高中数学必修5试题及详细答案

合集下载

人教版高中数学必修五试题及答案

人教版高中数学必修五试题及答案

必修五·数学试卷ⅣⅠ、选择题一、选择题1、在A B C中,若sin cos A Ba b=,则角B 等于 ( )A 、30︒B 、45︒C 、60︒D 、90︒2、在A B C 中,52,10,30a c A ===︒,则角B 等于 ( )A 、105︒B 、60︒C 、15︒D 、105︒或15︒3、已知一个锐角三角形的三边边长分别为3,4,a ,则a 的取值范围 ( )A 、(1,5)B 、(1,7)C 、()7,5 D 、()7,74、A B C中,若1cos 1cos A aB b-=-,则A B C一定是 ( )A 、等腰三角形B 、直角三角形C 、锐角三角形D 、钝角三角形5、在等差数列{}n a 中,若34567450aaaaa ++++=,则28a a +等于( )A 、45B 、75C 、180D 、3006、设等差数列{}n a 的前n 项和为nS,且211210,38m m m n a a a S -+-+-==,则m 等于 ( )A 、38B 、20C 、10D 、97、若数列{}n a 的通项公式为11n a n n =++,且9m S =,则m 等于( )A 、9B 、10C 、99D 、1008、已知{}n a 为等差数列,135105a a a ++=,34699a a a ++=,用nS 表示{}n a 的前n 项和,则使nS达到最大值的n 是( )A 、21B 、20C 、19D 、189、若关于x 的不等式220a xb x ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -的值是 ( )A 、-10B 、-14C 、10D 、1410、以原点为圆心的圆全部都在平面区域36020x y x y -+≥⎧⎨-+≥⎩内,则圆面积的最大值为( ) A 、185π B 、95πC 、2πD 、π 11、已知0a b <<,且1a b +=,则下列不等式中,正确的是( )A 、2lo g 0a >B 、12a ba-< C 、22l o g l o g 2a b +<- D 、12a b b aa +> 12、已知集合{}2240,1M x x N x x ⎧⎫=->=<⎨⎬⎩⎭,则M N 等于 ( )A 、{}2x x > B 、{}2x x <- C 、N D 、MⅡ、非选择题二、填空题13、A B C的三个内角之比为1:2:3,则这个三角形的三边之比为 . 14.已知数列{}n a 的前n 项和为231n S n n =++,则它的通项公式为 .15、设等差数列{}n a 的前n 项和为nS ,且53655S S -=,则4a = . 16、已知函数16,(2,)2y x x x =+∈-+∞+,则此函数的最小值为 . 三、解答题17、在A B C 中,已知33a =,2,150c B ==︒,求边b 的长及A B C 的面积S .18、在A B C 中,s i n b a C =且s i n (90)c a B =︒-,试判断A B C 的形状.19、设等差数列{}n a 的前n 项和为nS ,已知31124,0a S ==(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S ;(3)当n 为何值时,nS 最大?并求nS的最大值.20、已知数列{}n a 的前n 项和为32n n S a =+,求数列{}n a 的通项公式.21、已知函数22(),(0,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若(0,),()6x f x ∀∈+∞>恒成立,求实数a 的取值范围.22、已知关于x 的不等式()320a b x a b ++-<的解集为3.4x x ⎧⎫>-⎨⎬⎩⎭(1)求实数,a b 满足的条件;(2)求关于x 的不等式2()(21)220a b xa bx a -++-+->的解集.。

人教版高中数学必修5第一章解三角形测试题及答案

人教版高中数学必修5第一章解三角形测试题及答案

必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。

(完整版)高中数学必修五综合测试题 含答案

(完整版)高中数学必修五综合测试题 含答案

.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

数学必修五高中试题及答案

数学必修五高中试题及答案

数学必修五高中试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 0B. 4C. 6D. 82. 已知点A(2, 3)和点B(-1, -2),求直线AB的斜率。

A. -1B. 1C. 2D. 33. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 21C. 19D. 175. 若\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。

A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)6. 一个正方体的体积为27,求其边长。

A. 3B. 4C. 5D. 67. 已知函数\( g(x) = x^3 - 2x^2 + x - 2 \),求\( g(2) \)的值。

A. -1B. 0C. 1D. 28. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 89. 已知\( a = 2 \),\( b = 3 \),求\( a^2 + b^2 \)的值。

