2017年广东省广州市番禹区象骏中学中考数学模拟试卷带答案解析

合集下载

2017年广东中考数学模拟试卷

2017年广东中考数学模拟试卷

2017年广东中考数学模拟试卷2017年广东中考数学模拟试卷一、选择题(每小题3分,共30分)1.6的相反数的倒数是()A。

-6B。

-1/6C。

-6D。

62.下列实数中最大的是()A。

πB。

|-4|C。

327D。

-53.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A。

2个B。

3个C。

4个D。

5个4.2017年某市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A。

317×10^8B。

3.17×10^10C。

3.17×10^11D。

3.17×10^125.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC。

若AC=4,则四边形OCED的周长为()A。

4B。

8C。

10D。

126.在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83。

83,85,89,则这组数据的众数、中位数分别为()A。

81,82B。

83,81C。

81,81D。

83,827.若关于x的方程x^2+3x+a=0有一个根为1,则另一个根为()A。

-4B。

2C。

4D。

-38.已知点A的坐标为(5,12),O为坐标原点,则射线OA与x轴的正半轴形成的角的余弦值为()A。

1/25B。

12/13C。

5/12D。

13/129.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,则BG的长为()A。

5B。

4C。

3D。

210.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止。

设点M运动的路程为x,MN^2=y,则y关于x的函数图象大致为()A。

B。

C。

D。

二、填空题(每小题4分,共24分)11.实数-27的立方根是-3.12.因式分解:x^3-9x=x(x+3)(x-3)。

13.不等式组{x+2>1,2x-1≤8-x}的最大整数解是4.14.一个多边形的每一个外角都等于30°,则该多边形的内角和等于180°。

2017年广东省初中毕业生学业考试数学模拟试卷(二)含答案

2017年广东省初中毕业生学业考试数学模拟试卷(二)含答案

2017年广东省初中毕业生学业考试数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.下列实数中,为无理数的是( )A. 2B.12C .0.2D .-72.计算(a 3)2的结果为( ) A .a 4 B .a 5 C .a 6 D .a 7 3.如图M2-1所示的几何体的左视图是( )图M2-1A. B. C. D.4.2017年某校有880名初中毕业生参加升学考试,为了解这880名考生的数学成绩,从中抽取200名考生的数学成绩进行统计,在这个问题中样本是( )A .880名考生B .200名考生C .880名考生的数学成绩D .200名考生的数学成绩 5.如图M2-2,已知直线AB ∥CD ,∠C =100°,∠A =30°,则∠E 的度数为( )A .30°B .60°C .70°D .100°图M2-2 图M2-3 图M2-4 图M2-56.关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围为( ) A .k <1 B .k >1 C .k <-1 D .k >-1 7.如图M2-3,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD ,EF 均和x 轴垂直,以点O 为顶点的两条抛物线分别经过点C ,E 和点D ,F ,则图中阴影部分面积是( )A .π B.12πC.13π D .条件不足,无法求 8.如图M2-4,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论不一定正确的是( )A .CE =DEB .AE =OEC. BC= BD D .△OCE ≌△ODE9.如图M2-5,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A.13B.1010C.55D.3 1010 10.将圆心角为90°,面积为4π cm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为( )A .1 cmB .2 cmC .3 cmD .4 cm二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:2m 2-2=____________.12.将2.05×10-3用小数表示为____________. 13.如图M2-6,从y =ax 2的图象上可以看出,当-1≤x ≤2时,y 的取值范围是____________.图M2-6 图M2-714.在Rt △ABC 中,∠C =90°,sin A =45,AB =10,那么BC =____________.15.设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22-5x 1-5x 2的值为__________.16.如图M2-7,在矩形ABCD 中,BC =2AB ,∠ADC 的平分线交边BC 于点E ,AH⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①∠AEB =∠AEH ;②DH =2 2EH ;③HO =12AE ;④BC -BF =2EH .其中正确命题的序号是____________(填上所有正确命题的序号). 三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:8sin 45°-20160+2-1.18.先化简x 2+2x x -1·⎝⎛⎭⎫1-1x ,然后从0,2中选一个合适的值代入求值.19.如图M2-8,已知A (-3,-3),B (-2,-1),C (-1,-2)是平面直角坐标系上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.图M2-8四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图M2-9山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为6 3 m,斜坡BC的坡度i=1∶ 3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1 m,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36)图M2-921.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现某市全体市民追梦的风采,某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生(1)表中的x的值为____________,y的值为____________.(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…,表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.22.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(单位:人),付款总金额为y(单位:元),求分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图M2-10.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:求每千克售价为多少元时,每天可以获得最大的销售利润.(3)进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?图M2-1024.如图M2-11,△ABC和△AED是等腰直角三角形,∠BAC=∠EAD=90°,点D,E在∠BAC的外部,连接DC,BE.(1)求证:BE=CD;(2)若将△AED绕点A旋转,直线CD交直线AB于点G,交直线BE于点K.若AC=8,GA=2,试求GC·KG的值.图M2-1125.如图M2-12,在平面直角坐标系xOy中,二次函数y=ax2+bx-4(a≠0)的图象与x 轴交于A(-2,0),C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连接BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连接PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.图M2-122017年广东省初中毕业生学业考试数学模拟试卷(二)1.A2.C3.A4.D5.C6.A7.B8.B 9.B 解析:如图D156,连接CE ,图D156∵根据图形可知:DC =2,AD =4,∴AC =22+42=2 5,BE =CE =12+12=2,∠EBC =∠ECB =45°. ∴CE ⊥AB .∴sin A =CE AC =22 5=1010.10.A 解析:设扇形的半径为R ,根据题意,得90·π·R 2360=4π.解得R =4.设圆锥的底面圆的半径为r ,则12·2π·r ·4=4π.解得r =1.即所围成的圆锥的底面半径为1 cm.11.2(m +1)(m -1) 12.0.002 05 13.0≤y ≤4 14.8 15.216.①③ 解析:在矩形ABCD 中,AD =BC =2AB =2CD , ∵DE 平分∠ADC , ∴∠ADE =∠CDE =45°. ∵AH ⊥DE ,∴△ADH 是等腰直角三角形. ∵AD =2AB . ∴AH =AB =CD .∵△DEC 是等腰直角三角形, ∴DE =2CD . ∴AD =DE .∴∠AED =67.5°. ∴∠AEB =180°-45°-67.5°=67.5°. ∴∠AED =∠AEB , 故①正确; 设DH =1,则AH =DH =1,AD =DE = 2. ∴HE =2-1.∴2 2HE =2 2(2-1)≠1, 故②错误;∵∠AEH =67.5°, ∴∠EAH =22.5°.∵DH =CD ,∠EDC =45°, ∴∠DHC =67.5°. ∴∠OHA =22.5°. ∴∠OAH =∠OHA . ∴OA =OH .∴∠AEH =∠OHE =67.5°. ∴OH =OE .∴OH =12AE .故③正确;∵AH =DH ,CD =CE , 在△AFH 与△CHE 中, ⎩⎪⎨⎪⎧∠AHF =∠HCE =22.5°,AH =CE ,∠F AH =∠HEC =45°,∴△AFH ≌△CHE (ASA). ∴AF =EH .在△ABE 与△AHE 中, ⎩⎪⎨⎪⎧AB =AH ,∠BEA =∠HEA ,AE =AE ,∴△ABE ≌△AHE . ∴BE =EH .∴BC -BF =(BE +CE )-(AB -AF )=(EH +CD )-(CD -EH )=2EH . 故④错误. 故答案为①③.17.解:原式=2 2×22-1+12=2-1+12=32.18.解:x 2+2x x -1·⎝⎛⎭⎫1-1x =x (x +2)x -1·x -1x =x +2,当x =2时,原式=2+2=4. 19.解:(1)△A 1B 1C 1如图D157.图D157(2)点B 2的坐标为(2,-1),由图可知,点B 2到B 1与A 1C 1的中点的距离分别为2,3.5, 所以h 的取值范围为2<h <3.5.20.解:(1)如图D158,∵斜坡BC 的坡度i =1∶3,图D158∴tan ∠BCD =BD DC =33.∴∠BCD =30°.(2)在Rt △BCD 中,CD =BC ×cos ∠BCD =6 3×32=9. 则DF =DC +CF =10(m). ∵四边形GDFE 为矩形, ∴GE =DF =10(m), ∵∠AEG =45°, ∴AG =GE =10(m),在Rt △BEG 中,BG =GE ×tan ∠BEG =10×0.36=3.6(m), 则AB =AG -BG =10-3.6=6.4(m). 答:旗杆AB 的高度为6.4 m.21.解:(1)∵x +35+11=50, ∴x =4,或x =50×0.08=4. y =3550=0.7,或y =1-0.08-0.22=0.7. (2)依题得获得A 等级的学生有4人,用A 1,A 2,A 3,A 4表示,画树状图D159如下:图D159由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A 1和A 2的有两种结果,所以从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A 1和A 2的概率为p =212=16.22.解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x ≥4), 按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4). (2)因为y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0.解得x =24. ∴当购买24张票时,两种优惠方案付款一样多. ②当y 1-y 2<0时,得0.5x -12<0.解得x <24. ∴4≤x <24时,y 1<y 2,优惠方案①付款较少. ③当y 1-y 2>0时,得0.5x -12>0.解得x >24. 当x >24时,y 1>y 2,优惠方案②付款较少.23.解:(1)设y 与x 之间的一个函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧38=37k +b ,34=39k +b .解得⎩⎪⎨⎪⎧k =-2,b =112.故函数关系式为y =-2x +112.(2)依题意有w =(x -20)(-2x +112)=-2(x -38)2+648, 故每千克售价为38元时,每天可以获得最大的销售利润. (3)由题意可得,售价越低,销量越大,即能最多的进货, 设一次进货最多m 千克,则m-2×30+112≤30-5. 解得m ≤1300.故一次进货最多只能是1300千克. 24.解:(1)∵∠BAC =∠EAD =90°,∴∠BAC +∠BAD =∠EAD +∠BAD . ∴∠CAD =∠BAE .在△BAE 和△CAD 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△BAE ≌△CAD (SAS). ∴BE =CD .(2)当点G 在线段AB 上时[如图D160(1)], ∵△BAE ≌△CAD , ∴∠ACD =∠ABE . 又∵∠CGA =∠BGK , ∴△CGA ∽△BGK . ∴AG KG =GC GB . ∴AG ·GB =GC ·KG . ∵AC =8, ∴AB =8. ∵GA =2, ∴GB =6. ∴GC ·KG =12,当点G 在线段AB 延长线上时[如图D160(2)], ∵△BAE ≌△CAD , ∴∠ACD =∠ABE . 又∵∠BGK =∠CGA , ∴△CGA ∽△BGK . ∴AG KG =CG GB , ∴AG ·GB =GC ·KG . ∵AC =8, ∴AB =8. ∵GA =2, ∴GB =10. ∴GC ·KG =20.(1) (2)图D16025.解:(1)∵二次函数y =ax 2+bx -4(a ≠0)的图象与x 轴交于A (-2,0),C (8,0)两点,∴⎩⎪⎨⎪⎧4a -2b -4=0,64a +8b -4=0.解得⎩⎨⎧a =14,b =-32.∴该二次函数的解析式为y =14x 2-32x -4.(2)由二次函数y =14x 2-32x -4可知对称轴x =3,∴D (3,0),∵C (8,0),∴CD =5.由二次函数y =14x 2-32x -4,可知:B (0,-4).设直线BC 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧8k +b =0,b =-4.解得⎩⎪⎨⎪⎧k =12,b =-4.∴直线BC 的解析式为y =12x -4.设E ⎝⎛⎭⎫m ,12m -4, 当DC =CE 时,EC 2=(m -8)2+⎝⎛⎭⎫12m -42=CD 2, 即(m -8)2+⎝⎛⎭⎫12m -42=52. 解得m 1=8-2 5,m 2=8+2 5(舍去). ∴E (8-2 5,-5);当DC =DE 时,ED 2=(m -3)2+⎝⎛⎭⎫12m -42=CD 2, 即(m -3)2+⎝⎛⎭⎫12m -42=52,解得m 3=0,m 4=8(舍去), ∴E (0,-4);当EC =DE 时,(m -8)2+⎝⎛⎭⎫12m -42=(m -3)2+⎝⎛⎭⎫12m -42.解得m 5=5.5. ∴E ⎝⎛⎭⎫112,-54. 综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8-2 5,-5),(0,-4),⎝⎛⎭⎫112,-54. (3)过点P 作y 轴的平行线交x 轴于点F , ∵点P 的横坐标为m ,∴点P 的纵坐标为14m 2-32m -4.∵△PBD 的面积S =S 梯形-S △BOD -S △PFD =12m ⎣⎡⎦⎤4-⎝⎛⎭⎫14m 2-32m -4-12(m -3)⎣⎡⎦⎤-⎝⎛⎭⎫14m 2-32m -4-12×3×4 =-38m 2+174m =-38⎝⎛⎭⎫m -1732+28924∴当m =173时,△PBD 的最大面积为28924,∴点P 的坐标为⎝⎛⎭⎫173,-16136。

