>1,n∈N*,满足Sn+1+Sn﹣1=2(Sn+1),
∴n≥2时,Sn+1﹣Sn=Sn﹣Sn﹣1+2,
∴an+1﹣an=2.
∴数列{an}在n≥2时是等差数列,公差为2.
则 =1+9×2 91.
故答案为91
【点睛】
本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
16.91【解析】【分析】由Sn+1+Sn﹣1=2(Sn+1)可得Sn+1﹣Sn=Sn﹣Sn﹣1+2可得an+1﹣an=2利用等差数列的通项公式与求和公式即可得出【详解】∵对于任意n>1n∈N*满足Sn+
解析:91
【解析】
【分析】
由Sn+1+Sn﹣1=2(Sn+1),可得Sn+1﹣Sn=Sn﹣Sn﹣1+2,可得an+1﹣an=2.利用等差数列的通项公式与求和公式即可得出.
3.C
解析:C
【解析】
对于 ,若 , ,则 不成立;对于 ,若 ,则 不成立;对于 ,若 ,则 ,则 正确;对于 , , ,则 不成立.
济源四中10次周考必修5至双曲线

济源四中高二年级数学周考题(10)(2012-12-2)一、 选择题(每小题5分,共12*5=60分)1. 与命题”,则“若M b M a ∉∈等价的命题是( ) .A M b M a ∉∉则若, .B M a M b ∈∉则若, .C M b M a ∈∉则若, .D M a M b ∉∈则若,2.已知等差数列{}n a 满足56a a +=28,则其前10项之和为 ( ) A 56 B 140 C 168 D 2803.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是 ( )A .30°B .45°C .60°D .120°4.”的的最小正周期为”是“函数“πax ax y a 22sin cos 1-==( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件5.下列命题中,是真命题的是 ( ) A .()()是偶函数使函数R x mx x x f R m ∈+=∈∃2,B .()()是奇函数使函数R x mx x x f R m ∈+=∈∃2, C .()()都是偶函数函数R x mx x x f R m ∈+=∈∀2, D .()()都是奇函数函数R x mx x x f R m ∈+=∈∀2,6.椭圆1162522=+yx上一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .77.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+yxC .1162522=+yx或1251622=+yxD .以上都不对8.的焦距是双曲线14122222=--+mym x( )A .22B .4C . 8D .与m 有关 9.抛物线x y 102=的焦点到准线的距离是( )A .25 B .5 C .215 D .1010.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( ).A.(7,± B.(7,-± C.(7, D.(14,11.平面上动点M 到定点F (3,0)的距离比M 到直线01:=+x l 的距离大2,则动点M 满足的方程 ( ) A .y x 62= B .y x 122= C . x y 62= D .x y 122= 12.若椭圆221x m y +=2,则它的长半轴长为( )A .1B .2C .1或2D .与m 有关二、 填空题(每小题5分,共4*5=20分)13.命题“23,x x N x >∈任意”的否定是 . 14.若曲线22141xykk+=+-表示双曲线,则k 的取值范围是 。
高二数学期中考试必修5试题及答案

由 an 2n 49 0
,得 23 1 n 24 1 ,又n N ,
an 1 2( n 1) 49 0
2
2
∴n=24, 即 Sn最小 ,
24 23
S24 24 ( 47)
2 576,
2
或: 由 Sn=n2-48 n=( n-24) 2-576,
∴当 n=24时 , Sn取得最小值 -576.
20. 解:原不等式即为 (x- a)[x- (1- a)]>0 ,
n 14.4
仅当
,即 n=12 时,等号成立 .
10 n
答:汽车使用 12 年报废为宜 .
……………… 12 分
22. 解:( 1) an 1 2an 1(n N )
得 an 1 1 2(an 1)( n N )
an 1 1 2 ( n N ) an 1
数列 { an 1} 成等比数列 .
(2) 由( 1)知, { an 1} 是以 a1 1=2 为首项,以 2 为公比的等比数列
9. 在△ ABC中, AB=3, BC= 13 , AC=4,则边 AC上的高为
A. 3 2 2
B. 3 3
C.
3
D.
2
2
10. 已知等差数列 { an } , Sn 25 , S2n 100 , 则 S3 n (
)
A.125
B.175
C.225
D.250
33
11. 若 sin A cosB cosC ,则△ ABC 是 (
.)
17. (本小题满分 12 分)
(1) Sn 为等差数列 { an} 的前 n 项和, S2 S6 , a4 1,求 a5 .
