竖直面内的圆周运动
竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
高中物理重要方法典型模型突破11-模型专题(3) -竖直平面内圆周运动 (解析版)

专题十一模型专题(3)竖直面上的圆周运动【典型模型解读】1.竖直面内匀速圆周运动:注意匀速圆周运动的条件2.竖直平面内非匀速圆周运动的两类典型模型分析轻绳模型轻杆模型实例如球与绳连接、沿内轨道运动的球等如球与杆连接、球在内壁光滑的圆管内运动等图示最高点无支撑最高点有支撑最高点受力特征重力、弹力,弹力方向指向圆心重力、弹力,弹力方向指向圆心或背离圆心受力示意图力学方程mg+F N=mrv2mg±F N=mrv2临界特征F N=0,v min=gr竖直向上的F N=mg,v=0过最高点条件v≥gr v≥0速度和弹力关系讨论分析①能过最高点时,v≥gr,F N+mg=mrv2,绳、轨道对球产生弹力F N②不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动①当v=0时,F N=mg,F N为支持力,沿半径背离圆心②当0<v<gr时,-F N+mg=mrv2,F N背离圆心,随v的增大而减小③当v=gr时,F N=0④当v>gr时,F N+mg=mrv2,F N指向圆心并随v的增大而增大【典例讲练突破】【例1】(2019高考江苏卷物理6)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱()A.运动周期为2πRω B.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为m ω2R【解析】由于座舱做匀速圆周运动,由公式2πTω=,解得:2πT ω=,故A 错误;由圆周运动的线速度与角速度的关系可知,v R ω=,故B 正确;由于座舱做匀速圆周运动,所以座舱受到摩天轮的作用力是变力,不可能始终为mg ,故C 错误;由匀速圆周运动的合力提供向心力可得:2F m R ω=合,故D 正确。
【答案】BD【练1】在考驾驶证的科目二阶段,有一项测试叫半坡起步,这是一条类似于凸型桥面设计的坡道。
竖直面内的圆周运动模型

竖直面内的圆周运动模型
圆周运动是一种常见的物理运动,也是许多物理运动中最重要的基础组成之一。
它出
现在自然界中的各个角落,给人们惊喜和鼓舞,引发科学家们深远的思考。
本文中,我们
将讨论竖直面内的圆周运动模型。
竖直面内的圆周运动是指空间坐标内的跟踪运动,它满足物体存在平方摩擦力(当它
的线速度与圆心的位置有关时)的要求。
在这种情况下,可以用以下方程来描述物体在竖直面上的圆周运动:
其中F是重力力,m是物体的质量,ω是角速度,θ是指定的时刻的角度,t是时间,a0是速度的初始值,∆t是时间间隔,R是圆的半径。
平方摩擦力的方程为:
其中μ是空气阻力系数,v是物体的速度,∆v是物体速度变化的量。
由于圆周运动中存在着速度,加速度和受力等变量,所以可以将其表示成动量方程:
根据以上方程,可以得出物体在竖直面内的圆周运动的具体运动轨迹,即:
从上面的计算公式可以看出,竖直面内的圆周运动模型是一个复杂的数学模型,其中
包括外力矩、时间等因素,它可以用来描述物体在单位机械作用下的数量运动规律,同时
还涉及到空气阻力和摩擦力等概念。
总而言之,竖直面内的圆周运动模型是一种综合的物理运动模型。
它可以满足大多数
物理实验的要求,并且可以用来更好地揭示物体在空间中的动态变化规律。
它也将为人类
在研究物理运动规律中提供更多新的思路。
竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。
Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。
二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
竖直平面内的圆周运动

竖直平面内的圆周运动一.竖直平面内的圆周运动属于圆周运动二.两种情况:1、没有支撑物的物体在竖直平面内的圆周运动①临界条件:小球到达最高点时绳的拉力(或轨道的弹力)刚好等于零,小球重力提供其圆周运动的向心力,即mg=mv02/R∴刚过最高点的临界速度(最小速度)v=②当v≥v0时小球通过最高点③当v<v0时小球不能到达最高点。