11.2017年广东省中考数学仿真模拟(三)

11.2017年广东省中考数学仿真模拟(三)

21.在国务院办公厅发布《中国足球发展改革总 体方案》之后,某校为了调查本校学生对足球知识 的了解程度,随机抽取了部分学生进行一次问卷调 查,并根据调查结果绘制了如图的统计图,请根据 图中所给的信息,解答下列问题:
(1)本次接受问卷调查的学生总人数是 120 ; (2)扇形统计图中,“了解”所对应扇形的圆心 角的度数为 30° ,m的值为 25 ; (3)若该校共有学生1500名,请根据上述调查结 果估算该校学生对足球的了解程度为“基本了解” 的人数. (3)若该校共有学 生1500名,则该校 学生对足球的了解程 度为“基本了解”的 人数为1500×25%=375.
(3)设M(3﹣t,t), ∵点P在线段AC上移动 (不包括端点), ∴0<t<4, ∴PN∥x轴, ∴N的纵坐标为t,
把y=t代入y= , ∴x= , ∴N的坐标为( ,t), ∴MN= ﹣(3﹣t)= +t﹣3, 过点A作AE⊥PN于点E, ∴AE=t,
由二次函数性质可知,当0≤t≤ 时,S△AMN随t的 增大而减小,当 <t≤4时,S△AMN随t的增大而增 大, ∴当t= 时,S△AMN可取得最小值为 , 当t=4时,S△AMN可取得最大值为4, ∵0<t<4, ∴ ≤S△AMN<4.
解:(1)设乙队单独施工,需要x天才能完成该 项工程, ∵甲队单独施工30天完成该项工程的 , ∴甲队单独施工90天完成该项工程, 根据题意得 +15( + )=1,解得x=30, 检验:x=30是原方程的根, 答:乙队单独施工,需要30天才能完成该项工程; (2)设乙队参与施工y天才能完成该项工程,根 据题意得 ×36+y× ≥1,解得y≥18, 答:乙队至少施工18天才能完成该项工程.
5.在△ABC中,AB=3,BC=4,AC=2,D、E、 F分别为AB、BC、AC中点,连接DF、FE,则四 边形DBEF的周长是( B) A.5 B.7 C.9 D.11

广东省广州市番禺区九年级中考一模数学考试卷(解析版)(初三)中考模拟.doc

广东省广州市番禺区九年级中考一模数学考试卷(解析版)(初三)中考模拟.doc

广东省广州市番禺区九年级中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】计算的结果是().A. 2017B.C. 2017D.【答案】C【解析】分析:根据只有符号不同的两个数互为相反数,可得答案.本题解析:-2017的相反数是2017,所以B选项是正确的.【题文】下列所给图形中,既是中心对称图形又是轴对称图形的是().A. B. C. D.【答案】D【解析】分析:根据轴对称图形与中心对称图形的概念求解.本题解析:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.所以D选项是正确的.【题文】2016年中国GDP增速6.7%,经济总量约为744000亿元,中国经济总量在各个国家中排名第二,将744000用科学记数法表示为().A. B. C. D.【答案】A【解析】确定,中n的值是易错点,由于744000有6位,所以可以确定n=6-1=5 .本题解析:744000=7.4×10【题文】如图所示的几何体的俯视图是().A. B. C. D.【答案】D【解析】根据该几何体的组成,可确定其俯视图如下图所示:故选D.点睛:问题主要考查几何体的三视图,掌握三视图的画法是解答本题的关键;在三视图中,分界线和可见轮廓线都用实线画出,不可见的轮廓线,用虚线画出.【题文】我市2016年5月份某一周的7天最高气温(单位:)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为().A. B. C. D.【答案】B【解析】分析:平均数是指在一组数据中所有数据之和再除以数据的个数.本题可把所有的气温加起来再除以7即可.本题解析: 依题意得:平均气温=(25+28+30+29+31+32+28)÷7=29℃故选B.【题文】如图,△ABC内接于⊙O,若,则∠AOB的度数是().A. B. C. D.【答案】A【解析】分析:根据圆周角定理即可求解.本题解析: ,∠ACB=50°∴∠AOB=2∠ACB =100°【题文】计算的结果为().A. B. 1 C. D. 7【答案】B【解析】分析:先算乘法,再算加法即可.本题解析:原式=,故选B.点睛:实数的混合运算和有理数的混合运算一样,要按顺序进行,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.【题文】如图,已知在中,点A(1,2),∠OBA=90º,OB在x轴上.将△AOB绕点A逆时针旋转90º,点O的对应点C恰好落在双曲线上,则的值为().A. 1B. 2C. 3D. 4【答案】C【解析】分析:由坐标与图形旋转求出点C坐标,再利用反比例整数解析式求kOB=CD=1.AB=2.一定要把C点坐标求对.坐标与图形的旋转是关键.本题解析: 由A(1,2)可知OB=1,AB=2.将△AOB绕点A逆时针旋转90°得到△ACD,则△AOB ≅△ACD,所以CD=OB=1,AD=AB=2.所以点C坐标(3,1),又点C在双曲线 y= (x>0)上,∴1=,k=3. 故答案为:C.【题文】如图所示,一张纸片,点D,E分别在线段AC,AB上,将△ADE沿着折叠,与重合,若,则().A. B. C. D.【答案】B【解析】分析:先根据图形翻折变化的性质得出△ADE≌△,∠AED=∠,∠ADE= ,再根据三角形内角和定理求出∠AED+∠ADE及∠+∠的度数,然后根据平角的性质即可求出答案.本题解析: ∵△是△ADE翻折变换而成,∴∠AED=∠,∠ADE=∠,∠A=∠A′= ,∴∠AED+∠ADE=∠+∠=180°-,∴∠1+∠2=360°-2×(180°-)=2.故选B.点睛:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【题文】抛物线()的对称轴为直线,与x轴的一个交点A在点和之间,其部分图象如图,则下列4个结论:①;②2a b=0;③;④点M (,)、N(,)在抛物线上,若,则,其中正确结论的个数是().A. 1个B. 2个C. 3个D. 4个【答案】B【解析】①项,由图象可知,抛物线与x轴有两个交点,所以判别式,故①错误.②项,根据抛物线的对称轴方程为,即b=2a,所以2a-b=0。

