BSD七下 第一章 整式乘除的复习练习题
北师大版七年级数学下册 第一章 整式的乘除练习(包含答案)

第一章 整式的乘除一、单选题1.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .42.下列计算结果为6a 的是( )A .7a a -B .83•a aC .28a a ÷D .42()a3.计算()23x y -的结果是( ) A .5x y - B .6x y C .32x y - D .62x y4.下列计算正确的是( )A .()()22323264a ab a b a b a b --=--gB .()222342214ab a b a b -+-=-gC .()2232233232abc a b ab a b a b -=-gD .()()22234233ab ab c a b a b c -=-g 5.若2(2)(3)x x x px q -+=++,则p q +=( )A .7B .-7C .5D .-56.计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab7.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个长方形(如图2),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=- 8.下列各式,是完全平方式的是( )A .21x +B .221x x +-C .214x x -+D .241x x -+ 9.若22()()a b a b A +=-+,则A 为( )A .2abB .-2abC .4abD .-4ab10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①①①处装有同样大小的塑钢玻璃,当第①块向右拉到与第①块重叠12,再把第①块向右拉到与第①块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A .21718abm B .21318abm C .2518abm D .2118abm二、填空题11.若a 4·a y =a 19,则 y=_____________.12.计算:(2a ﹣b )(a+3b )=_____.13.计算:248(21)(21(21)(21)++++)=_____.(结果中保留幂的形式)14.如图,两个四边形均为正方形,根据图形的面积关系,写出一个正确的等式__________.三、解答题15.计算:(1)22222()3a b ab ⋅- (2)(6)(3)x x y --(3)53223()2()x x x x ⋅+-(4)(23)(2)a b a b +-16.(1)已知m +4n -3=0,求2m ·16n 的值.(2)已知n 为正整数,且x 2n =4,求(x 3n )2-2(x 2)2n 的值.17.利用图形面积可以解释代数恒等式的正确性,如图1可以验证一个代数恒等式(a +b )2=(a ﹣b )2+4ab .(1)如图2,用若干张A ,B ,C 的卡片拼成一个长方形面积为(2a +b )(a +b ),那么需要A ,B ,C 卡片各多少张?(2)如果用1张A ,5张B ,6张C 拼成一个长方形,那么这个长方形的边长分别是 和 .18.(探究)如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 .(用含a ,b 的等式表示)(应用)请应用这个公式完成下列各题:(1)已知4m 2=12+n 2,2m +n =4,则2m ﹣n 的值为 .(2)计算:20192﹣2020×2018.(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.19.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:①2222440m mn n n -+-+=,①()()2222440m mn nn n -++-+=, ①()()2220m n n -+-=,①()20m n -=,()220n -=,①2n =,2m =.根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则a =__________,b =__________.(2)已知22228160x y xy y +-++=,求xy 的值. (3)已知ABC △的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC △的周长答案1.A 2.C 3.D 4.D 5.D 6.A 7.A 8.C 9.C 10.C 11.1512.2a 2+5ab ﹣3b 213.216﹣1.14.222()2a b a ab b +=++15.(1)4589a b ;(2)2618x xy -+;(3)0;(4)22443a ab b +- 16.(1)8;(2)3217.(1)需要A 卡片2张,B 卡片3张,C 卡片1张;(2)(a +2b );(a +3b ). 18.探究:(a +b )(a ﹣b )=a 2﹣b 2;应用:(1)3;(2)1;拓展:5050 19.(1)a=-3,b=1;(2)16(3)9。