2、有支撑物的物体在竖直平面内的圆周运动v=0弹力的大小b图中的弹力a图中的弹力速度范围课堂练习1、绳系着装水的桶,在竖直平面内做圆周运动,水的质量m=0.5kg,绳长=0.4m.求(1)桶在最高点水不流出的最小速率?(2)水在最高点速率=3m/s时水对桶底的压力?(g取10m/s2)2、细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动,a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是()A.a处为拉力,b处为拉力B.a处为拉力,b处为推力C.a处为推力,b处为拉力D.a处为推力,b处为推力作业1.长度为0.5m的轻质细杆,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将()A.受到6.0N的拉力B.受到6.0N的压力C.受到24N的拉力D.受到54N的拉力2.一轻杆一端固定一质量为m的小球,另一端以O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A、小球过最高点时,杆所受的弹力可以等于0B、小球过最高点时的最小速度为√gRC、小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定大于杆对球的作用力D、小球过最高点时,杆对球的作用力一定与小球所受重力方向相反3.质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度值为V,当小球以2V的速度经过最高点时,对轨道的压力值是()(A)0 (B)mg (C)3mg (D)5mg4.一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运动,求:当小球在圆上最高点速度为4m/s时,细线的拉力是多少?(g=10m/s2)5. 如图,质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度是v,当小球以3v 的速度经过最高点时,对轨道的压力大小是多少?6.用钢管做成半径为R=0.5m的光滑圆环(管径远小于R)竖直放置,一小球(可看作质点,直径略小于管径)质量为m=0.2kg在环内做圆周运动,求:小球通过最高点A时,下列两种情况下球对管壁的作用力. 取g=10m/s2(1) A的速率为1.0m/s (2) A的速率为4.0m/s。
第四章 第3-3讲竖直面内的圆周运动

【典例透析2】小明站在水平地面上,手握不可伸长的轻绳一 端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直 平面内做圆周运动,当球某次运动到最低点时,绳突然断掉, 球飞行水平距离d后落地,如图所示。已知握绳的手离地面高 度为d,手与球之间的绳长为 3 d ,重力加速度为g。忽略手的运
4
动半径和空气阻力。求:
(1)绳断时球的速度大小v1; (2)绳能承受的最大拉力; (3)改变绳长(绳承受的最大拉力不变),保持手的位置不动, 使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球 抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
【解析】(1)设绳断后球做平抛运动时间为t1,
竖直方向:
1 4
d
1 2
第3-3讲 竖直面内的圆周运动
【考点解读】 1.竖直面内的圆周运动一般是变速圆周运动。 2.只有重力做功的竖直面内的变速圆周运动机械能守恒。 3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问 题,又有能量守恒的问题,要注意物体运动到圆周的最高点速 度不为零。 4.一般情况下,竖直面内的圆周运动问题只涉及最高点和最低 点的两种情形。
【规范解答】已知a、b绳长均为1 m,即:
Am Bm 1 m,AO 1 AB 0.8 m 2
在△AOm中,cos AO 0.8 0.8
Am 1
sinθ=0.6,θ=37° 小球做圆周运动的轨道半径为
r Om Amsin 1 0.6 m 0.6 m
b绳被拉直但无张力时,小球所受的重力mg与a绳拉力FTa的合 力F为向心力,其受力分析如图所示: 由牛顿第二定律得:F=mgtanθ=mrω2 解得直杆和球的角速度为
【解析】(1)物块做平抛运动,竖直方向有
H 1 gt2 2
第二章 专题强化5 竖直面内的圆周运动

竖直面内的圆周运动[学习目标] 会分析竖直面内的圆周运动,掌握轻绳、轻杆作用下圆周运动的分析方法并会求临界值.一、竖直面内圆周运动的轻绳模型如图所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.(1)在最低点有:T 1-mg =m v 12L所以T 1=mg +m v 12L(2)在最高点有:T 2+mg =m v 22L所以T 2=m v 22L-mg(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由T 2+mg =m v 22L 可知,当T 2=0时,v 2最小,最小速度为v 2min =gL .