2017广东省数学模拟试题答案(二)

2017广东省数学模拟试题答案(二)

2017年广东中考数学押题卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.的值等于(A)A.4 B.﹣4 C.±4 D.2.函数y= 中,自变量x的取值范围为(C)A.x>B.x≠且x≠0 C.x≠D.x<3.下列图案中,是轴对称图形但不是中心对称图形的是(B)A.B.C.D.4.下列运算正确的是(C)A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)25.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为(B)A.3 B.4 C.5 D.66.若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的(D)A.4 B.0 C.1 D.-37.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是A A.10 B.8 C.6 D.8或108.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=(B)A.64°B.58°C.72°D.55°9.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r 的值为(B)A.3 B.6 C.3πD.6π10(1).如图,等边△ABC 的边长为2 cm ,点P 从点A 出发,以1cm/s 的速度向点C 移动,同时点Q 从点A 出发,以1 cm/s 的速度沿A →B →C 的方向向点C 移动,若△APQ 的面积为S (cm 2),则下列最能反映S (cm 2)与移动时间t (s)之间函数关系的大致图象是( C )10(2).如图,正△ABC 的边长为4,点P 为BC 边上的任意一点(不与点B 、C 重合),且∠APD =60°,PD 交AB 于点D .设BP =x ,BD =y ,则y 关于x 的函数图象大致是( C )二、填空题(本大题共6小题,每小题4分,共24分)11.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为 1.62×104 .12.因式分解:m 2n ﹣6mn +9n= .13.如图,△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边BC 上A 1处,折痕为CD ,则∠A 1DB= 10 度.14.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 30. m (结果保留根号). 15.不等式组的解集是 3≤x <4. .16.如图,在矩形ABCD 中,点O 在BC 边上,OB =2OC =2,以O 为圆心,OB 的长为半径画弧,这条弧恰好经过点D ,则图中阴影部分的面积为_2π3-3_______. 三、解答题(本大题共3小题,每题6分共18分)17.解方程:=5.18.先化简,再求值:2a (a +2b )+(a ﹣2b )2,其中a=﹣1,.19.如图,在△ABC 中,∠C=90°,∠B=30°. (1)作∠A 的平分线AD ,交BC 于点D (用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S △DAC :S △ABC 的值.四、解答题(本大题共3小题,每题7分共21分)20.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如下的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为 ,并把条形统计图补充完整;(2)扇形统计图中m= ,表示“足球”的扇形的圆心角是 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.22.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ABD(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.五、解答题(本大题共3小题,每题9分共27分)23.如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.24.如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC 、 BC ,分别与⊙O 相交于点D 、点E ,且AD DE ,过点D 作DF⊥BC 于点F ,连接BD 、DE 、AE.(1)求证:DF 是⊙O 的切线;(2)试判断△DEC 的形状,并说明理由;(3)若⊙O 的半径为5,AC =12,求sin ∠EAB 的值.25. 如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm ,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为每秒2 cm 和1 cm ,FQ ⊥BC ,分别交AC 、BC 于点P 和Q ,设运动时间为t 秒(0<t <4).(1)连接EF ,若运动时间t =23秒时,求证:△EQF 是等腰直角三角形; (2)连接EP ,设△EPC 的面积为ycm 2,求y 与t 的函数关系式,并求y 的最大值;(3)若△EPQ 与△ADC 相似,求t 的值.17.解方程:=5.∴原方程的解为:x=.18.先化简,再求值:2a (a +2b )+(a ﹣2b )2,其中a=﹣1,.解:原式=2a 2+4ab +a 2﹣4ab +4b 2=3a 2+4b 2,当a=1,b=时;原式=3×(﹣1)2+4×()2=15. 19.如图,在△ABC 中,∠C=90°,∠B=30°. (1)作∠A 的平分线AD ,交BC 于点D (用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S △DAC :S △ABC 的值.【解答】解:(1)如图所示:(2)解:∵在Rt △ACD 中,∠CAD=30°,∴CD=AD .∴BC=CD +BD=CD +AD=3CD .∴S △DAC =,S △ABC =. ∴S △DAC :S △ABC =:=1:3.21. 【学生解答】解:(1)设每张门票原定的票价x 元,由题意得:6 000x =4 800x -80,解得x =400. 经检验,x =400是原方程的解.答:每张门票原定的票价400元;(2)设平均每次降价的百分率为y ,由题意得:400(1-y)2 =324, 解得y 1=0.1,y 2=1.9(不合题意,舍去). 答:平均每次降价10%.22证明;(1)∵△ABC ≌△ABD ,∴∠ABC=∠ABD ,∵CE ∥BD ,∴∠CEB=∠DBE ,∴∠CEB=∠CBE .(2))∵△ABC ≌△ABD ,∴BC=BD ,∵∠CEB=∠CBE ,∴CE=CB ,∴CE=BD ∵CE ∥BD ,∴四边形CEDB 是平行四边形,∵BC=BD ,∴四边形CEDB 是菱形.五.解答题(共3小题)解:(1)∵反比例函数y =2x 图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1),∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得, ∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0; (3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1,∴点D 的坐标为(-1,0),点C 的坐标为(0,1),24.2.(1)证明:如解图,连接DO ,交AE 于点G ,则DO =BO ,∴∠ABD =∠ODB ,∵AD DE =,∴∠ABD =∠EBD ,∴∠ODB =∠EBD ,∴DO ∥BC ,∴∠ODF =∠CFD ,∵DF ⊥BC ,∴∠CFD =90°,∴∠ODF =90°,即OD ⊥DF ,又∵OD 为⊙O 的半径,∴DF 是⊙O 的切线;(2)解:△DEC 是等腰三角形,理由如下:∵AB 是⊙O 的直径,∴∠ADB =∠CDB =90°,又∵BD =BD ,∠ABD =∠EBD ,∴△ABD ≌△CBD (ASA),∴AD =CD .∵AD DE =,∴AD =DE ,∴CD =DE ,∴△DEC 是等腰三角形;(3)解:由(2)可知AD =12AC =6, ∵AD DE =,∴OD ⊥AE ,∠ABD =∠DAE ,∴sin ∠DAE =DG AD. 在Rt △ADB 中,sin ∠ABD =AD AB =610, ∴DG 6=610,∴DG =3.6,∴OG =OD -DG =1.4,∴在Rt △AGO 中,sin ∠EAB =OG OA =1.45=725.5.(1)证明:若运动时间t =23秒,则BE =2×23=43 cm ,DF =23cm , ∵四边形ABCD 是矩形,∴AD =BC =8 cm ,AB =DC =6 cm ,∠D =∠BCD =90°,∵FQ ⊥BC ,∴∠FQC =∠D =∠QCD =90°,∴四边形CDFQ 是矩形,∴CQ =DF =23 cm ,CD =QF =6 cm ,∴EQ =BC -BE -CQ =8-43-23=6 cm , ∴EQ =QF =6 cm ,∴△EQF 是等腰直角三角形;(2)解:∵∠FQC =90°,∠B =90°,∴∠FQC =∠B ,∴PQ ∥AB ,∴△CPQ ∽△CAB ,∴PQ AB =QC BC ,即6PQ =t 8,∴PQ =34 t cm ,∵BE =2t ,∴EC =BC -BE =8-2t ,∵S △EPC =12EC ·PQ , ∴y =12(8-2t )·34t =-34t 2+3t =-34(t -2)2+3(0<t <4).∵-34<0, ∴当t =2秒时,y 有最大值,y 的最大值为3 cm 2;(3)解:分两种情况讨论:(ⅰ)如解图①,点E 在Q 的左侧,①当△EPQ ∽△ACD 时, 第5题解图① 可得PQ CD =EQ AD ,即348t =8-3t 8,解得t =2; ②当△EPQ ∽△CAD 时,可得PQ AD =EQ CD ,即348t =8-3t 6,解得t =12857; (ⅱ)如解图②,点E 在Q 的右侧,∵0<t <4,∴点E 不能与点C 重合,∴只存在△EPQ ∽△CAD ,可得PQ AD =EQ CD ,即348t =3t -86, 解得t =12839, 故若△EPQ 与△ADC 相似,则t 的值为2秒或12857秒或12839秒.。