北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练1、4(a+b)+2(a+b)-5(a+b)化简得:(4+2-5)(a+b)=a+b答案为:a+b2、(3mn+1)(3mn-1)-8mn化简得:9m^2n^2-1-8mn=9m^2n^2-8mn-1答案为:9m^2n^2-8mn-13、-2-3×(1-(-1)÷2^2)×22÷7化简得:-2-3×(1-(-1)÷4)×2= -2-3×(1+0.25)×2=-16.5答案为:-16.54、[(xy-2)(xy+2)-2xy+4]÷(xy)化简得:(x^2y-4+2xy+4)÷xy=(x^2y+2xy)÷xy=x+2答案为:x+25、(2a-1)^2+(2a-1)(a+4),其中a=-2化简得:(2(-2)-1)^2+(2(-2)-1)(-2+4)=(-5)^2+(-10)(2)=45答案为:456、(1÷2ab)×(-2ab^2)^2÷4÷(1÷2x)^3化简得:-2a^2b^4×8x^3=-16a^2b^4x^3答案为:-16a^2b^4x^37、2(x^2+5xy)-6(2xy-x^2)化简得:2x^2+10xy-12xy+6x^2=8x^2-2xy答案为:8x^2-2xy8、(x+2)(x-3)-(x+1)(x-2)化简得:x^2-x-6-x^2+x+2x-2=x-4答案为:x-410、(x+2y)^2-(x+y)(x-y),其中x=-2,y=3化简得:(2(-2)+6)^2-(2(-2)+3)(2(-2)-3)=16-(-13)=29 答案为:2911、(-x-y)(x-y)+(x+y)^2化简得:-x^2+xy+xy-y^2+x^2+2xy+y^2=4xy答案为:4xy13、x^2-(x+2)(x-2)化简得:x^2-(x^2-4)=4答案为:414、(-3x^3)^2-(-2x^2)^3化简得:9x^6-8x^6=x^6答案为:x^615、(2a+b)^4÷(2a+b)^2化简得:(2a+b)^2=4a^2+4ab+b^2答案为:4a^2+4ab+b^216、123-124×122利用乘法公式计算124×122=化简得:123-=-答案为:-17、[(x+1)(x+2)-2]÷(-x)化简得:-(x^2+3x)=-(x(x+3))答案为:-(x(x+3))18、(2xy)·(-7xy)÷(14xy)化简得:-1/2答案为:-1/219、[(2x+y)^2+(2x+y)(2x-y)-4xy]÷(-2x),其中x=2,y=1化简得:[(2(2)+1)^2+(2(2)+1)(2(2)-1)-4(2)]÷(-2(2))=-15 答案为:-1520、-2a(3a-4b^2)÷5化简得:6a^2-8b^2÷5=-8/5(5-3a)(5+3a)答案为:-8/5(5-3a)(5+3a)21、(a+2b)(a-2b)化简得:a^2-4b^2答案为:a^2-4b^222、(x-1)(2x+3)化简得:2x^2+x-3答案为:2x^2+x-323、(a-3b)^2-9b^2-3.14化简得:a^2-6ab+9b^2-9b^2-3.14=a^2-6ab-3.14答案为:a^2-6ab-3.1424、3x^2y(-4xy^2)+5xy(-6xy)^2,其中x=2,y=3化简得:-36x^4y^3+5(-216x^3y^3)=-36x^4y^3-1080x^3y^3 答案为:-36x^4y^3-1080x^3y^325、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:326、(9abc)÷(2ab)·(-abc)化简得:-18c答案为:-18c27、(15xy-12xy-3x)÷(-3x)化简得:-1答案为:-128、(a+b)-4(2a-3b)+(3a-2b)化简得:a+b-8a+12b+3a-2b=-4a+11b答案为:-4a+11b30、(x+2)^2-(x-1)(x+1)化简得:x^2+4x+4-(x^2-1)=5x+5答案为:5x+531、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:332、(a-b)(a+ab+b)+b(a+b)化简得:a^2+ab^2+2ab+b^2答案为:a^2+ab^2+2ab+b^21.题目中的符号应该使用正确的数学符号,比如乘号用*代替,除号用/代替。
北师大版数学七年级下册第一章整式的乘除练习(包含答案)

北师⼤版数学七年级下册第⼀章整式的乘除练习(包含答案)北师⼤版七年级下册第⼀章整式的乘除⼀、选择题1.计算(-2a2b)3(3a3b)的结果是()A. -24a8b4B. -24a9b4C. 24a8b4D. 24a9b72.下列运算中,错误的是()A.(-a)3?(-a)3=a6B.(-a)2(-a)3=-a5C.(-a)2?(-a)4=a6D.(-a)3?(-a)4=a73.若x+y=7,xy=-11,则x2+y2的值是()A. 49B. 27C. 38D. 714.若(x-5)(2x-n)=2x2+mx-15,则m、n的值分别是()A.m=-7,n=3B.m=7,n=-3C.m=-7,n=-3D.m=7,n=35.计算()2014×1.52015×(-1)2016的结果是()A.B.C. -D. -6.化简2a3+a2?a的结果等于()A. 3a3B. 2a3C. 3a6D. 2a67.添括号结果是-16(x-0.5)的是()C. 16x-8D. -16x+88.算式-80的值是()A.?B. 1C. -1D.⼆、填空题9.⼀种数码照⽚的⽂件⼤⼩是28K,⼀个存储量为26M(1M=210K)的移动存储器能存储张这样的照⽚.10.若(a+b)?(a+b)2?(a+b)n=(a+b)12,则n的值等于.11.⼀块长m⽶,宽n⽶的地毯,长、宽各裁掉2⽶后,恰好能铺盖⼀间房间地⾯,问房间地⾯的⾯积是平⽅⽶.12.若82a+3?8b-2=820,则2a+b的值是.13.如图(1),边长为a的⼤正⽅形中⼀个边长为b的⼩正⽅形,⼩明将图(1)的阴影部分拼成了⼀个矩形,如图(2).这⼀过程可以验证的乘法公式是.14.设(xm-1yn+2)?(x5m y-2)=x5y3,则nm的值为.15.若am=3,am+n=36,则an=.16.计算(a2b4)n+3(-ab2)2n+(-2anb2n)2=.三、解答题17.化简:(x+2y)2-y(x+2y).18.计算:(2+1)(22+1)(24+1)(28+1)(216+1)+1.19.三峡⼀期⼯程结束后的当年发电量为 5.5×109度,某市有10万户居民,若平均每户⽤电2.75×103度.那么三峡⼯程该年所发的电能供该市居民使⽤多少年?(结果⽤科学记数法表⽰)20.计算:(2x-y+3)2.21.有⼀种长度单位叫纳⽶(nm),1nm=10-9m,现⽤边长为1纳⽶的⼩正⽅体堆垒成边长为1cm的正⽅体要⽤多少个?22.若xm+n=12,xn=3,(x≠0),求x2m+n的值.23.