讨论:当v 2=gL 时,拉力或压力为零. 当v 2>gL 时,小球受向下的拉力或压力. 当v 2<gL 时,小球不能到达最高点.例1 (多选)如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做完整的圆周运动,重力加速度为g .则下列说法正确的是( )A .小球在最高点时所受向心力一定为小球重力B .小球在最高点时绳子的拉力不可能为零C .小球在最低点时绳子的拉力一定大于小球重力D .小球在最高点的速率至少为gL 答案 CD解析 小球在最高点时,向心力可能等于重力,也可能等于重力与绳子的拉力的合力,取决于小球在该点的瞬时速度的大小,A 错误;小球在最高点时,若只有重力提供向心力,则拉力为零,B 错误;小球在最低点时向心力方向竖直向上,合力一定竖直向上,则拉力一定大于重力,C 正确;当小球刚好到达最高点时,仅有重力提供向心力,则有m v 2L =mg ,解得v=gL ,D 正确.针对训练1 一细绳与水桶相连,水桶中装有水,水桶与细绳一起在竖直平面内做圆周运动,如图所示,水的质量m =0.5 kg ,水的重心到转轴的距离l =50 cm.(g 取10 m/s 2)(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字,5取2.24) (2)若在最高点水桶的速率v =3 m/s ,求水对桶底的压力大小. 答案 (1)2.24 m/s (2)4 N解析 (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小. 由牛顿第二定律有:mg =m v 02l ,得桶的最小速率为:v 0=2.24 m/s.(2)因v >v 0,故此时桶底对水有向下的压力,设为N ,由牛顿第二定律有:N +mg =m v 2l ,得:N =4 N .由牛顿第三定律知,水对桶底的压力大小:N ′=4 N. 二、竖直面内圆周运动的轻杆模型如图所示,细杆上固定的小球和光滑管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.(1)最高点的最小速度由于杆或管在最高点能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①若v >gL ,杆或管的外侧对球产生向下的拉力或弹力,mg +F =m v 2L ,所以F =m v 2L -mg ,F 随v 的增大而增大.②若v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L.③若0≤v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F随v 的增大而减小.例3 如图所示,长为0.5 m 的轻杆OA 绕O 点在竖直面内做圆周运动,A 端连着一个质量m =2 kg 的小球.求在下述的两种情况下,通过最高点时小球对杆的作用力的大小和方向(g 取10 m/s 2,π2=10):(1)杆做匀速圆周运动的转速为2 r/s ; (2)杆做匀速圆周运动的转速为0.5 r/s. 答案 (1)140 N 方向竖直向上 (2)10 N 方向竖直向下解析 设竖直向下为正方向,小球在最高点的受力如图所示:(1)杆的转速为2 r/s 时,ω=2πn =4π rad/s , 由牛顿第二定律得F +mg =mLω2, 故小球所受杆的作用力F =mLω2-mg =2×(0.5×42×π2-10) N ≈140 N ,即杆对小球有140 N 的拉力,由牛顿第三定律可知,小球对杆的拉力大小为140 N ,方向竖直向上.(2)杆的转速为0.5 r/s 时,ω′=2πn ′=π rad/s ,同理可得小球所受杆的作用力F ′=mLω′2-mg =2×(0.5×π2-10) N ≈-10 N.力F ′为负值表示它的方向与受力分析中所假设的正方向相反,即杆对小球有10 N 的支持力,由牛顿第三定律可知,小球对杆的压力大小为10 N ,方向竖直向下.针对训练2 (多选)如图所示,长为l 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,重力加速度为g ,关于小球在最高点的速度v ,下列说法正确的是( )A .v 的最小值为glB .v 由零逐渐增大,向心力也增大C .当v 由gl 逐渐增大时,杆对小球的弹力逐渐增大D .当v 由gl 逐渐减小时,杆对小球的弹力逐渐增大 答案 BCD解析 由于是轻杆,在最高点可对小球提供支持力,因此v 的最小值是零,故A 错误.v 由零逐渐增大,由F 向=m v 2l 可知,F 向也增大,故B 正确.