2017年广东省初中毕业生学业考试数学模拟试卷含答案

2017年广东省初中毕业生学业考试数学模拟试卷含答案

(1)
(2)
图 M1- 13
2016 年广东省初中毕业生学业考试数学模拟试卷
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分 )
1.在 12, 2,4,- 2 这四个数中,互为相反数的是 (
)
A. 12与 2
B .2 与- 2
C .-
2

1 2
D .- 2 与 4
2.下列四个几何体中,俯视图是圆的几何体共有
m2.
三、解答题 (一 )(本大题共 3 小题,每小题 6 分,共 18 分) 17.解方程: x2- 2x- 4=0.
18.先化简,再求值:
2x x+ 1

2x+ x2-
6 1
÷x2
x+ 3 -2x+
1.
其中
x=
3.
19.如图 M1- 9, BD 是矩形 ABCD 的一条对角线. (1) 作 BD 的垂直平分线 EF,分别交 AD ,BC 于点 E,F,垂足为点 O;(要求用尺规作图, 保留作图痕迹,不要求写作法 ) (2) 在 (1)中,连接 BE 和 DF ,求证:四边形 DEBF 是菱形.
8天
的日最高气温的中位数是 ( )
A . 22℃ B. 22.5℃ C. 23℃ D. 23.5℃
图 M2- 1
图 M2- 2
7.如图 M2- 2,a∥ b,∠ 3+∠ 4=110 °,则∠ 1+∠ 2 的度数为 ( ) A . 60° B . 70° C. 90° D. 110 ° 8.如图 M2- 3,下列四个图形中,既是轴对称图形又是中心对称图形的有
()
A.
B.
C.
D.
5.下列计算正确的是 ( ) A . 2a+ 3b= 5ab B .(a2)4= a8 C. a3·a2=a6 D .( a- b) 2= a2-b2