A. 13B. 14C. 15D. 1610. 求\( \sqrt{64} \)的值。

A. 8B. 16C. 32D. 64二、填空题(每题2分,共20分)11. 若\( a \)和\( b \)互为相反数,则\( a + b = _______ 。

12. 一个二次方程\( ax^2 + bx + c = 0 \)的判别式为\( b^2 - 4ac \),当\( b^2 - 4ac < 0 \)时,方程有_______解。

13. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值。

高中数学必修五习题及解析

高中数学必修五习题及解析

必修五第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320<0,∴B 为钝角. 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( ) A .A>B>CB .B>A>C C .C>B>AD .C>A>B解析 由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C 3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6.答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC →的值为( ) A .5 B .-5 C .15 D .-15 解析 在△ABC 中,由余弦定理得cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17.∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.假设三角形三边长之比是1:3:2,则其所对角之比是( ) A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a2-2a22·a ·3a=0,∴A =90°.设最小角为B ,则cosB =2a2+3a2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,假设a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sinB =a sinA ,得sinB =bsinAa =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90° 解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b)·b 2R , ∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满足ab =4,则该三角形的面积为( ) A .1 B .2 C. 2 D. 3解析 由a sinA =b sinB =csinC =2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴cosC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32.∴S △ABC =12absinC = 3.答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinBsinC 的值为( )A.85B.58C.53D.35解析 由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC ,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3.答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 kmD.32km 解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =ACtan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1. 答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c.假设a =c =6+2,且A =75°,则b 为( ) A .2 B .4+2 3 C .4-2 3D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22⎝ ⎛⎭⎪⎫32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,假设b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sinB =sin(A +60°)=12sinA +32cosA.又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA.即32sinA =32cosA.∵cosA ≠0, ∴tanA =33.∵0°<A<180°,∴A =30°. 答案 30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______. 解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案 60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析 设⎩⎪⎨⎪⎧b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7. 答案 11:9:7三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在非等腰△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b(b +c). (1)求证:A =2B ;(2)假设a =3b ,试判断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA2sinB,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.假设A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B. (2)∵a =3b ,由a 2=b(b +c),得3b 2=b 2+bc ,∴c =2b. 又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B)-3=0.求: (1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°. (2)∵a ,b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6. ∴c = 6.S △ABC =12absinC =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求: (1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =126,由正弦定理,得AD =ABsinBsin ∠ADB=126×2232=24(nmile).(2)在△ADC 中,由余弦定理,得 CD 2=AD 2+AC 2-2AD ·AC ·cos30°. 解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)假设m ∥n ,求证:△ABC 为等腰三角形;(2)假设m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b2R ,∴a =b.