当v =gl 时,F =m v 2l =mg ,此时杆恰好对小球无作用力,向心力只由其自身重力提供;当v 由gl 逐渐增大时,m v 2l =mg +F ,故F =m v 2l -mg ,杆对球的力为拉力,且逐渐增大;当v 由gl 逐渐减小时,杆对球的力为支持力,此时,mg -F ′=m v 2l ,F ′=mg -m v 2l ,支持力F ′逐渐增大,杆对球的拉力、支持力都为弹力,故C 、D 正确.例4 质量为m 的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的内径,圆管内径远小于轨道半径,如图所示.已知小球以速度v 通过最高点时对圆管外壁的压力恰好为mg ,则小球以速度v2通过圆管的最高点时( )A .小球对圆管内、外壁均无压力B .小球对圆管外壁的压力等于mg2C .小球对圆管内壁的压力等于mgD .小球对圆管内壁的压力等于mg2答案 D解析 以小球为研究对象,小球通过最高点时,根据牛顿第二定律得mg +mg =m v 2r ;当小球以速度v 2通过圆管的最高点,根据牛顿第二定律得mg +N =m (v 2)2r ;联立解得:N =-12mg ,负号表示圆管对小球的作用力向上,即小球对圆管内壁的压力等于mg2,故D 正确.1.如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R ,人体重为mg ,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为( )A .0 B.gR C.2gR D.3gR答案 C解析 由题意知F +mg =2mg =m v 2R,故速度大小v =2gR ,C 正确.2.(多选)(2021·河北省高二学业考试)如图所示,轻杆一端固定在水平转轴O 上,另一端固定一个小球,轻杆随转轴在竖直平面内做圆周运动,当小球运动至最高点时,轻杆对小球的作用力( )A .方向一定竖直向上B .方向可能竖直向下C .大小可能为0D .大小不可能为0答案 BC解析 设杆长为R ,小球运动至最高点处,当重力刚好提供小球做圆周运动的向心力时,杆对小球无作用力,此时有mg =m v 2R ,解得v =gR ,当v >gR 时,杆对小球提供竖直向下的拉力,当v <gR 时,杆对小球提供竖直向上的支持力,故B 、C 正确,A 、D 错误. 3.杂技演员在表演“水流星”时的示意图如图所示,长为1.6 m 的轻绳的一端,系着一个总质量为0.5 kg 的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,若“水流星”通过最高点时的速度为4 m/s ,g 取10 m/s 2,则下列说法正确的是( )A .“水流星”通过最高点时,有水从容器中流出B .“水流星”通过最高点时,绳的张力及容器的底部受到的压力均为零C .“水流星”通过最高点时处于完全失重状态,不受力的作用D .“水流星”通过最高点时,绳子的拉力大小为5 N 答案 B解析 设水的质量为m ,当水对容器底压力为零时,有mg =m v 2r ,解得v =gr =4 m/s ,“水流星”通过最高点的速度为4 m/s ,知水对容器底压力为零,不会从容器中流出;设水和容器的总质量为M ,有T +Mg =M v 2r ,解得T =0,知此时绳子的拉力为零,故A 、D 错误,B 正确;“水流星”通过最高点时,仅受重力,处于完全失重状态,C 错误.4.如图所示,半径为R ,内径很小的光滑半圆管道竖直放置,小球直径略小于管道内径,质量为m 的小球从管道最低点以某一速度v 1进入管内,在圆管道最低点时,对管道的压力为7mg ,小球通过最高点P 时,对管外壁的压力为mg ,此时小球速度为v 2,则v 1∶v 2为(g 为重力加速度)( )A .7∶2 B.3∶ 2 C.3∶1 D.7∶ 2答案 C解析 在圆管道最低点时,有7mg -mg =m v 12R ,小球通过最高点P 时,有mg +mg =m v 22R ,解得v 1∶v 2=3∶1,选项C 正确.5.(多选)如图所示,一个内壁光滑的弯管道处于竖直平面内,其中管道半径为R .现有一个半径略小于弯管横截面半径(远小于 R )的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,重力加速度为g ,则下列说法中正确的是( )A .若v 0=gR ,则小球对管内壁无压力B .若v 0>gR ,则小球对管内上壁有压力C .若0 <v 0<gR ,则小球对管内下壁有压力D .不论v 0多大,小球对管内下壁都有压力 答案 ABC解析 在最高点,只有重力提供向心力时,由mg =m v 02R ,解得v 0=gR ,因此小球对管内壁无压力,选项A 正确.若v 0>gR ,则有mg +N =m v 02R ,表明小球对管内上壁有压力,选项B 正确.若0<v 0<gR ,则有mg -N =m v 02R ,表明小球对管内下壁有压力,选项C 正确.综上分析,选项D 错误.6.