2017年广东省中考数学模拟试卷(一)及答案

2017年广东省中考数学模拟试卷(一)及答案1.﹣3的相反数是()A.13B.-13C.3D.﹣32.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.州3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108B.[1.309\times {{10}^{10}}\).C.1.309×109D.1309×1064.如图所示,几何体的主视图是()A.B.C.D.图象的每条曲线上y都随x增大而增大,则k的取值范围是5.反比例函数y=1−kx()图象的每条曲线上y都随x增大而增大,则k的取值范围是(1)反比例函数y=1−kx()A.k>1B.k>0C.k<1D.k<06.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°8.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.129.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.72048+x −72048=5B.72048+5=72048+xC.72048−720x=5D.72048−72048+x=510.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(√22)2013B.(√22)2014C.(12)2013D.(12)201411.分解因式:x y2−x=_ _.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是_ _.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是_ _元.14.一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为_ _.15.若关于x 的方程x 2+2x +m −5=0有两个相等的实数根,则m =_ _.16.如图,菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 按顺时针方向旋转90°,则图中阴影部分的面积是_ _.17.计算:2cos45∘+(√2−1)0−(12)−1.18.化简,再求值:(a −2ab−b 2a )÷a−b a,其中a =2,b =﹣3. 19.如图,点C 、E 、B 、F 在同一直线上,AB ∥DE ,AC ∥DF ,AC =DF ,判断CE 与FB 的数量关系,证明你的结论.20.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共_ _吨;,每回收1吨塑料类垃圾可获得0.7吨二(3)调查发现,在可回收物中塑料类垃圾占15级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.√3(取1.732)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC 于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;的解集;(2)根据所给条件,请直接写出不等式k1x+b>k2x图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(−2,y2)是函数y=k2x24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.25.如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?个平方单位?若存在,求出相应的x (3)是否存在某个时刻x,使△OPQ的面积为3√34值;若不存在,请说明理由.1.【能力值】无【知识点】(1)相反数【详解】(1)【考点】相反数【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.【答案】(1)C2.【能力值】无【知识点】(1)正方体相对两个面上的文字【详解】(1)【考点】专题:正方体相对两个面上的文字【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“建”与“州”是相对面,“美”与“广”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【答案】(1)D3.【能力值】无【知识点】(1)正指数科学记数法【详解】(1)【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)C4.【能力值】无【知识点】(1)由立体图形到视图【详解】(1)【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【答案】(1)B5.【能力值】无【知识点】(1)反比例函数的应用【详解】(1)【考点】反比例函数的性质来说,当k<0时,每一条曲线上,y随x的增大而增大;当k 【分析】对于函数y=kx>0时,每一条曲线上,y随x的增大而减小.的图象上的每一条曲线上,y随x的增大而增大,【解答】解:∵反比例函数y=1−kx∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运中k的意义不理解,直接认为k<0,造成错误.用.易错易混点:学生对解析式y=kx【答案】(1)A6.【能力值】无【知识点】(1)众数、中位数【详解】(1)【考点】统计量的选择【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.【答案】(1)D7.【能力值】无【知识点】(1)圆周角定理及其推理【详解】(1)【考点】圆周角定理【分析】首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC 的度数,然后利用圆周角定理求解,即可求得答案.【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∠BOC=48°.∴∠A=12故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.【答案】(1)B8.【能力值】无【知识点】(1)平行四边形及其性质、相似三角形的性质【详解】(1)【考点】平行四边形的性质;相似三角形的判定与性质【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得DEDA =EFAB,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴DEDA =EFAB,∵EF=3,∴37=3AB,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选:B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.【答案】(1)B9.【能力值】无【知识点】(1)分式方程的应用【详解】(1)【考点】由实际问题抽象出分式方程【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048+x,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048+x , 可以列出方程:72048−72048+x =5.故选:D .【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.【答案】(1)D10.【能力值】无【知识点】(1)等腰直角三角形【详解】(1)【考点】等腰直角三角形【分析】根据等腰直角三角形的性质结合三角形的面积公式可得出部分Sn 的值,根据面积的变化即可找出变化规律“S n =4×(12)n−1”,依此规律即可解决问题.【解答】解:观察,发现:S 1=22=4,S 2=(2×√22)2=2,S 3=(√2×√22)2=1,S 4=(1×√22)2=12,…,∴S n =[2×(√22)n−1]2=4×(12)n−1,∴S 2016=4×(12)2016−1=(12)2013.故选:C .【点评】本题考查了等腰直角三角形的性质、三角形的面积、正方形的面积以及规律型中数字的变化类,根据面积的变化找出变化规律“S n =4×(12)n−1”是解题的关键.【答案】(1)C11.【能力值】无【知识点】(1)因式分解法【详解】(1)【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【答案】(1)解:x y2−x,=x(y2−1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.【能力值】无【知识点】(1)三角形的内角和【详解】(1)【考点】三角形内角和定理【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.【答案】(1)解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.【能力值】无【知识点】(1)解常规一元一次方程【详解】(1)【考点】一元一次方程的应用【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【点评】此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×8折﹣获利,利用方程思想解答.【答案】(1)解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.【能力值】无【知识点】(1)公式求概率【详解】(1)【考点】概率公式【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.【答案】(1)解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和3个黄球,共10个,摸到红球的概率为:510=12.故答案为:12.15.【能力值】无【知识点】(1)一元二次方程的根【详解】(1)【考点】根的判别式【分析】根据已知条件“关于x的方程x2+2x+m−5=0有两个相等的实数根”知,根的判别△=b2−4ac=0式,然后列出关于m的方程,解方程即可.【点评】本题主要考查了一元二次方程的根的判别式.一元二次方程ax2+bx+c=0(a ≠0)的根的判别式△=b2﹣4ac:①△>0⇒方程有两个不等实数根;②△=0⇒方程有两个相等实数根;③△<0⇒方程没有实数根.【答案】(1)解:∵关于x 的方程x 2+2x +m −5=0有两个相等的实数根, ∴△=4﹣4(m ﹣5)=0,解得,m =6;故答案为:6.16.【能力值】无【知识点】(1)扇形面积的计算、旋转变换、菱形的性质【详解】(1)【考点】菱形的性质;扇形面积的计算;旋转的性质【分析】连接OB 、OB ′,阴影部分的面积等于扇形BOB ′的面积减去两个△OCB 的面积和扇形OCA ′的面积.根据旋转角的度数可知:∠BOB ′=90°,已知了∠A =120°,那么∠BOC =∠A ′OB ′=30°,可求得扇形A ′OC 的圆心角为30°,进而可根据各图形的面积计算公式求出阴影部分的面积.【解答】解:连接OB 、OB ′,过点A 作AN ⊥BO 于点N ,菱形OABC 中,∠A =120°,OA =1,∴∠AOC =60°,∠COA ′=30°,∴AN =12,∴NO =√12−(12)2=√32, ∴BO =√3,∴S △CBO =S △C ′B ′O =12×12AO.2CO.sin60∘=√34, S 扇形OCA ′=30π×1360=π12, S 扇形OBB =90π×(√3)2360=3π4; ∴阴影部分的面积=3π4﹣(2×√34+π12)=2π3−√32. 故答案为:2π3−√32.【点评】此题考查了菱形的性质、扇形的面积公式、等边三角形的性质等知识点.【答案】(1)2π3−√3217.【能力值】无【知识点】(1)实数、锐角三角函数的性质、负指数幂运算、零指数幂运算【详解】(1)【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】根据45°角的余弦等于√22,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数,进行计算即可得解.