计算:(x-y)7÷(y-x)6+(-x-y)3÷(x+y)2.24.仔细观察下列四个等式:22=1+12+2,32=2+22+3,42=3+32+4,52=4+42+5,….(1)请写出第六个等式;(2)利⽤这⼏个等式的规律,归纳总结出⼀个表达此规律的等式;(3)将表⽰上述规律的等式的右边认真整理,你会发现什么?【解析】(-2a2b)3(3a3b)=(-8a6b3)(3a3b)=-24a9b4.故选B.2.【答案】D【解析】A中,(-a)3?(-a)3=(-a)6=a6,原式计算正确,故本选项错误;B中,(-a)2(-a)3=(-a)5=-a5,原式计算正确,故本选项错误;C中,(-a)2?(-a)4=(-a)6=a6,原式计算正确,故本选项错误;D中,(-a)3?(-a)4=(-a)7=-a7,原式计算错误,故本选项正确;故选D.3.【答案】D【解析】∵x+y=7,∴(x+y)2=49,即x2+2xy+y2=49,∵xy=-11,∴x2+y2=49-2×(-11)=49+22=71.故选D.4.【答案】C【解析】∵(x-5)(2x-n)=2x2+mx-15,∴2x2-(10+n)x+5n=2x2+mx-15,故5n=?15,m=?10?n,解得m=?7 ,n=?3.故选C.5.【答案】B【解析】()2014×1.52015×(-1)2016=()2014×1.52014×1.5×1=(×1.5)2014×1.5=1.5.故选B.6.【答案】A【解析】2a3+a2?a=2a3+a3=3a3.故选A.7.【答案】D【解析】-16x+8=-16(x-0.5),故选D.8.【答案】C【解析】-80=-1.故选C.9.【答案】28【解析】∵26M=26?210K=216K,∴216÷28=216-8=28(张).10.【答案】9【解析】(a+b)?(a+b)2?(a+b)n=(a+b)1+2+n=(a+b)3+n,∴3+n=12,解得n=9.故答案为9.11.【答案】(m-2)(n-2)或(mn-2m-2n+4)【解析】根据题意得出房间地⾯的⾯积是(m-2)(n-2);(m-2)(n-2)=mn-2m-2n+4.故答案为(m-2)(n-2)或(mn-2m-2n+4)12.【答案】19【解析】∵82a+3?8b-2=82a+3+b-2=820,∴2a+3+b-2=20.∴2a+b=20-1.∴2a+b=19,故答案为19.13.【答案】(a+b)(a-b)=a2-b2【解析】阴影部分的⾯积=(a+b)(a-b)=a2-b2;因⽽可以验证的乘法公式是(a+b)(a-b)=a2-b2.14.【答案】3【解析】∵(xm-1yn+2)?(x5m y-2)=xm-1+5myn+2-2=x5y3,∴m-1+5m=5,n+2-2=3,解得m=1,n=3,∴nm=31=3.故填3.15.【答案】12【解析】若am=3,am+n=36,am an=36,则an=12.16.【答案】8a2n b4n【解析】原式=a2n b4n+3a2n b4n+4a2n b4n=8a2n b4n.故答案为8a2n b4n.17.【答案】解:(x+2y)2-y(x+2y)=x2+4xy+4y2-xy-2y2=x2+3xy+2y2.【解析】先根据完全平⽅公式和单项式乘以多项式法则算乘法,再合并同类项即可.18.【答案】解:(2+1)(22+1)(24+1)(28+1)(216+1)+1= (2?1)(2+1)(22+1)(24+1)(28+1)(216+1)+1= (22?1)(22+1)(24+1)(28+1)(216+1)+1= (24?1)(24+1)(28+1)(216+1)+1= (28?1)(28+1)(216+1)+1= (216?1)(216+1)+1= 232?1+1= 232.【解析】平⽅差公式:(a+b)(a-b)=a2?b2,注意的是在实际应⽤中,公式中的“a”、“b”可以是⼀个字母,也可以是⼀个式⼦,平⽅时是整个式⼦的平⽅.19.【答案】解:该市⽤电量为2.75×103×105=2.75×108,(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10(年).答:三峡⼯程该年所发的电能供该市居民使⽤2×10年.【解析】先求出该市总⽤电量,再⽤当年总发电量除以⽤电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.20.【答案】解:原式=[(2x-y)+3]2=(2x-y)2+2(2x-y)?3+32=4x2-4xy+y2+12x-6y+9.【解析】把2x-y当作⼀个整体根据完全平⽅公式展开,再根据完全平⽅公式和多项式乘以单项式法则算乘法,最后合并即可.21.【答案】解:∵1nm=10-9m=10-7cm,∴1cm=107nm.∴1cm3=(107nm)3=1021nm3.答:要⽤1021个.【解析】⾸先利⽤nm表⽰出1cm的长度,然后利⽤体积公式即可求得.22.【答案】解:∵xm+n=12,xn=3,∴xm xn= 12.∴xm=4,∴x2m+n=(xm)2×xn=42×3=48.【解析】根据幂的乘⽅,底数不变指数相乘,先把xm和xn的值求出,然后根据同底数幂的除法,底数不变指数相减求解即可.23.【答案】解:原式=(x-y)7÷(x-y)6-(x+y)3÷(x+y)2=(x-y)-(x+y)=x-y-x-y=-2y.【解析】根据负数的偶次幂是正数,负数的奇次幂是负数,可得同底数幂的除法,根据同底数幂的除法,可得同类项,根据合并同类项,可得答案.24.【答案】解:(1)第六个等式是72=6+62+7.(2)(n+1)2=n+n2+(n+1).(3)将右边整理后得出n+n2+(n+1)=n2+2n+1=(n+1)2,即是两数和的平⽅形式.【解析】(1)根据已知所反映的规律得出即可.(2)根据已知所反映的规律得出即可.(3)根据整式的混合运算求出即可.。
北师大初中数学七年级(下册)第一章整式的乘除练习题(带答案)

3 x2 y3 5
3x2y ;
( 2) 10 a4b 3c 2
5a3bc ;
( 3) (2 x2 y)3 ( 7 xy2 ) 14x 4 y3 ;
( 4) ( 2a b)4 (2a b)2 .