如图所示,一个可以视为质点的小球质量为m ,以某一初速度冲上光滑半圆形轨道,轨道半径为R =0.9 m ,直径BC 与水平面垂直,小球到达最高点C 时对轨道的压力是重力的3倍,重力加速度g =10 m/s 2,忽略空气阻力,求:(1)小球通过C 点的速度大小;(2)小球离开C 点后在空中的运动时间; (3)小球落地点距B 点的距离. 答案 (1)6 m/s (2)0.6 s (3)3.6 m解析 (1)小球通过最高点C ,重力和轨道对小球的压力提供向心力,有F +mg =m v C 2R ,F =F ′=3mg ,解得小球通过C 点的速度v C =6 m/s.(2)小球离开C 点后在空中做平抛运动,在竖直方向上做自由落体运动有2R =12gt 2,解得小球离开C 点后在空中的运行时间t =0.6 s.(3)小球在水平方向上做匀速直线运动有x =v C t ,得小球落地点距B 点的距离x =3.6 m.7.某飞行员的质量为m ,驾驶飞机在竖直面内以速度v 做匀速圆周运动,圆的半径为R ,在圆周的最高点和最低点比较,飞行员对座椅的压力在最低点比最高点大(设飞行员始终垂直于座椅的表面,重力加速度为g )( ) A .mg B .2mg C .mg +m v 2RD .2m v 2R答案 B解析 在最高点有:F 1+mg =m v 2R ,解得:F 1=m v 2R -mg ;在最低点有:F 2-mg =m v 2R ,解得:F 2=mg +m v 2R,所以F 2-F 1=2mg ,B 正确.8.(多选)如图甲所示,小球用不可伸长的轻绳连接后绕固定点O 在竖直面内做圆周运动,小球经过最高点时的速度大小为v ,此时绳子的拉力大小为T ,拉力T 与速度的平方v 2的关系如图乙所示,图中的数据a 、b 及重力加速度g 都为已知量,下列说法正确的是( )A .数据a 与小球的质量无关B .数据b 与小球的质量无关C .比值ba 只与小球的质量有关,与圆周轨道半径无关D .利用数据a 、b 和g 能够求出小球的质量和圆周轨道半径答案 AD解析 当v 2=a 时,绳子的拉力为零,小球的重力提供向心力,则mg =m v 2r,解得v 2=gr ,故a =gr ,与小球的质量无关,故A 正确;当v 2=2a 时,对小球受力分析,则mg +b =m v 2r,解得b =mg ,与小球的质量有关,故B 错误;根据A 、B 可知b a =mr ,与小球的质量和圆周轨道半径都有关,故C 错误;由A 、B 的分析可知,b =mg ,a =gr ,故m =b g ,r =ag ,故D 正确.9.(多选)如图甲所示,轻杆一端固定在O 点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F ,小球在最高点的速度大小为v ,其F -v 2图像如图乙所示.则( )A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 答案 ACD解析 当小球受到的弹力F 方向向下时,F +mg =m v 2R ,解得F =mR v 2-mg ,当弹力F 方向向上时,mg -F =m v 2R ,解得F =mg -m v 2R ,对比F -v 2图像可知,b =gR ,a =mg ,联立解得g=b R ,m =aRb ,A 正确,B 错误.v 2=c 时,小球受到的弹力方向向下,则小球对杆的弹力方向向上,C 正确.v 2=2b 时,由F =m R v 2-mg 及g =bR 可知小球受到的弹力与重力大小相等,D 正确.10.如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根绳的拉力大小为( )A.3mgB.433mg C .3mg D .23mg答案 A解析 设小球在竖直面内做圆周运动的半径为r ,小球运动到最高点时轻绳与圆周运动轨道平面的夹角为θ=30°,则r =L cos 30°.根据题述小球在最高点速率为v 时,两根绳的拉力恰好均为零,有mg =m v 2r ;小球在最高点速率为2v 时,设每根绳的拉力大小为F ,则有2F cosθ+mg =m (2v )2r,联立解得:F =3mg ,故A 正确.11.(2021·湘潭一中月考)现有一根长L =1 m 的不可伸长的轻绳,其一端固定于O 点,另一端系着质量m =0.5 kg 的小球(可视为质点),将小球提至O 点正上方的A 点处,此时绳刚好伸直且无弹力,如图所示.不计空气阻力,g 取10 m/s 2.(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度? (2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳所受拉力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳若受拉力,求其大小;若不受拉力,试求绳子再次伸直时所经历的时间.