(2) 在等比数列 a n 中,若 a4 a2 24, a2 a3 6, 求首项 a 1 和公比 q .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省济源市第四中学高二上学期期中数学(理科)考试试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.数列1,3,7,15,…的通项公式n a 等于( )A .n 2B .12+nC .12-nD .12-n2、下列各点在约束条件300x y x y +-≤⎧⎨-≥⎩表示的可行域内的是()A .(3,1) B.(-3,1) C.(-3,-1) D.(3,-1)3.若不等式022>++bx ax 的解集⎭⎬⎫⎩⎨⎧<<-3121|x x 则a -b 值是( )A .-10 B.-14 C.10 D.144.若不等式20x x a ++≥恒成立,则a 的取值范围是( )A. 14a >B. 14a ≥C. 14a ≤D. 14a <5.在21和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为( )A .8B .±8C .16D .±166.下列命题中,正确命题的个数是( ) ①22bc ac b a >⇒> ②22bcac b a ≥⇒≥③bcac cb c a >⇒> ④0>⇒>>c bc ac b a 且A .1B .2C .3D .47.已知点(3,1)和(- 4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A. a <-7或 a >24 B. a =7 或 a =24 C. -7<a <24 D. -24<a <78.在ABC ∆中,若A b a sin 23=,则B 等于( )A . 30B . 60C . 30或 150D . 60或 1209.在ABC ∆中,ac b B =︒=2,60,则ABC ∆一定是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形10.正数a 、b 的等差中项是21,且βαβα++=+=则,1,1bb a a 的最小值是 ( )A .3B .4C .5D .611.设10<<a ,则关于x 的不等式()01>⎪⎭⎫⎝⎛--a x a x a 的解集是 ( )A 、⎭⎬⎫⎩⎨⎧><a x a x x 1|或 B 、{}a x x >|C 、⎭⎬⎫⎩⎨⎧<>a x a x x 1|或 D 、⎭⎬⎫⎩⎨⎧<a x x 1|12.设x ,y 满足约束条件,⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x若目标函数z=ax+by (a>0,b>0)的最大值为12, 则23a b+的最小值为( ).A. 38 B. 625 C.311 D. 4河南省济源市第四中学高二上学期期中数学(文理科)考试试题第Ⅱ卷二、填空题(本大题共4小题,每小题5分,满分20分) 13.已知等差数列{a n }的公差d≠0, 且a 1, a 3, a 9成等比数列, 则39410a a a a ++的值是 14. 若x 、y 为实数, 且x+2y=4, 则39x y+的最小值为 15.在ABC ∆中,2||,60==AB A,且ABC ∆的面积为23,则=||AC 16.数列{2n n ⋅}的前n 项和n S = .三、解答题(本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤。
)17.(10分)已知等差数列{a n },它的前n 项和为S n ,且a 3=-6,S 6=-30.求数列{a n }的前n 项和的最小值.18. (12分)在△ABC中,0120,ABC A a S ∆===,且b>c, 求c b ,,及cosC 的值。
19.(12分)等差数列{}n a 中,前三项分别为45,2,-x x x ,前n 项和为n S ,且72k S =. (1)求x 和k 的值; (2)、设1231111n nT S S S S =++++ ,求n T 的值。
20. (12分)(1)当 m ≥1时,解关于x 的不等式[(1)1)](1)0m x x -+->.(2)若1<x ≤2时,不等式[(1)1)](1)0m x x -+->恒成立,求实数m 的范围.21.(12分)设,4,221==a a 数列}{n b 满足:,1n n n a a b -=+ .221+=+n n b b (Ⅰ)求证数列}2{+n b 是等比数列(要指出首项与公比), 并求出数列{n b }的通项公式.(Ⅱ)求数列}{n a 的通项公式.22. (12分)在ABC ∆中,c b a ,,为角C B A ,,所对的三边,已知22()a b c bc --=,(1)求角A(2)若BC =,内角B 等于x ,周长为y ,求()y f x =的最大值.河南省济源市第四中学高二上学期期中数学(理科)考试试题答案一、 选择题(本大题共11小题,每小题5分,满分55分.在每小题给出的四个选项中,只有一项是符合题目要求的)1-5CDABA;6-10CCDDC 11-12AB 二、填空题(本大题共5小题,每小题5分,满分25分) 13.67; 14. .18 ;15.=||AC 1 16. 1(1)22n n +-⋅+17.(10分)解 在数列{a n }中,∵2a n+1=a n +a n+2,∴{a n }为等差数列,设公差为d,由316126656302a a d S a d =+=-⎧⎪⎨⨯=+=-⎪⎩,得1102a d =-⎧⎨=⎩.∴a n =a 1+(n-1)d=2n-12,∴n<5时,a n <0,n=6时,a n =0,n >6时,a n >0. ∴{a n }的前5项或前6项的和最小为-30.18. (12分) 解析:由2221sin ,22cos ABC S bc A a b c bc A⎧=⎪⎨⎪=+-⎩,即221,2212122bc b c bc =⨯⎨⎪=++⨯⨯⎪⎩, 解得:1,4==c b 或4,1==c b19.(12分)(1)由454-+=x x x 得,2=x (2分)∴)1(,.2+==n n S n a n n ,∴(1)72k k +=得8k =(5分)(2))1(.+=n n S n ,111)1(1+-=+=∴n nn n S n1111111111413131211.+=+-=+--+-⋅⋅⋅⋅+-+-=∴n n n n nnn T (12分)20.解:(1) [(1)1)](1)0m x x -+->当m -1=0时,不等式为(1)0x -> 即{}1|>x x . 当1m >时,不等式解集为1|11x x x m ⎧⎫><⎨⎬-⎩⎭或(2)1<x ≤2时,原命题化为(m-1)x+1>0恒成立, ∴(m-1) >(1x-)max∴ 12m >21.解析:(1)),2(222211+=+⇒+=++n n n n b b b b ,2221=+++n n b b又42121=-=+a a b , ∴数列}2{+n b 是首项为4,公比为2的等比数列.(2)2224211-=⇒⋅=+∴+-n n n n b b . .221-=-∴-n n n a a令),1(,,2,1-=n n 叠加得)1(2)222(232--+++=-n a n n ,22)2222(32+-++++=∴n a nn .222212)12(21n n n n-=+---=+ 22. 解:(1)由22()a b c bc --=得:222a b c bc --=- 2221c o s 22b c aA bc+-∴==又0A π<<3A π∴=(2)sin sin A C B C x A=,sin sin 4sin sin32BC AC x x x π∴=⋅==同理:2sin 4sin()sin 3B C A B C x Aπ=⋅=-24sin 4sin()3y x x π∴=+-+)6x π=++ 3A π=203B x π∴<=<故5(,)666x πππ+∈ ∴ 当623x x πππ+=⇒=时,max y =。