14、【基础题】计算: ( 1) (6ab 8b) 2b ; ( 2) (27a3 15a 2 6a) 3a ; ( 3) (9x2 y 6xy 2 ) 3xy ;
( 9) (ab 1)2 (ab 1) 2 ;
(10) (2x y) 2 4( x y)( x 2 y) .
12.3、【综合Ⅰ】先化简,再求值:
( 1) ( 2x- 1)( x+2)-( x- 2) 2-( x+2) 2,其中 x= - 1 . 3
( 2) ( x+2 y)( x-2 y)( x 2 -4 y 2 ),其中 x=2, y=-1 .
2
10、【基础题】 计算: (1) (2 x 1)(x 3) ; (2) ( m 2n)( m 3n) ; (3) ( a 1) ; (4) (a 3b )(a 3b) ;
2
(5) (2 x
1)(x
4) ;
2
(6) (x
3)(2 x
5) ;
( 7) (7) 3a
bc
bc 3a ;
( 8)( 3x - 2y) 2- (3x + 2y) 2 11
( 3)(x-2 y)( x+2 y)-( x+2 y) 2 ;
( 4)(a+ b+ c)(a+ b- c);
( 5)(2 a+1) 2 -(1-2 a) 2 ;
( 6)(3 x - y) 2 -(2 x+ y) 2 +5 x ( y -x) .
( 7) (2 x y 1)( 2x y 1) ;
北师大版七年级数学下册第一章 整式的乘除练习(包含答案)

第一章 整式的乘除一、单选题1.计算a·a 3的结果是( ) A .a 4B .-a 4C .a -3D .-a 32.下列整式的运算中,正确的是( ) A .236a a a =gB .()325a a =C .325a a a +=D .()222ab a b =3.(﹣2a 3)2的计算结果是( ) A .4a 9B .2a 6C .﹣4a 6D .4a 64.计算322a a g 的结果是( )A .2aB .52aC .62aD .92a5.计算231232x y xy y ⎛⎫⋅-+⎪⎝⎭的结果是( ) A .2242x y x y -+B .2432223x y x y x y -+C .322462x y x y -+D .2423226x y x y x y +-6.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a+2b ),宽为(2a+b )的大长方形,则需要C 类卡片张数为( )A .2B .3C .4D .57.如图的分割正方形,拼接成长方形方案中,可以验证( )A .()2222a b a ab b +=++ B .()2222a b a ab b -=-+ C .()()224a b a b ab -=+-D .()()22a b a b a b +-=-8.若x +y +3=0,则x (x +4y )-y (2x -y )的值为 A .3 B .9 C .6 D .-99.如果多项式291x kx ++能用完全平方公式分解因式,那么k 的值是( ) A .6B .6-C .6或6-D .010.若124816326421111111(1)(1)(1)(1)(1)(1)(1)33333333A =-+++++++……21(1)13n ++,则A 的值是A .0B .1C .2213nD .1213+n二、填空题 11.计算(-223)2017×(-38)2018=______. 12.计算:()()43222015255x x y xx +-÷-=______________.13.请你计算:()()11x x -+,()()211x x x-++,…,猜想()()211n x x xx -+++⋅⋅⋅+的结果是________.14.若2(1)()2a a a b ---=-,则222a b ab +-的值为________.三、解答题 15.计算:()()()23334124ab a b -÷g ;()()()()22222x y x y x y -+--.16.阅读材料,回答问题.已知0a >, 0b >,若32a =,43b =,则a ,b 的大小关系是 a _______b (填“<”或“>”). 解:因为3 2a =,43b =,所以12344()216aa ===,12433()327b b ===,1627<,所以1212a b <.因为 0a >,0b >,所以 a b <.(1)上述求解过程中,逆用了哪一条幂的运算性质( ) A .同底数幂的乘法 B .同底数幂的除法 C .幂的乘方 D .积的乘方(2)已知 2m a =,3n a =,利用材料中的逆向思维分别求m n a +和2 m a 的值. 17.化简求值:(1)已知1x =,求()()()()22112x x x x -++--+的值. (2)已知2230x x -+=,求代数式()()()2233x x x -+-+的值.18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(1)根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般规律(x﹣1)(x n+x n﹣1+……+x+1)=;(3)根据以上规律求32018+32017+32016+…32+3+1的结果.>的长方形,沿图中虚线用剪刀均分成四19.如图①所示是一个长为2m,宽为2n(m n)个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m、n的代数式表示);()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)-、mn这三个代数式之间的等量关系:______;+、2(m n)()4根据()3题中的等量关系,若m n12=,求图②中阴影部分的面积+=,mn25答案2.D 3.D 4.B 5.D 6.B 7.D 8.B 9.C 10.D 11.-3812.-4x 2-3xy+513.11n x +- (n 为正整数) 14.2 15.(1)212b ;(2)242xy y -. 16.(1)C ;(2)6m n a +=,24m a = 17.(1)3;(2)-1118.(1)x 7﹣1;(2)x n+1﹣1;(3)2019212-.19.(1)()m n -(2)①2(m n)-①2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)。