答案 (1)10 m/s (2)3 N (3)不受拉力 0.6 s解析 (1)小球做完整的圆周运动的临界条件为在最高点重力刚好提供小球所需的向心力,则 mg =m v 02L解得施加给小球的最小速度v 0=10 m/s(2)因为v 1>v 0,故绳受拉力.根据牛顿第二定律有T +mg =m v 12L代入数据得绳所受拉力T ′=T =3 N(3)因为v 2<v 0,故绳不受拉力.小球将做平抛运动,其运动轨迹如图所示, 设经过时间t 绳子再次伸直,则L 2=(y -L )2+x 2x =v 2ty =12gt 2代入数据联立解得t =0.6 s.。
022竖直面内圆周运动之绳”模型和“杆”模型及其临界问题

一.竖直面内的圆周运动——“绳”模型和“杆”模型1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的物体等),称为“绳(环)约束模型”;二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”。
2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球受力特征除重力外,物体受到的弹力向下或等于零除重力外,物体受到的弹力向下、等于零或向上受力示意图过最高点的临界条件由mg=mv2r得v临=gr由小球恰能做圆周运动得v临=0讨论分析(1)过最高点时,v≥gr,F N+mg=mv2r,绳、圆轨道对球产生弹力F N(2)不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当0<v<gr时,mg-F N=mv2r,F N背离圆心,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心,并随v的增大而增大3.竖直面内圆周运动问题的解题思路二. 杆—球模型经典例题讲解与对点演练(一)例题例1:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,重力加速度为g ,则下列说法正确的是( ) A .小球过最高点时,杆所受到的弹力可以等于零 B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 答案 A解析 当小球在最高点所受的弹力为零时,有mg =m v 2R ,解得v =gR ,即当速度v =gR时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R ,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R ,轻杆的作用力随着速度增大而增大,所以C 、D 错误.(二)杆—球模型对点演练:1.如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力,重力加速度为g ,则球B 在最高点时( ) A .球B 的速度为零 B .球A 的速度大小为2gL C .水平转轴对杆的作用力为1.5mg D .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,则有mg =m v B 22L ,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹力,此时A 球受到的重力和拉力的合力提供向心力,有F -mg =m v A 2L ,解得:F =1.5mg ,根据牛顿第三定律可知,C 正确,D 错误.2.(2020·全国卷Ⅰ)如图,一同学表演荡秋千。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v0 2 m R ,解得 v0=3 m/s.
1
2
3
4
解析
答案
(2)当小球在最高点的速度分别为6 m/s和1.5 m/s时,球对杆的作用力.
答案 6 N,方向竖直向上
解析
1.5 N,方向竖直向下 v1 2 v1>v0,由牛顿第二定律得:mg+F1=m R ,
由牛顿第三定律得:F1′=F1,解得F1′=6 N,方向竖直向上.
v2 2 v2<v0,由牛顿第二定律得:mg-F2=m R ,
由牛顿第三定律得:F2′=F2,解得:F2′=1.5 N,方向竖直向下.
1
2
3
4
解析
答案
以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重
力恰好提供其做圆周运动所需的向心力,此时桶的速率最小.
v0 2 此时有:mg=m l , 则所求的最小速率为:v0= gl≈2.24 m/s.
解析
答案
(2)若在最高点水桶的速率v=3 m/s,求水对桶底的压
力大小.