【点评】本题考查了实数的运算,主要利用了零指数幂,负整数指数幂,以及特殊角的三角函数值,是基础题,熟记性质以及特殊角的三角函数值是解题的关键.【答案】(1)解:2cos45∘+(√2−1)0−(1)−1=2×√22+1﹣2=√2﹣1.18.【能力值】无【知识点】(1)分式的混合运算【详解】(1)【考点】分式的化简求值【分析】首先化简(a−2ab−b2a )÷a−ba,然后把a=2,b=﹣3代入化简后的算式,求出算式的值是多少即可.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.【答案】(1)解:(a−2ab−b2a )÷a−ba=(a−b)2a ÷a−ba=a﹣b当a=2,b=﹣3时,原式=2﹣(﹣3)=5.19.【能力值】无【知识点】(1)全等形的概念及性质【详解】(1)【考点】全等三角形的判定与性质【分析】根据两直线平行,内错角相等可得∠ABC=∠DEF,∠C=∠F,然后利用“角角边”证明△ABC和△DEF全等,根据全等三角形对应边相等可得BC=EF,然后都减去BE 即可得证.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于利用平行线的性质求出三角形全等的条件.【答案】(1)答:CE=FB.证明如下:∵AB∥DE,∴∠ABC=∠DEF,∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,{∠ABC=∠DEF∠C=∠FAC=DF,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣BE=EF﹣BE,即CE=FB.20.【能力值】无【知识点】(1)扇形统计图、条形统计图(2)扇形统计图、条形统计图(3)扇形统计图、条形统计图【详解】(1)【考点】扇形统计图;条形统计图【分析】根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(2)【考点】扇形统计图;条形统计图【分析】求得C组所占的百分比,即可求得C组的垃圾总量;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(3)【考点】扇形统计图;条形统计图【分析】首先求得可回收垃圾量,然后求得塑料颗粒料即可;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【答案】(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.21.【能力值】无【知识点】(1)解直角三角形的实际应用【详解】(1)【考点】解直角三角形的应用﹣方向角问题【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.【答案】(1)解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×√3≈108.25(米)>100米.2答:消防车不需要改道行驶.22.【能力值】无【知识点】(1)全等三角形的性质(D )(2)全等三角形的性质(D )【详解】(1)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】由AD ∥BC ,知∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,所以∠DBC =∠BDF ,得BE =DE ,即可用AAS 证△DCE ≌△BFE ;【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.(2)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】在Rt △BCD 中,CD =2,∠ADB =∠DBC =30°,知BC =2√,在Rt △BCD 中,CD =2,∠EDC =30°,知CE =2√33,所以BE =BC ﹣EC =4√33. 【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.【答案】(1)∵AD ∥BC ,∴∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,∠F =∠A =∠C =90°,∴∠DBC =∠BDF ,∴BE =DE ,在△DCE和△BFE中,{∠BEF=∠DEC∠C=∠FBE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2√3,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2−EC2=CD2,∴CE=2√33,∴BE=BC﹣EC=4√33.23.【能力值】无【知识点】(1)一次函数的应用(2)一次函数的应用(3)一次函数的应用【详解】(1)【考点】反比例函数与一次函数的交点问题【分析】把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(2)【考点】反比例函数与一次函数的交点问题【分析】根据A、B的横坐标,结合图象即可得出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(3)【考点】反比例函数与一次函数的交点问题【分析】分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.【答案】(1)得:k2=2m=﹣2n,把A(2,m),B(n,﹣2)代入y=k2x即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC =12.BC.BD∴12×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=k2x得:k2=6,即反比例函数的解析式是y=6x;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>k2x的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.24.【能力值】无【知识点】(1)等边三角形的性质、切线的判定、解直角三角形(2)等边三角形的性质、切线的判定、解直角三角形(3)等边三角形的性质、切线的判定、解直角三角形【详解】(1)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OB,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O的切线;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(2)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(3)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH=12BD=3,DH=√3BH=√33.解Rt△AFG,得AG=12AF=92,则GH=AB﹣AG﹣BH=92,于是根据正切函数的定义得到tan∠GDH=GHDH =√32,则tan∠FGD可求.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.【答案】(1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6.在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC ﹣CF =12﹣3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×√32=9√32; (3)解:过D 作DH ⊥AB 于H .∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH .在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =√3BH =3√3.在Rt △AFG 中,∵∠AFG =30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan∠GDH=GHDH =923√3=√32,∴tan∠FGD=tan∠GDH=√32.25.【能力值】无【知识点】(1)解直角三角形(2)解直角三角形(3)解直角三角形【详解】(1)【考点】三角形综合题【分析】过点Q作QD⊥OA于点D,解直角三角形QOD,分别求出OD,QD和x的关系式,即可得到点Q的坐标;.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(2)【考点】三角形综合题【分析】由三角形面积公式可得s与x之间的二次函数关系式,然后利用配方法求得其最大值即可;【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(3)【考点】三角形综合题【分析】存在某个时刻x的值,使△OPQ的面积为3√34个平方单位,由(2)可知把y=3√34代入求出对应的x值即可.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.【答案】(1)过点Q 作QD ⊥OA 于点D ,如图所示:∵△ABO 是等边三角形,∴∠AOB =60°,∵动点Q 从B 点出发,速度为每秒1个单位长度,∴BQ =x ,∴OQ =4﹣x ,在Rt △QOD 中,OD =OQ •cos60°=(4﹣x )×12=2﹣12x ,QD =OQ •sin60°=(4﹣x )×√32=2√3﹣√32x ,∴点Q 的坐标为(2﹣12x ,2√﹣√32x );(2)∵动点P 从O 点出发,速度为每秒1个单位长度,∴OP =x ,∴S =12OP •QD =12x (2√﹣√32x )=-√34x 2+x ,=−√34(x −2)2+√3(0<x <4),∵a =﹣√34<0,∴当x =2时,S 有最大值,最大值为√3;(3)存在某个时刻x 的值,使△OPQ 的面积为3√34个平方单位,理由如下:,假设存在某个时刻,使△OPQ 的面积为3√34个平方单位,由(2)可知)=−√34x 2+√3x =3√34,解得x =1或x =3,∵0<x<4,∴x=1或x=3都成了,个平方单位.即当x=1s或3s时,能使△OPQ的面积为3√34。

中考数学:2017年广东模拟卷(二)含答案

∴∠EAM=∠B (等量替换),∴AM//BC(同位角相等,两直线平行)
∵AD是△ABC的高,即AD⊥BC,∠ADC=90⁰(垂直的定义)
∴∠DAN=180⁰-∠ADC=90⁰(两直线平行,同旁内角互补)
又∵DN平分∠ADC,∴∠ADN= ∠ADC=45⁰
A
B
C
D
二、填空题(6题,共24分)
11、杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为__________.
12、若(a-1)2+ =0,则(a+b)2017的值为_____.
13、正多边形的一个外角是72⁰,则这个多边形的内角和的度数是___________.
14、程 的解是_______.
(1)求矩形ABCD的面积;
(2)求第1个平行四边形OBB1C、第2个平行四边形A1B1C1C和第6个平行四边形的面积.
五、解答题(三)(3题,共27分)
23、如图,平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A,B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.
(2)求两个数字的积为奇数的概率.
21、某汽车销售公司2014年盈利1 500万元,到2016年盈利2 160万元,且从2014年到2016年,每年盈利的年增长率相同。
(1)该公司2015年盈利多少万元?
(2)若该公司盈利的年增长率继承保持不变,预计2017年盈利多少万元?
22、如图,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB,OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1,A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于O1;再以O1B1,O1C1为邻边作第3个平行四边形O1B1B2C1……依次类推.