北师大版七年级数学下册第一章整式的乘除单元练习题

第一章 整式的乘除§13.1幂的运算§13.1.1同底数幂的乘法一、填空题1.计算:103×105=2.计算:(a -b )3·(a -b )5=3.计算:a·a 5·a 7=4. 计算:a(____)·a 4=a 20(在括号内填数) 二、选择题1.32x x •的计算结果是( )A.5xB.6xC.8xD.9x2.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6C .x 3·x 4=x 12 D.(-b )3·(-b )5=b 83.下列各式中,①824x x x =•,②6332x x x =•,③734a a a =•,④1275a a a =+,⑤734)()(a a a =-•- 正确的式子的个数是( )A.1个B.2个C.3个D.4个4.若1621=+x ,则x 等于( )A.7B.4C.3D.2.三、解答题1、计算:(1)、25)32()32(y x y x +•+ (2)、32)()(a b b a -•-(3)、62753m m m m m m •+•+•2、已知8=m a ,32=n a ,求n m a +的值.§13.1.2幂的乘方一、选择题1.计算23x )(的结果是( )A .5xB .6xC .8xD .9x2.下列计算错误的是( ) A .32a a a =• B .222a b a b •=)( C .532a a =)( D .-a+2a=a 3.计算32)(y x 的结果是( )A .y x 5B .y x 6C . y x 32D .36y x 4.计算22a 3-)(的结果是( ) A .43a B .43a - C .49a D .49a -二、填空题1.43a -)(=_____.2.若3m x=2,则9m x =_____. 3.若2n a =3,则23n 2a )(=____. 三、计算题1.计算:32x x •+23x )(.§13.1.3积的乘方1.计算:()[]23n 23yx -•3.已知273×94=x3,求x 的值.§13.1.4同底数幂的除法一、填空题1.计算:26a a ÷= ,25)()(a a -÷-= .2.在横线上填入适当的代数式:146_____x x =•,26_____x x =÷.3.计算:559x x x •÷ = ,)(355x x x ÷÷ = . 4.计算:89)1()1(+÷+a a = .5.计算:23)()(m n n m -÷-=___________. 二、选择题1.下列计算正确的是( )A .(-y )7÷(-y )4=y3 ;B .(x+y )5÷(x+y )=x4+y4;C .(a -1)6÷(a -1)2=(a -1)3 ;D .-x5÷(-x3)=x2.2.计算:()()()4325a a a -÷⋅-的结果,正确的是( )A.7a ;B.6a -;C.7a - ;D.6a .3. 对于非零实数m ,下列式子运算正确的是( )A .923)(m m = ;B .623m m m =⋅;C .532m m m =+ ;D .426m m m =÷.4.若53=x ,43=y ,则y x -23等于( )A.254 B.6 C.21 D.20三、解答题1.计算:⑴24)()(xy xy ÷; ⑵2252)()(ab ab -÷-;⑶24)32()32(y x y x +÷+; ⑷347)34()34()34(-÷-÷-.2.计算:⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;4. 解方程:(1)15822=•x ;5. 已知3,9m n a a ==,求32m n a -的值.§13.2整式的乘法§13.2.1 单项式与单项式相乘一、判断题:(1)73a ·82a =566a ( ) (2)85a ·85a =1616a ( )(3)34x ·53x =87x ( ) (4)-33y ·53y =-153y ()(5)32m ·53m =155m ( )二、选择题1、下列计算正确的是 ( )A 、2a ·3a =6aB 、2x +2x =24xC 、42x -)(=-164xD 、(-22a )(-33a )=65a2.下列说法完整且正确的是( )A .同底数幂相乘,指数相加;B .幂的乘方,等于指数相乘;C .积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;D .单项式乘以单项式,等于系数相乘,同底数幂相乘3.下列关于单项式乘法的说法中不正确的是( )A .单项式之积不可能是多项式;B .单项式必须是同类项才能相乘;C .几个单项式相乘,有一个因式为0,积一定为0;D .几个单项式的积仍是单项式三、解答题1.计算:(1)23x 5.2-)((-43x )(2)(-410)(5×510)(3×210)(3)(-432a c b )(-x 2a b )3§13.2.2 单项式与多项式相乘一.