故△ABC为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab. 由余弦定理c 2=a 2+b 2-2abcosC 得 4=(a +b)2-3ab ,即(ab)2-3ab -4=0.解得ab =4,ab =-1(舍去).∴△ABC 的面积S =12absinC =12×4×sin π3= 3.第二章 数列1.已知正项数列{a n }中,a 1=l ,a 2=2,2a n 2=a n+12+a n−12〔n ≥2〕,则a 6=〔 〕 A .16 B .4 C .2√2 D .45【解答】解:∵正项数列{a n }中,a 1=1,a 2=2,2a n 2=a n+12+a n ﹣12〔n ≥2〕, ∴a n+12﹣a n 2=a n 2﹣a n ﹣12,∴数列{a n 2}为等差数列,首项为1,公差d=a 22﹣a 12=3,∴a n 2=1+3〔n ﹣1〕=3n ﹣2,∴a n =√3n +2 ∴a 6=√3×6−2=4, 故选:B 2.《张丘建算经》卷上第22题﹣﹣“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加〔 〕 A .47尺 B .1629尺 C .815尺 D .1631尺 【解答】解:设该妇子织布每天增加d 尺, 由题意知S 30=30×5+30×292d =390,解得d=1629.故该女子织布每天增加1629尺.故选:B .3.已知数列{a n }满足a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),则其前6项之和是〔 〕A .16B .20C .33D .120【解答】解:∵a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),∴a 2=2a 1=2,a 3=a 2+1=2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14 ∴其前6项之和是1+2+3+6+7+14=33故选C . 4.定义n p 1+p 2+⋯+p n为n 个正数p 1,p 2,…p n 的“均倒数”.假设已知数列{a n }的前n 项的“均倒数”为12n+1,又b n =a n +14,则1b 1b 2+1b 2b 3+⋯+1b 10b 11=〔 〕A . 111 B . 910C . 1011 D . 1112【解答】解:由已知得,na1+a 2+⋯+a n=12n+1∴a 1+a 2+…+a n =n 〔2n+1〕=S n当n ≥2时,a n =S n ﹣S n ﹣1=4n ﹣1,验证知当n=1时也成立,∴a n =4n ﹣1, ∴b n =a n +14,∴1bn ′b n+1=1n −1n+1∴1b1b 2+1b2b 3+⋯+1b10b 11=(1-12)+(12−13)+(13−14)+⋯+(110−111)=1−111=1011. 故选C .5.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.假设a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= 63 . 【解答】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则q 2=a 3a 1=41=4,所以q=2.则S 6=a 1(1−q 6)1−q=1×(1−26)1−2=63. 故答案为63.6.如图给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij 〔i ≥j ,i ,j ∈N *〕,则a 53等于 ,a mn = 〔m ≥3〕.14 12,14 34,34,316【解答】解:①第k 行的所含的数的个数为k ,∴前n 行所含的数的总数=1+2+…+n=n(n+1)2.a 53表示的是第5行的第三个数,由每一列数成等差数列,且第一列是首项为12,公差d=12−14=14的等差数列,∴第一列的第5 个数=14+(5−1)×14=54;又从第三行起,每一行数成等比数列,而且每一行的公比都相等,由第三行可知公比q=3834=12,∴第5行是以为首项,12为公比的等比数列,∴a 53=54×(12)2=516.②a mn 表示的是第m 行的第n 个数,由①可知:第一列的第m 个数=14+(m −1)×14=m4,∴a mn =m 4×(12)n−1=m 2n+1.故答案分别为516, m2n+1.7.等差数列{a n }中,a 7=4,a 19=2a 9,〔Ⅰ〕求{a n }的通项公式;〔Ⅱ〕设b n =1na n,求数列{b n }的前n 项和S n .【考点】8E :数列的求和;84:等差数列的通项公式. 【分析】〔I 〕由a 7=4,a 19=2a 9,结合等差数列的通项公式可求a 1,d ,进而可求a n 〔II 〕由b n =1na n=2n(n+1)=2n −2n+1,利用裂项求和即可求解【解答】解:〔I 〕设等差数列{a n }的公差为d ∵a 7=4,a 19=2a 9,∴{a 1+6d =4a 1+18d =2(a 1+8d)解得,a 1=1,d=12∴a n =1+12(n −1)=1+n 2〔II 〕∵b n =1na n=2n(n+1)=2n −2n+1∴S n =2(1−12+12−13+⋯+1n −1n+1)=2(1−1n+1)=2nn+18.已知等差数列{a n },的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }满足b 1=12,b n+1=n+12n b n . 〔1〕求数列{a n },{b n }的通项公式;〔2〕记T n 为数列{b n }的前n 项和,f (n )=2S n (2−T n )n+2,试问f 〔n 〕是否存在最大值,假设存在,求出最大值,假设不存在请说明理由. 将b n+1=n+12nb n 整理,得到{b n n}是首项为12,公比为12的等比数列,应用等比数列的通项即可求出b n ;〔2〕运用错位相减法求出前n 项和T n ,化简f 〔n 〕,运用相邻两项的差f 〔n+1〕﹣f 〔n 〕,判断f 〔n 〕的增减性,从而判断f 〔n 〕是否存在最大值. 【解答】解:〔1〕设等差数列{a n }首项为a 1,公差为d , 则{a 1+d =25a 1+10d =15解得a 1=1,d=1,∴a n =n ,又b n+1n+1=b n 2n ,即{b nn }是首项为12,公比为12的等比数列, ∴bn n =b 11(12)n−1,∴b n =n2n ;〔2〕由〔1〕得:T n =12+222+323+⋯+n2n ,12T n=123+223+324+⋯+n−12n +n2n+1,相减,得12T n =12+122+123+⋯+12n +n2n+1, =12(1−12n )1−12,∴T n =2−n+22n,又S n =12n 〔n+1〕,∴f (n )=2S n (2−T n )n+2=n 2+n 2n,∴f (n +1)−f (n )=(n+102+n+12n+1−n 2+n 2n=(n+1)(2−n)2n−1,当n >3时,f 〔n+1〕﹣f 〔n 〕<0,数列{f 〔n 〕}是递减数列, 又f (1)=1,f (2)=32,f (3)=32 ∴f 〔n 〕存在最大值,且为32.9.设数列{a n }的前项n 和为S n ,假设对于任意的正整数n 都有S n =2a n −3n .〔1〕设b n =a n +5,求证:数列{b n }是等比数列,并求出{a n }的通项公式。