答案 4 N
解析 此时桶底对水有一向下的压力,设为 FN,则由牛顿第二定律有:
1 2 3 4
图10
解析
答案
3.(球在管形轨道中的运动)(多选) 如图11所示,小
球 m 在竖直放置的光滑的圆形管道内做圆周运动,
下列说法正确的是
A.小球通过最高点时的最小速度是 Rg B.小球通过最高点时的最小速度为零 √ C.小球在水平线ab以下的管道中运动时外侧管壁对小球一定无作用力 D.小球在水平线ab以下的管道中运动时外侧管壁对小球一定有作用力 √
当 v> gR时,FN>0,即上管壁对球有向下的压力;
当 0<v< gR时,FN<0,即 FN 竖直向上,下管壁对球有向上的支持力.
答案
知识深化 细杆和管形轨道模型 1.最高点的最小速度 如图 6 所示,细杆上固定的小球和管形轨道内运动的小球,由于杆和管 在最高处能对小球产生向上的支持力,故小球恰能到达最高点的最小速 度v=0,此时小球受到的支持力FN=mg.
v2 FN+mg=m l ,
代入数据可得:FN=4 N. 由牛顿第三定律,水对桶底的压力:FN′=4 N.
解析
答案
针对训练
(多选)如图4所示,用长为l的细绳拴着质量
为 m 的小球在竖直平面内做圆周运动,则下列说法中
正确的是
A.小球在圆周最高点时所受的向心力一定为重力 图4
gl
B.小球在最高点时绳子的拉力不可能为零
图11
1
2
3
4
解析
答案
4.(杆拉球在竖直面内的运动)质量为0.2 kg的小球固定在长为0.9 m的轻杆 一端,杆可绕过另一端O点的水平轴在竖直平面内转动.(g=10 m/s2)求: (1)当小球在最高点的速度为多大时,球对杆的作用力为零?
答案 3 m/s
解析 当小球在最高点对杆的作用力为零ቤተ መጻሕፍቲ ባይዱ,重力提供向心力,则 mg=
答案 44 N
v2 2 42 解析 代入数据 v2=4 m/s,可得 F′=m( L -g)=2×(0.5-10) N=44 N,
即A受到杆的拉力为44 N.根据牛顿第三定律可得A对杆的作用力为拉力,
大小为44 N.
解析 答案
例3 (多选)如图8所示,半径为L的圆管轨道(圆管内径 远小于轨道半径)竖直放置,管内壁光滑,管内有一个 小球(小球直径略小于管内径)可沿管转动,设小球经过 最高点P时的速度为v,则 B.v若增大,球所需的向心力也增大 √ C.当v由 gL 逐渐减小时,轨道对球的弹力也减小 D.当v由 √ A.v的最小值为 gL
答案 mv2 2 最高点:FT2= L -mg
答案
图1
(3)小球过最高点的最小速度是多大?
答案 由于绳不可能对球有向上的支持力,只能产生向下的拉力,
mv2 2 由 FT2+mg= L 可知,当 FT2=0 时,v2 最小,最小速度为 v0= gL.
答案
(4)假设绳拉球过最高点时最小速度小于 gL,则会产 生什么样的后果?请总结绳拉球过最高点的条件.
图8
gL 逐渐增大时,轨道对球的弹力也增大
解析
答案
1.(轻绳作用下物体的运动)杂技演员表演“水流星”,在长为 1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg的盛 水容器,以绳的另一端为圆心,在竖直平面内做圆周运动, 如图9所示,若“水流星”通过最高点时的速率为4 m/s,则下列 说法正确的是(g=10 m/s2) A.“水流星”通过最高点时,有水从容器中流出 B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零 √
图9
C.“水流星”通过最高点时,处于完全失重状态,不受力的作用
D.“水流星”通过最高点时,绳子的拉力大小为5 N
1 2 3 4
解析
答案
2.( 轨道约束下小球的运动 )( 多选 ) 如图 10 所示,质量为 m 的 小球在竖直平面内的光滑圆环内侧做圆周运动 .圆环半径为 R,小球经过圆环内侧最高点时刚好不脱离圆环,则其通过 最高点时下列表述正确的是 A.小球对圆环的压力大小等于mg B.重力mg充当小球做圆周运动所需的向心力 √ C.小球的线速度大小等于 gR √ D.小球的向心加速度大小等于g √
图6
2.小球通过最高点时,轨道对小球的弹力情况 (1) v> Rg,杆或管的外侧对球产生向下的拉力或弹力,F随v 增大而增大. (2) v= Rg, 球在最高点只受重力,不受杆或管的作用力,F=0.