判断: (1)31(3x+y )=x+y ( )(2)-3x (x -y )=-32x -3xy ( )(3)3(m+2n+1)=3m+6n+1 ( )(4)(-3x )(22x -3x+1)=63x -92x +3x ( )二、选择题1.下列说法正确的是( )A .多项式乘以单项式,积可以是多项式也可以是单项式;B .多项式乘以单项式,积的次数是多项式的次数与单项式次数的积;C .多项式乘以单项式,积的系数是多项式系数与单项式系数的和;D .多项式乘以单项式,积的项数与多项式的项数相等4.x (y -z )-y (z -x )+z (x -y )的计算结果是( )A .2xy+2yz+2xzB .2xy -2yzC .2xyD .-2yz三、计算:(1)(a -3b )(-6a ) (2)n x (1n x -x -1)(3)-5a(a+3)-a(3a -13) (4)-22a (21ab+2b )-5ab(2a -1)§13.2.3多项式与多项式相乘一.判断:(1)(a+3)(a -2)=2a -6 ( )(2)(4x -3)(5x+6)=202x -18 ( )(3)(1+2a )(1-2a )=42a -1 ( )(4)(2a -b )(3a -b )=62a -5ab+2b ( )(5)(am -n )m+n=a 2m -2n (m ≠n ,m>0,n>0,且m>n ) ( )二、选择题1.下列计算正确的是( )A .(2x -5)(3x -7)=62x -29x+35B .(3x+7)(10x -8)=302x +36x+56C .(-3x+21)(-31x )=32x +21x+61D .(1-x )(x+1)+(x+2)(x -2)=22x -32.计算结果是22x -x -3的是( )A .(2x -3)(x+1)B .(2x -1)(x -3)C .(2x+3)(x -1)D .(2x -1)(x+3)三.计算:(1)(x -2y )(x+3y ) (2)(x -1)(2x -x+1)(3)(-2x+92y )(312x -5y ) (4)(22a -1)(a -4)-(2a +3)(2a -5)四、实际应用1.求图中阴影部分的面积(图中长度单位:米).2.长方形的长是(a+2b )cm ,宽是(a+b )cm ,求它的周长和面积.§13.3 乘法公式§13.3.1 两数和乘以这两数的差一、选择题1、20022-2001×2003的计算结果是( )A 、 1B 、-1C 、2D 、-22、下列运算正确的是( )A.2 b)+(a =2a +2bB. 2 b)-(a =2a -2bC. (a+m)(b+n)=ab+mnD. (m+n)(-m+n)=-2m +2n二、填空题1、若2x -2y =12,x+y=6则x=_____; y=______.2、( + )( - )=a2 - 9三、利用平方差公式计算:(1)502×498;§13.3.2 两数和的平方一、判断题;(1) 2 b)-(a =2a -2b ( )(2) 2 2b)+(a =2a +2ab +22b ( )(3) 2 b)-(-a = -2a -2ab +2b ( )(4) 2 b)-(a =2 a)-(b ( )二、填空题1、2 b)+(a +2 b)-(a = ;2、2x + +9=(_____+______)2;3、42a +kab +92b 是完全平方式,则k = ;4、()2 -8xy +2y =2y - )( 三、运用平方差或完全平方公式计算:(1)(2a +5b )(2a -5b ) (2)(-2a -1)(-2a +1);(3)24b -2a ()(;(4)2b +2a )(四、解答题1、已知:2 b)+(a =7 ,2 b)-(a =9,求2a +2b 及ab 的值。
北师大版七年级数学下册第一章 整式的乘除练习(包含答案)

第一章 整式的乘除一、单选题1.计算﹣a 2•a 3的结果是( )A .a 5B .﹣a 5C .﹣a 6D .a 62.如果()31293n =,则n 的值是( )A .4B .3C .2D .13.计算201920183223⎛⎫⎛⎫⋅- ⎪ ⎪⎝⎭⎝⎭的结果是( )A .23 B .32 C .23- D .32-4.若m 、n 均为正整数且2216m n ⋅=,(2)8m n =,则mn m n ++的值为() A .7 B .8 C .9 D .105.计算3x 3·(-2x 2)的结果是( )A .6x 5B .-6x 5C .5x 6D .-5x 96.计算231232x y xy y ⎛⎫⋅-+ ⎪⎝⎭的结果是( )A .2242x y x y -+B .2432223x y x y x y -+C .322462x y x y -+D .2423226x y x y x y +-7.已知多项式(x +3)(x +n )=x 2+mx -21,则m 的值是( )A .-4B .4C .-2D .28.已知a+b =﹣3,a ﹣b =1,则a 2﹣b 2的值是( )A .8B .3C .﹣3D .109.如图是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .a 2+b 2B .4abC .(b +a )2﹣4abD .b 2﹣a 210.下列计算正确的是( )A .33(2)2a a -=-B .(b ﹣a )(a+b )=22b a -C .222()a b a b +=+D .236()()a a a -⋅-=二、填空题11.计算(﹣3a 2b 3)2•2ab =_____. 12.已知10x =8,10y =16,则102x -y =______.13.若多项式x 2+kx +9是一个完全平方式,则k 的值等于_________________. 14.若3a b +=,则226a b b -+的值为__________.