2017年广东省初中毕业生学业考试数学模拟试卷(一)含答案

2017年广东省初中毕业生学业考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.12的相反数是( ) A .2 B .-2 C .-12 D.122.a ,b 在数轴上的位置如图M1-1,则下列式子正确的是( )A .a +b >0B .a +b >a -bC .|a |>|b |D .ab <0图M1-1 图M1-2 图M1-3×1010元,将此数据用亿元表示为( )4.下列式子正确的是( ) A.8=±2 2 38- 2 C. 38-=-2 2 D.-8=-2 25.下列四种正多边形:①正三角形;②正方形;③正五边形;④正六边形,其中既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 6.如图M1-2,矩形ABCD ,AB =a ,BC =b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲,V 乙,侧面积分别为S 甲,S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙7.化简x 2x -1+11-x的结果是( )A .x +1 B.1x +1 C .x -1 D.xx -18.下列命题:①等腰三角形的角平分线平分对边; ②对角线垂直且相等的四边形是正方形; ③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等. 其中真命题有( )A .1个B .2个C .3个D .4个 9.下列说法正确的是( )①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,s 2甲=0.5,s 2乙=0.3,则甲的波动比乙大; ③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”“两枚反面朝上”“一枚正面朝上,一枚反面朝上”三个事件.A .①②B .②③C .②④D .③④ 10.如图M1-3,已知在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是边AC 上一动点,过点E 作EF ∥BC ,交AB 边于点F ,点D 为BC 上任一点,连接DE ,DF .设EC 的长为x ,则△DEF 的面积y 关于x 的函数关系大致为( )A. B. C. D. 二、填空题(本大题共6小题,每小题4分,共24分)11.函数y =1x -1中,自变量x 的取值范围是__________.12.不等式组⎩⎪⎨⎪⎧2x +1>-3,-x +3≥0的解集为__________.13.因式分解:(x +1)(x +2)+14=__________.14.由几个小正方体搭成的几何体,其主视图、左视图相同,均如图M1-4,则搭成这个几何体最少需要__________个小正方体.图M1-4 图M1-515.如图M1-5,△ABC 是边长为4的等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图M1-5中阴影部分的面积为__________.(结果保留π)16.若关于x 的一元二次方程(a +1)x 2-x +1=0有实数根,则a 的取值范围是__________. 三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(-1)2017-cos 45°-⎝⎛⎭⎫-13-2+0.5.18.先化简,再求值:2x x +1-2x +6x 2-1÷x +3x 2-2x +1.其中x = 3.19.如图M1-6,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD ,BC 于E ,F (保留作图痕迹,不写作法和证明); (2)连接BE ,DF ,问四边形BEDF 是什么四边形?请说明理由.图M1-6四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图M1-7,在ABCD中,E,F分别是边AB,CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.图M1-721.人口老龄化是全世界热点问题.为了让学生感受到人口老龄化所带来的一系列社会问题,从而渗透尊老、敬老教育,某中学组织该校七年级学生开展了一项综合实践活动.该校七年级的全体学生分别深入府明社区的两个小区调查每户家庭老年人的数量(60岁以上的老人).根据调查结果,该校学生将数据整理后绘制成的统计图如图M1-8,其中A组为1位老人/户,B组为2位老人/户,C组为3位老人/户,D组为4位老人/户,E组为5位老人/户,F组为6位老人/户.图M1-8请根据上述统计图完成下列问题:(1)这次共调查了____________户家庭;(2)每户有6位老人所占的百分比为____________;(3)请把条形统计图补充完整;(4)本次调查的中位数落在____________组内,众数落在____________组;(5)若该区约有10万户家庭,请你估计其中每户4位老人的家庭有多少户?22.东风商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3000件;若按每件6元的价格销售,每月能卖出2000件,假定每月销售件数y(单位:件)与价格x(单位:元/件)之间满足一次函数关系.(1)试求y 与x 之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-9,反比例函数y =2x的图象与一次函数y =kx +b 的图象交于点A (m,2),点B (-2,n ),一次函数图象与y 轴的交点为C .(1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积.图M1-924.如图M1-10,A ,B 两个单位分别位于一条封闭式街道的两旁,A ,B 两个单位到街道的距离AC =48 m ,BD =24 m ,A ,B 两个单位的水平距离CE =96 m ,现准备修建一座与街道垂直的过街天桥.(1)天桥建在何处才能使由A 到B 的路线最短?(2)天桥建在何处才能使A ,B 到天桥的距离相等?分别在图(1)、图(2)中作图说明(不必说明理由)并通过计算确定天桥的具体位置.图M1-1025.如图M1-11,直径为10的半圆O ,tan ∠DBC =34,∠BCD 的平分线交⊙O 于点F ,点E 为CF 延长线上一点,且∠EBF =∠GBF .(1)求证:BE 为⊙O 切线; (2)求证:BG 2=FG •CE ; (3)求OG 的值.图M1-112017年广东省初中毕业生学业考试数学模拟试卷(一)6.B 解析:V 甲=π·b 2×a =πab 2,V 乙=π·a 2×b =πba 2,∵πab 2<πba 2,∴V 甲<V 乙.∵S 甲=2πb ·a =2πab ,S 乙=2πa ·b =2πab ,∴S 甲=S 乙.故选B.9.C 解析:①了解某市学生的视力情况需要采用抽查的方式,错误;②甲、乙两个样本中,s 2甲=0.5,s 2乙=0.3,则甲的波动比乙大,正确;③50个人中可能有两个人生日相同,可能性较大,错误;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”“两枚反面朝上”“一枚正面朝上,一枚反面朝上”三个事件,正确.故选C.10.D11.x >1 12.-2<x ≤3 13.⎝⎛⎭⎫x +322 14.3 解析:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为3.15.5 32-π 解析:如图D151,过点O 作OE ⊥AC 于点E ,连接FO ,MO ,∵△ABC 是边长为4的等边三角形,D 为AB 边的中点,CD 为直径,图D151∴CD ⊥AB ,∠ACD =∠BCD =30°,AC =BC =AB =4. ∴∠FOD =∠DOM =60°,AD =BD =2. ∴CD =2 3,则CO =DO = 3.∴EO =32,EC =EF =32,则FC =3.∴S △COF =S △COM =12×32×3=3 34,S 扇形OFM =120π×(3)2360=π,S △ABC =12×CD ×4=4 3.∴图中阴影部分的面积为4 3-2×3 34-π=5 32-π.16.a ≤-3417.解:原式=-1-22-9+22=-10.18.解:原式=2x x +1-2()x +3()x +1()x -1·()x -12x +3=2x x +1-2()x -1x +1=2x +1.当x =3时,原式=23+1=3-1.19.解:(1)如图D152,EF 为所求直线.图D152(2)四边形BEDF 为菱形,理由如下: ∵EF 垂直平分BD ,∴BE =DE ,∠DEF =∠BEF . ∵AD ∥BC ,∴∠DEF =∠BFE . ∴∠BEF =∠BFE . ∴BE =BF . ∵BF =DF ,∴BE =ED =DF =BF . ∴四边形BEDF 为菱形.20.(1)证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC ,∠D =∠ABC ,AB =CD . 又∵E ,F 分别是边AB ,CD 的中点, ∴DF =BE .在△ADF 和△CBE 中,⎩⎪⎨⎪⎧AD =CB ,∠D =∠B ,DF =BE ,∴△ADF ∽≌△CBE (SAS).(2)解:四边形AECF 为菱形.理由如下: ∵四边形AGBC 是矩形, ∴∠ACB =90°.又∵E 为AB 中点,∴CE =12AB =AE .同理AF =FC .∴AF =FC =CE =EA . ∴四边形AECF 为菱形.21.解:(1)调查的总户数是80÷20%=400.(2)每户有6位老人所占的百分比是40400=10%.(3)如图D153,D 组的家庭数是400-60-120-80-20-40=80,图D153(4)本次调查的中位数落在C 组内,众数落在D 组. 故答案是C ,D .(5)估计其中每户4位老人的家庭有10×80400=2(万户).22.解:(1)由题意,可设y =kx +b , 把(5,3000),(6,2000)代入,得 ⎩⎪⎨⎪⎧5k +b =3000,6k +b =2000. 解得k =-1000,b =8000.∴y 与x 之间的关系式为y =-1000x +8000. (2)设每月的利润为W 元, 则W =(x -4)(-1000x +8000) =-1000(x -4)(x -8) =-1000(x -6)2+4000∴当x =6时,W 取得最大值,最大值为4000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为4000元.23.解:(1)由题意,把A (m,2),B (-2,n )代入y =2x 中,得⎩⎪⎨⎪⎧m =1,n =-1.∴A (1,2),B (-2,-1).将A ,B 代入y =kx +b 中,得 ⎩⎪⎨⎪⎧ k +b =2,-2k +b =-1.∴⎩⎪⎨⎪⎧k =1,b =1. ∴一次函数解析式为y =x +1.(2)由(1)可知:当x =0时,y =1,∴C (0,1).(3)S △AOC =12×1×1=12.24.解:(1)如图D154(1),平移B 点至B ′,使BB ′=DE ,连接AB ′交CE 于F ,在此处建桥可使由A 到B 的路线最短.此时易知AB ′∥BG .∴△ACF ∽△BDG .∴AC CF =BDDG.设CF =x ,则GD =96-x . ∴48x =2496-x. 解得xCF =64 m.∴将天桥建在距离C 点64 m 处,可使由A 到B 的路线最短.(1) (2)图D154(2)如图D154(2),平移B 点至B ′使BB ′=DE ,连接AB ′交CE 于F ,作线段AB ′的中垂线交CE 于点P ,在此处建桥可使A ,B 到天桥的距离相等.此时易知AC ⊥CE ,另OP 为AB ′中垂线, ∴△ACF ∽△POF . ∴PF AF =OF CF. 设CP =x ,则PF =CF -x . 由(1),得CF =64 m.∴PF =64-x .在Rt △ACF 中,由勾股定理,得AF =80 m. ∵AC ∥BE , ∴CF FE =AF FB ′=6496-64=21. ∴FB ′=40 m.又O 为AB ′中点, ∴FO =20. ∴64-x 80=2064.解得x =39,即CP =39 m.∴将天桥建在距离C 点39 m 处,可使由A 到B 的路线最短. 25.(1)证明:由同弧所对的圆周角相等,得∠FBD =∠DCF . 又∵CF 平分∠BCD , ∴∠BCF =∠DCF . 已知∠EBF =∠GBF , ∴∠EBF =∠BCF . ∵BC 为⊙O 直径, ∴∠BFC =90°.∴∠FBC +∠FCB =90°. ∴∠FBC +∠EBF =90°. ∴BE ⊥BC .∴BE 为⊙O 切线.(2)证明:由(1)知,∠BFC =∠EBC =90°,∠EBF =∠ECB , ∴△BEF ∽△CEB . ∴BE 2=EF ·CE .又∠EBF =∠GBF ,BF ⊥EG , ∴∠BFE =∠BFG =90°. 在△BEF 与△BGF 中,⎩⎪⎨⎪⎧∠EBF =∠GBF ,BF =BF ,∠EFB =∠GFB ,∴△BEF ≌△BGF (ASA).∴BE =BG ,EF =FG . ∴BG 2=FG ·CE .(3)如图D155,过点G 作GH ⊥BC 于点H ,图D155∵CF 平分∠BCD , ∴GH =GD .∵tan ∠DBC =34,∴sin ∠DBC =35.∵BC =10,∴BD =8,BG =BD -GD =8-GD . ∴GH BG =GD 8-GD =35.∴GD=GH=3,BG=5,BH=4.∵BC=10,∴OH=OB-BH=1.在Rt△OGH中,由勾股定理,得OG=10.。