(3) 0<v< Rg, 杆或管的内侧对球产生向上的弹力,F随v的增大而减小.
3.小球能过最高点的条件:v=0.
即轻绳模型的临界速度为 v 临= gr.
例1
一细绳与水桶相连,水桶中装有水,水桶与细绳一
起在竖直平面内做圆周运动,如图3所示,水的质量m= 0.5 kg,水的重心到转轴的距离l=50 cm.(g取10 m/s2)
(1)若在最高点水不流出来,求桶的最小速率;(结果保留
三位有效数字)
图3
答案
解析
2.24 m/s
轻绳模型(如图2所示)的最高点问题
图2
1.绳(内轨道)施力特点:只能施加向下的拉力(或压力).
v2 2.在最高点的动力学方程 FT+mg=m . r
v2 3.在最高点的临界条件 FT=0,此时 mg=m r ,则 v= gr.
v= gr时,拉力或压力为零.
v> gr时,小球受向下的拉力或压力.
v< gr时,小球不能达到最高点.
内表面做圆周运动,分析小球在最高点A的速度应满足什么条件? v2 答案 与绳拉球模型相似,在最高点 A 时,有 FN+mg=m r ,
当 FN=0 时,v 最小为 v0= gr,
当v=v0时,小球刚好能够通过最高点,当v<v0时,
球偏离轨道,不能过最高点.当v>v0时,小球能够通
过最高点.
答案
知识深化
C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为 √ D.小球过最低点时绳子的拉力一定大于小球重力 √
解析
答案
二、竖直面内圆周运动的轻杆(管)模型
导学探究 长为L的轻杆一端固定着一质量为 m的小球,使小球在竖 直面内做圆周运动.(如图5) (1)当小球在最高点B的速度为v1 时,求杆对球的作用力. 图5
例2
长L=0.5 m的轻杆,其一端连接着一个零件A,A
的质量 m = 2 kg.现让 A 在竖直平面内绕 O 点做匀速圆周 运动,如图7所示 .在 A通过最高点时,求下列两种情况
下A对杆的作用力大小(g=10 m/s2).
(1)A的速率为1 m/s; 答案 16 N
图7
解析
答案
(2)A的速率为4 m/s.
习题课
竖直面内的圆周运动
学习目标 1.了解竖直面上圆周运动的两种基本模型. 2.掌握轻绳约束下圆周运动的两个特殊点的相关分析. 3.学会分析圆周运动问题的一般方法.
一、竖直面内圆周运动的轻绳(过山车)模型
导学探究
如图1所示,长为L的细绳拴着质量为m的小球在竖直面内 做圆周运动.试分析: (1)当小球在最低点A的速度为v1时,求绳的拉力FT1. mv1 2 答案 最低点:FT1=mg+ L (2)当小球在最高点B的速度为v2时,求绳的拉力FT2.
mv2 答案 当 v< gL时,所需的向心力 Fn= L <mg.
此时,重力 mg 的一部分提供向心力,剩余的另一部分力会使小球向下 偏离圆周轨道,即小球此时不能过最高点做圆周运动,这之前已经脱离 圆周轨道了.
绳拉球过最高点的条件是:v≥ gL.
答案
(5)有一竖直放置、内壁光滑的圆环,其半径为r,质量为m的小球沿它的
答案
(2)杆拉球过最高点的最小速度为多少?
答案
由 (1) 中的分析可知,杆拉球过最高点
的最小速度为零.
答案
(3)试分析光滑圆管竖直轨道中,小球过最高点时受管壁 的作用力与速度的关系? 答案 设管壁对球的作用力向下,为FN.
mv2 mv2 则有 FN+mg= R 即 FN= R -mg
当 v= gR时,FN=0,