三、解答题15.计算(1)()522()x x x -÷-⋅(2)1022-982(3)(a -2b+c )(a+2b -c )16.先化简再求值:22(2)(2)4x y x x y y --+-,其中14,2x y =-=17.观察下列等式:(x -1)(x+1)=x 2-1;(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1(x -1)(x 4+x 3+x 2+x+1)=x 5-1;……(1)猜想(x -1)(x n +x n -1+x n -2+…+x+1)=______.运用上述规律,试求:(2)219+218+217+…+23+22+2+1.(3)52018+52017+52016+…+53+52+5+1.18.如图所示,已知甲、乙两个边长不等的正方形纸片并排放置,图中m 、n 是所测线段的长度,则:(1)甲正方形纸片的边长是 ;(2)乙正方形纸片的边长是 ;(3)求甲、乙两个正方形纸片的面积之差.答案1.B 2.C 3.B 4.A 5.B 6.D 7.A 8.C 9.C 10.B 11.18a5b7 12.413.±614.915.(1)5x - (2)800 (3)22244a b bc c -+- 16.6xy -,12. 17.(1)x n+1-1;(2)220-1;(3)14(52019-1). 18.(1)2m n +(2)2m n -(3)mn。
北师大版七年级数学下册第一章 整式的乘除练习(包含答案)

A.a3+a3=a6B.a3()=aC.6ab2()=12a b24A.2b2B.(b-a)2C.1b2第一章整式的乘除一、单选题1.已知2a=5,2b=2,2c=50,那么a、b、c之间满足的等量关系是()A.2a+b>c B.2a+b<c C.2a+b=c D.无法确定2.在下列各式中的括号内填入a3的是()A.a12=()2B.a12=()3C.a12=()4D.a12=()6 3.下列式子正确的是()252D.a6÷a=a54.计算:(5a2b)•(3a)等于()A.15a3b B.15a2b C.8a3b D.8a2b5.如图,边长分别为a和b的两个正方形拼接在一起,则图中阴影部分的面积为()2D.b2-a26.己知关于x的多项式mx2-mx-2与3x2+mx+m的和是单项式,则代数式m2-2m+l的值是()A.16B.-3C.2或-3D.16或14B.x-y4C.1D.2xy ⎣⎦7.长方形的面积为6a2-3ab+3a,一边长为3a,则它的周长是()A.2a-b+1B.5a-b+1C.10a-2b+2D.10a-2b8.计算⎡(x+y)2-(x-y)2⎤÷4x y的结果为A.x+y9.下列计算错误的有()①(2x+y)2=4x2+y2;①(3b-a)2=9b2-a2;①(-3b-a)(a-3b)=a2-9b2;①11(-x-y)2=x2+2x y+y2;①(x-)2=x2-2x+.24A.1个B.2个C.3个D.4个10.我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图所示的三角形解释二项式(a+b)n的展开式中各项系数的规律,此三角形称为“杨辉三角”根据“杨辉三角”请计算(a+b)6的展开式中从左起第四项的系数为()A.64B.20C.15D.6二、填空题11.已知32⨯9m⨯27=321,求m=__________.13.(x+y)(x-y)x2+y2=______.12.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为________.()14.如图1,把一个边长为(a+b)的大正方形切成4个全等的长方形和1个小正方形,大正方形的面积是49,中间小正方形的面积为16.图2中两个正方形的边长分别为a、b,则阴影部分的面积为_____.三、解答题15.计算(1)(-3a2b)3⋅(-12a2)4⋅(-b2)5(2)(4xy2-10x2y+1)(-32xy)2(3)(3x+2)(3x-2)-(2x-1)2-5x(x+2)(4)(3x-y)2-(2x+y)2+5x(y-x)(5)(3a+b-2)(3a-b+2)(6)(-2)2-(3.14-π)0-1-(-1)2019916.先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.17.书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,( (其长为 26cm 、宽为 18.5cm 、厚为 1cm ,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去 xcm 封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含 x 的代数式表示)(2)当封面和封底各折进去 2cm 时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?18.已知(x + a )x 2 - x + c )的积不含 x 2 项与 x 项,求(x + a ) x 2 - x + c ) 的值是 多少?19.定义一种新运算:观察下列式:1①3=1×4+3=73①(﹣1)=3×4﹣1=115①4=5×4+4=24 4①(﹣3)=4×4﹣3=13(1)请你想一想:a①b=;(2)若 a≠b ,那么 a①bb①a (填入“=”或“≠” )(3)若 a①(﹣2b )=3,请计算 (a ﹣b )①(2a+b )的值.20.如图①所示是一个长为 2m ,宽为 2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图①的方式拼成一个正方形.