必修五数学习题含答案

必修五数学习题含答案

必修五数学习题含答案必修五数学习题含答案数学作为一门科学的基础学科,对于培养学生的逻辑思维、分析问题和解决问题的能力起着至关重要的作用。

而必修五数学作为高中数学的一部分,涵盖了诸多重要的数学概念和方法。

本文将为大家介绍一些必修五数学习题,并提供相应的答案。

第一题:已知函数f(x) = 3x² + 2x - 1,求f(2)的值。

解答:将x = 2代入函数f(x)中,得到f(2) = 3(2)² + 2(2) - 1 = 3(4) + 4 - 1 = 12+ 4 - 1 = 15。

第二题:已知等差数列的首项为a₁,公差为d,前n项和为Sₙ,求Sₙ的表达式。

解答:等差数列的第n项可以表示为aₙ = a₁ + (n-1)d。

根据等差数列的性质,前n项和可以表示为Sₙ = (a₁ + aₙ) * n / 2。

将aₙ代入公式中,得到Sₙ = (a₁ + a₁ + (n-1)d) * n / 2 = (2a₁ + (n-1)d) * n / 2。

第三题:已知函数f(x) = x³ - 3x² + 2x - 1,求f(-1)的值。

解答:将x = -1代入函数f(x)中,得到f(-1) = (-1)³ - 3(-1)² + 2(-1) - 1 = -1 + 3 - 2 - 1 = -1。

第四题:已知等比数列的首项为a₁,公比为q,前n项和为Sₙ,求Sₙ的表达式。

解答:等比数列的第n项可以表示为aₙ = a₁ * q^(n-1)。

根据等比数列的性质,前n项和可以表示为Sₙ = a₁ * (1 - q^n) / (1 - q)。

第五题:已知函数f(x) = log₃(x + 2),求f(1)的值。

解答:将x = 1代入函数f(x)中,得到f(1) = log₃(1 + 2) = log₃(3) = 1。

通过以上五道数学习题的解答,我们可以看到数学问题的解决过程需要运用到各种数学知识和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试题
考试时间:90分钟
试卷满分:100分
一、选择题:本大题共 14小题,每小题4分,共56分.在每小题的4个选项中,只
有一项是符合题目要求的•
1 •在等差数列3, 7, 11,…中,第5项为()• A. 15
B . 18
C. 19
D. 23
2•数列{a n }中,如果a n = 3n (n = 1, 2, 3,…),那么这个数列是().
A.公差为2的等差数列 C.首项为3的等比数列
B. 公差为3的等差数列 D.首项为1的等比数列
3.等差数列{ sh }中,a 2 + a 6= 8, a 3 + a 4= 3,那么它的公差是()
则c 的值等于()
A. 5
B . 13
C. ,13
D. . 37
5. 数列{a n }满足 a 1= 1, a n +1 = 2a n +1( n € N+),那么 a 4的值为() A. 4
B . 8
C. 15
D. 31
6.
A ABC 中,如果—
= —^ = —,那么△ ABC 是 ()
.
tan A
tanB
tanC
A.直角三角形
B.等边三角形
C.
等腰直角三角形 D.钝角三角形
7. 如果 a > b >0, t > 0,设 M= - , N= 口,那么()
.
b b t A. M >N
B . M k N
C. M = N
D. M 与N 的大小关系随t 的变化而变化
&如果{a n }为递增数列,则{a n }的通项公式可以为().
2
A. a n = — 2n + 3
B. a n = — n — 3n +1
1
C. a n = 一
D. a n = 1 + log 2 n
2n
A. 4
B . 5
C. 6
D. 7
4.A ABC 中,/ A Z B,Z C 所对的边分别为
a , b, c .若 a = 3,
b = 4,Z C = 60°
,
9.如果a< b< 0,那么()
a= 2, b= 4,若c€ (0, 1),则输出的为()
开始
11. 等差数列{a n}中,已知a1= 1,
3
(第10题)
a2 + a5= 4, a n= 33,贝U n 的值为()
1 求AC的长;
A. a —b>0
B. ac v bc
C.
10 .我们用以下程序框图来描述求解一元二次不等式
>丄
b
2
ax + bx+ c >0(a > 0)的过程.令
2 2
D. a v b
A. M
B. N
C.
D.
输入a, b, c
A. 50
B. 49
C. 48
D. 47
12. 设集合A ={(x , y )| x , y , 1— x — y 是三角形的三边长},则A 所表示的平面区域(不 含边界的阴影部分)是().