2017年广东省广州市番禹区象骏中学中考数学模拟试卷及答案

2017年广东省广州市番禹区象骏中学中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(3分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)下面四个几何体中,俯视图为四边形的是()A. B.C.D.4.(3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1C.(﹣2x2y)3=﹣8x6y3D.a6÷a3=a25.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣16.(3分)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣17.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠ABP=()A.B.2 C.D.9.(3分)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<310.(3分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④二、填空题(共18分,每小题3分)11.(3分)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为.12.(3分)分解因式:a3﹣9a=.13.(3分)番禺区2017年参加初中学业水平考试的人数约有11290人,将数据11290用科学记数法表示为.14.(3分)在函数y=中,自变量x的取值范围是.15.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.16.(3分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.三、解答题17.(9分)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.18.(9分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.19.(10分)已知实数a满足a2+2a﹣15=0,求﹣÷的值.20.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.21.(12分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树总金额为560000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?22.(12分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.23.(12分)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.(3)若∠B=30°,计算S△DAC :S△ABC的值.24.(14分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA <8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,求OA的长(用含x的代数式表示);(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?25.(14分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.2017年广东省广州市番禹区象骏中学中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(3分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【解答】解:﹣2017的相反数是2017,故选:B.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选B.3.(3分)下面四个几何体中,俯视图为四边形的是()A. B.C.D.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.4.(3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1C.(﹣2x2y)3=﹣8x6y3D.a6÷a3=a2【解答】解:A、a2+a2=2a2≠2a4,故A选项错误;B,4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2,故D选项错误.故选:C.5.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选A.6.(3分)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1【解答】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.7.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.8.(3分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠ABP=()A.B.2 C.D.【解答】解:∵灯塔A位于客轮P的北偏东30°方向,且相距20海里.∴PA=20∵客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,∴∠APB=90°BP=60×=40∴tan∠ABP===故选A.9.(3分)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<3【解答】解:依照题意画出函数图象,如图所示.观察函数图象,可知:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴当y1>y2,实数x的取值范围为x<﹣1或0<x<3.故选A.10.(3分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④【解答】解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选:B.二、填空题(共18分,每小题3分)11.(3分)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为6.【解答】解:作PE⊥OB于E,如图,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=6,即点P到边OB的距离为6.故答案为6.12.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).13.(3分)番禺区2017年参加初中学业水平考试的人数约有11290人,将数据11290用科学记数法表示为 1.129×104.【解答】解:将11290用科学记数法表示为:1.129×104.故答案为:1.129×104.14.(3分)在函数y=中,自变量x的取值范围是x≠﹣2.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.15.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.16.(3分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为y=x2﹣2x﹣3.【解答】解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为y=x2﹣2x﹣3.三、解答题17.(9分)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.【解答】解:由①得:x<1;由②得:x≥﹣;∴不等式组的解集为﹣≤x<1.则不等式组的整数解为﹣1,0.18.(9分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,又已知∠BAE=∠DCF,∴△ABE≌△DCF,∴BE=DF.19.(10分)已知实数a满足a2+2a﹣15=0,求﹣÷的值.【解答】解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.20.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.21.(12分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树总金额为560000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?【解答】解:(1)设甲种树购买了x棵,乙种数购买了y棵,由题意得:,解得:,答:甲种树购买了100棵,乙种数购买了400棵;(2)设应购买甲树x棵,则购买乙种树(500﹣x)棵,由题意得:800x≥1200(500﹣x),解得:x≥300,∵x为整数,∴x=300,答:至少应购买甲树300棵.22.(12分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.【解答】解:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函数的解析式为:y=;(2)由(1)得k=1,∴A(1,1),设B(a,0),=•|a|×1=3,∴S△AOB∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=﹣.所以符合条件的一次函数解析式为:y=﹣或y=x+.23.(12分)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.(3)若∠B=30°,计算S△DAC :S△ABC的值.【解答】解:(1)如图所示,(2)相切;理由如下:证明:连结OD,∵OA=OD,∴∠OAD=∠ODA∵AD是BAC的角平分线,则∠OAD=∠DAC,∴∠ODA=∠DAC,∵AC⊥BC,则∠DAC+∠ADC=90°,∴∠ODA+∠ADC=90°,即∠ODC=90°,∴OD⊥BC,即BC是⊙O的切线;(3)∵在Rt△ACD中,∠CAD=30°,∴CD=AD,∴BC=CD+BD=CD+AD=3CD,∴S△DAC=,S△ABC==;∴S△DAC :S△ABC=:=1:3.24.(14分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA <8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,求OA的长(用含x的代数式表示);(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?【解答】(1)证明:∵MN切⊙O于点M,∴∠OMN=90°;(1分)∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;∴∠OMD=∠MNC;(2分)又∵∠D=∠C=90°;∴△ODM∽△MCN,(3分)(2)解:在Rt△ODM中,DM=x,设OA=OM=R;∴OD=AD﹣OA=8﹣R,(4分)由勾股定理得:(8﹣R)2+x2=R2,(5分)∴64﹣16R+R2+x2=R2,∴;(6分)(3)解法一:∵CM=CD﹣DM=8﹣x,又∵,且有△ODM∽△MCN,∴,∴代入得到;(7分)同理,∴代入得到;(8分)∴△CMN的周长为P==(8﹣x)+(x+8)=16.(9分)发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)解法二:在Rt△ODM中,,设△ODM的周长P′=;(7分)而△MCN∽△ODM,且相似比;(8分)∵,∴△MCN的周长为P=.(9分)发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)25.(14分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.【解答】解:(1)设OA的长为x,则OB=5﹣x;∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;∴△AOC∽△COB,∴OC2=OA•OB∴22=x(5﹣x)…(1分)解得:x1=1,x2=4,∵OA<OB,∴OA=1,OB=4;…(2分)∴点A、B、C的坐标分别是:A(﹣1,0),B(4,0),C(0,2);(注:直接用射影定理的,不扣分)方法一:设经过点A、B、C的抛物线的关系式为:y=ax2+bx+2,将A、B、C三点的坐标代入得…(3分)解得:a=,b=,c=2所以这个二次函数的表达式为:…(4分)方法二:设过点A、B、C的抛物线的关系式为:y=a(x+1)(x﹣4)…(3分)将C点的坐标代入得:a=所以这个二次函数的表达式为:…(4分)(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)①当△BDE是等腰三角形时,点E的坐标分别是:,,.…1+1+(1分)(注:符合条件的E点共有三个,其坐标,写对一个给1分)②如图1,连接OP,S△CDP=S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.…(10分)另解:如图2、图3,过点P作PF⊥x轴于点F,则S△CDP=S梯形COFP﹣S△COD﹣S△DFP…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.(注:只回答有最大面积,而没有说明理由的,不给分;点P的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省广州市番禹区象骏中学中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(3分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)下面四个几何体中,俯视图为四边形的是()A. B.C.D.4.(3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1C.(﹣2x2y)3=﹣8x6y3D.a6÷a3=a25.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣16.(3分)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣17.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠ABP=()A.B.2 C.D.9.(3分)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<310.(3分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④二、填空题(共18分,每小题3分)11.(3分)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为.12.(3分)分解因式:a3﹣9a=.13.(3分)番禺区2017年参加初中学业水平考试的人数约有11290人,将数据11290用科学记数法表示为.14.(3分)在函数y=中,自变量x的取值范围是.15.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.16.(3分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.三、解答题17.(9分)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.18.(9分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.19.(10分)已知实数a满足a2+2a﹣15=0,求﹣÷的值.20.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.21.(12分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树总金额为560000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?22.(12分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.23.(12分)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.(3)若∠B=30°,计算S△DAC :S△ABC的值.24.(14分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA <8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,求OA的长(用含x的代数式表示);(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?25.(14分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.2017年广东省广州市番禹区象骏中学中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(3分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【解答】解:﹣2017的相反数是2017,故选:B.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选B.3.(3分)下面四个几何体中,俯视图为四边形的是()A. B.C.D.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.4.(3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1C.(﹣2x2y)3=﹣8x6y3D.a6÷a3=a2【解答】解:A、a2+a2=2a2≠2a4,故A选项错误;B,4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2,故D选项错误.故选:C.5.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选A.6.(3分)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1【解答】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.7.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.8.(3分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠ABP=()A.B.2 C.D.【解答】解:∵灯塔A位于客轮P的北偏东30°方向,且相距20海里.∴PA=20∵客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,∴∠APB=90°BP=60×=40∴tan∠ABP===故选A.9.(3分)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<3【解答】解:依照题意画出函数图象,如图所示.观察函数图象,可知:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴当y1>y2,实数x的取值范围为x<﹣1或0<x<3.故选A.10.(3分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④【解答】解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OA=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故②正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=AB,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选:B.二、填空题(共18分,每小题3分)11.(3分)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为6.【解答】解:作PE⊥OB于E,如图,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=6,即点P到边OB的距离为6.故答案为6.12.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).13.(3分)番禺区2017年参加初中学业水平考试的人数约有11290人,将数据11290用科学记数法表示为 1.129×104.【解答】解:将11290用科学记数法表示为:1.129×104.故答案为:1.129×104.14.(3分)在函数y=中,自变量x的取值范围是x≠﹣2.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.15.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.16.(3分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为y=x2﹣2x﹣3.【解答】解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为y=x2﹣2x﹣3.三、解答题17.(9分)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.【解答】解:由①得:x<1;由②得:x≥﹣;∴不等式组的解集为﹣≤x<1.则不等式组的整数解为﹣1,0.18.(9分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,又已知∠BAE=∠DCF,∴△ABE≌△DCF,∴BE=DF.19.(10分)已知实数a满足a2+2a﹣15=0,求﹣÷的值.【解答】解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.20.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.21.(12分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树总金额为560000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?【解答】解:(1)设甲种树购买了x棵,乙种数购买了y棵,由题意得:,解得:,答:甲种树购买了100棵,乙种数购买了400棵;(2)设应购买甲树x棵,则购买乙种树(500﹣x)棵,由题意得:800x≥1200(500﹣x),解得:x≥300,∵x为整数,∴x=300,答:至少应购买甲树300棵.22.(12分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.【解答】解:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函数的解析式为:y=;(2)由(1)得k=1,∴A(1,1),设B(a,0),∴S=•|a|×1=3,△AOB∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=﹣.所以符合条件的一次函数解析式为:y=﹣或y=x+.23.(12分)如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.(3)若∠B=30°,计算S△DAC :S△ABC的值.【解答】解:(1)如图所示,(2)相切;理由如下:证明:连结OD,∵OA=OD,∴∠OAD=∠ODA∵AD是BAC的角平分线,则∠OAD=∠DAC,∴∠ODA=∠DAC,∵AC⊥BC,则∠DAC+∠ADC=90°,∴∠ODA+∠ADC=90°,即∠ODC=90°,∴OD⊥BC,即BC是⊙O的切线;(3)∵在Rt△ACD中,∠CAD=30°,∴CD=AD,∴BC=CD+BD=CD+AD=3CD,∴S△DAC=,S△ABC==;∴S△DAC :S△ABC=:=1:3.24.(14分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA <8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,求OA的长(用含x的代数式表示);(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?【解答】(1)证明:∵MN切⊙O于点M,∴∠OMN=90°;(1分)∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;∴∠OMD=∠MNC;(2分)又∵∠D=∠C=90°;∴△ODM∽△MCN,(3分)(2)解:在Rt△ODM中,DM=x,设OA=OM=R;∴OD=AD﹣OA=8﹣R,(4分)由勾股定理得:(8﹣R)2+x2=R2,(5分)∴64﹣16R+R2+x2=R2,∴;(6分)(3)解法一:∵CM=CD﹣DM=8﹣x,又∵,且有△ODM∽△MCN,∴,∴代入得到;(7分)同理,∴代入得到;(8分)∴△CMN的周长为P==(8﹣x)+(x+8)=16.(9分)发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)解法二:在Rt△ODM中,,设△ODM的周长P′=;(7分)而△MCN∽△ODM,且相似比;(8分)∵,∴△MCN的周长为P=.(9分)发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)25.(14分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.【解答】解:(1)设OA的长为x,则OB=5﹣x;∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;∴△AOC∽△COB,∴OC2=OA•OB∴22=x(5﹣x)…(1分)解得:x1=1,x2=4,∵OA<OB,∴OA=1,OB=4;…(2分)∴点A、B、C的坐标分别是:A(﹣1,0),B(4,0),C(0,2);(注:直接用射影定理的,不扣分)方法一:设经过点A、B、C的抛物线的关系式为:y=ax2+bx+2,将A、B、C三点的坐标代入得…(3分)解得:a=,b=,c=2所以这个二次函数的表达式为:…(4分)方法二:设过点A、B、C的抛物线的关系式为:y=a(x+1)(x﹣4)…(3分)将C点的坐标代入得:a=所以这个二次函数的表达式为:…(4分)(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)①当△BDE是等腰三角形时,点E的坐标分别是:,,.…1+1+(1分)(注:符合条件的E点共有三个,其坐标,写对一个给1分)②如图1,连接OP,S△CDP=S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD…(8分)==m +n ﹣2==…(9分)∴当m=时,△CDP 的面积最大.此时P 点的坐标为(,),S △CDP 的最大值是. …(10分)另解:如图2、图3,过点P 作PF ⊥x 轴于点F ,则S △CDP =S 梯形COFP ﹣S △COD ﹣S △DFP …(8分)==m +n ﹣2==…(9分)∴当m=时,△CDP 的面积最大.此时P 点的坐标为(,),S △CDP 的最大值是.(注:只回答有最大面积,而没有说明理由的,不给分;点P 的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:PABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档