(1)按要求填空:①你认为图①中的阴影部分的正方形的边长等于______;①请用两种不同的方法表示图①中阴影部分的面积:方法1:______方法2:______①观察图①,请写出代数式(m+n)2,(m-n)2,mn这三个代数式之间的等量关系:______;(2)根据(1)题中的等量关系,解决如下问题:若|m+n-6|+|mn-4|=0,求(m-n)2的值.(3)实际上有许多代数恒等式可以用图形的面积来表示,如图①,它表示了______答案1.C 2.C 3.D 4.A 5.C 6.D 7.C 8.C15.(1) 27 x 4 y 3 + x 2 y 2;(3) -6x - 5 ;(4) -5 x y ;(5)9.D10.B11.812.013. x 4 - y 414.2845 9 a 14b13 ;(2)9x 3 y 4 -162 4 9a 2 - b 2 +4b - 4 ;(6) 11316.-20a 2+9a ,-9817.(1)(4x 2+128x+988)cm 2;(2)需要的包装纸至少是 1260 平方厘米.18.x 3+119.(1)4a+b ;(2)≠;(3)4.5.20.(1)①m ﹣n ;①(m ﹣n )2;(m+n )2﹣4mn ,①(m ﹣n )2=(m+n )2﹣4mn ;(2)(m﹣n )2=20;(3)(2m+n )(m+n )=2m 2+3mn+n 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BSD 七下 第一章 整式乘除的复习练习题
一、填空:
1、x 25322=⋅,则x= 。
2、已知12,6,3222===c b a ,则a 、b 、c 的大小关系是 。
3、=--)(a 32 ;)(x 223-= ;a a 32
3⋅)(= 。
4、已知
q px x x x ++=--2)3(2)(,则)(q p +2013= 。
5、)
(2322a a ÷)(= ;=-m 22 。
6、用科学计数法表示0.00000094m= 。
7、)3(232x x -⋅= ;=+-⋅)32
1(232y x xy y 。
8、若=+=-=-n m n m n m 则且,3,622 。
9、已知=+==+-n m n m n m 2222,2,8)(则)
( ,mn= 。
10、已知a 、b 满足a+b=3,ab=2,则
=+b a 22 。
11、已知=+-=--m m m m m 2221
52,015则 。
12、若代数式
b x x +-62可以化成12--)(a x ,则b-a= 。
13、化简:
=-+-)2(2a b a b a )( 。
14、=--x x x 142)( ;a a 32
433÷)(= 。
15、( )3232-+-=-÷
a a a )(。
16、多项式M 与2a
b -的乘积为b a 334-+2
322ab b a -,则M= 。
17、已知=÷=--101069,0323y x y x 则。
18、若
==÷m y x x y x n m 则,44
123 ,=n 。
1、8
125.020132012⨯-)( 2、)2)(2(232
b a b a b a -----)(
2、)()()(32432333a a a a ÷÷⋅-)( 4、)(c b a 322-+
3、)()()
(π--+-÷-14.331201316 6、1982
4、2311022014-+---)(
)( 8、 )11(...)11()11(111004322222-⨯⨯-⨯-⨯-)(
5、z y x
x xyz 2243)32(23⋅-⋅-)( 10、)()()()(11112222842+⨯+⨯+⨯+
6、)9()15(2224323
y x y y x x -⋅-÷)( 11、2014201220132⨯-
7、xy xy x y y x 2
12162322÷+-)(
8、)2(]22[23
22x y y x y -÷⋅-+)(
1、(1))()(5243a a a a ---⋅+)( (2)x x x n ⋅⋅--)(4
2
2、(1))(5223222c b a c b a --÷)( (2)m m x n n n 23
)()(2-÷⋅
3、)31(391322
6272b a b a b a -÷-)(
4、。
其中2
1,2,2]3)3)(3[(2=-=÷---y x x y x y x y
5、2
1,31),2(5)2)(2(322-==+--+-+y x x y y y x y x y x 其中)(。
6、已知的值。
)求()(1)12(1,14512
2+---=-+x x x x x
7、1,1),5(]5[2
222)45()45(-==-÷---+y x x y x
y x y x 其中。
四、解答题:
1、若的值。
则求12,2
422++-=⋅-m m x x x
m m
2、已知的值。
项,求的积中不含有)(m x m x x 22)132(x --+
3、已知的值。
及求ab b a b a b a 222
2,4,7)()(+==-+
4、多项式142+x 加上一个单项式后能成为一个整式的完全平方式,那么这个单项式是多少。
5、已知的值。
,求20083
3324,44n
n m m ==+
五、阅读下列材料:
因为3)2()6(,6)3)(2(22+=-÷-+-+=+-x x x x x x x x 所以,即62
-+x x 能被2-x 整除,所以2-x 是62-+x x 的一个因式,且当2=x 时,62-+x x =0。
(1)由能被得65,65)3)(2(22++++=++x x x x x x 整除,且当x= 时,0652=++x x ; (2)根据以上材料,已知多项式
的值。
整除,试求能被m x mx x 2142+-+。