的最大自然数n 的值为()
二、填空题:本大题共 4小题,每小题4分,共16分•将答案填在题中横线上.
15. ___________________________________________ 已知x 是4和16的等差中项,则
x = _____________________________________________________ .
16. ________________________________________ —元二次不等式 x 2< x + 6的解集为 . 17 .函数 f (x ) = x (1 — x ) , x € (0 , 1)的最大值为 ___________ .
18.在数列{a n }中,其前n 项和S = 3 • 2n + k ,若数列{a n }是等比数列,则常数 k 的值 为 ______________ .
三、解答题:本大题共3小题,共28分.解答应写出文字说明、 证明过程或演算步骤
2 求/ A 的大小.
y
」 \
0.5
O
x
13.若{a n }是等差数列,
首项 ai >0, a 4 + a 5> 0, a 4 • a 5< 0,则使前n 项和S> 0成立 A. 4 B . 5 C. D. 8
14. 已知数列{a n }的前n 项和n 1 2 9n ,第 k 项满足 5< a k < 8,贝U k =()
A. 9
B . 8
C. 7
D. 6
19.A ABC 中, BC=乙 AB= 3,且
sin C sin B
A C
D
20.某工厂修建一个长方体无盖蓄水池,其容积为 4 800 立方米,深度为3 米.池底每平方米的造价为150元,池壁每平方米的造价为120元•设池底长方形的长为x米.
(1) 求底面积,并用含x 的表达式表示池壁面积;
(2) 怎样设计水池能使总造价最低?最低造价是多少?
21.已知等差数列{a n}的前n项的和记为如果a4=- 12, a8=- 4•
⑴求数列{a n}的通项公式;
(2) 求S的最小值及其相应的n的值;
(3) 从数列{a n}中依次取出a1, a2, a4, a*,…,a2n-1,…,构成一个新的数列{b n},求{b n}的前n项和.
参考答案
、选择题
1. C
2. B
3. B
4. C
5. C
6. B
7. A
8. D
9. C
10. B
11 . A
12. A
13. D 14. B
19•解:(1)由正弦定理得 AC = AB AB = sinC sin B sinC
AC sinB
(2)由余弦定理得
池底长方形宽为1600米,则
x
c 1600 1600 S 2= 6x + 6X = 6(x + ).
x x
(2)设总造价为y ,则
y = 150X 1 600 + 120 X 6 x + I 600 > 240 000 + 57 600 = 297 600 . x
当且仅当x = 1600,即x = 40时取等号.
x
所以x = 40时,总造价最低为 297 600元.
答:当池底设计为边长 40米的正方形时,总造价最低,其值为
297 600元.
15. 10. 16. (-2, 17. 1
4
18. —3 .
3)

二、填空题 三、解答题
2 2 2
A A
B A
C BC 9
cos A= --------------------------- =—
2AB AC
2 3 5
25 49 ,所以/ A = 120°. 20.解:(1)设水池的底面积为 S,池壁面积为
氐则有号
=1 600(平方米).
21.解:⑴设公差为d,由题意, a 4=— 12, a i + 3d =— 12, a 8=— 4
a i + 7d =— 4.
所以 a n = 2n — 20.
(2) 由数列{a n }的通项公式可知, 当 n W 9 时,a n V 0, 当 n = 10 时,◎= 0, 当n 》11时,◎> 0.
所以当n = 9或n = 10时,由Si =— 18n + n ( n — 1) = n 2 — 19n 得S n 取得最小值为 =—90.
(3) 记数列{b n }的前n 项和为T n ,由题意可知
b n = a 2n1 = 2 x 2n —
1 — 20 = 2n — 20.
所以 T n = b 1 + b 2 + b 3+…+ b n
1
2
3
n
=(2 — 20) + (2 — 20) + (2 — 20) +…+ (2 — 20) =(21+ 22+ 23+…+ 2n ) — 20n
—20n
=2n+1— 20n — 2.
解得
d = 2, a i =— 18.
S 9= S o。

相关文档
最新文档