定积分的基本概念
积分的定积分与不定积分

积分的定积分与不定积分积分是微积分中的重要概念之一,用于求解曲线下面积、函数的平均值、变化率等问题。
在积分中,我们常常会遇到定积分和不定积分两种形式。
本文将从定义、性质、计算方法等方面介绍定积分和不定积分的基本知识。
一、定积分的定义与性质定积分是对函数在给定区间上的积分,它的定义如下:设函数f(x)在区间[a, b]上有界,将[a, b]分成n个小区间,其中第i 个小区间为[x_(i-1), x_i],对于任意一个小区间,取其左端点上的函数值f(x_(i-1))作为近似值,求所有小区间上的近似求和,然后令n趋向于无穷大,即可得到定积分的值。
定积分的性质如下:1. 定积分的值和积分的区间有关,即[a, b]上的积分与[b, a]上的积分相差一个负号,表示积分的方向。
2. 一个区间上的定积分可以分割成多个子区间的积分之和,即[a, b]上的积分等于[a, c]上的积分加上[c, b]上的积分。
3. 函数的常数倍不影响定积分的值,即k∫f(x)dx = ∫(k*f(x))dx。
4. 定积分有加法原理,即∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx。
二、不定积分的定义与性质不定积分是求解函数的原函数的过程,它的定义如下:设函数f(x)在区间I上有原函数F(x),则F(x)+C称为f(x)在I上的不定积分,其中C为任意常数。
不定积分的性质如下:1. 函数的不定积分是原函数的集合,因为对于任意一个原函数F(x),都有F(x)+C是f(x)的不定积分,其中C为任意常数。
2. 不定积分具有线性性质,即∫(af(x)+bg(x))dx = a∫f(x)dx + b∫g(x)dx,其中a、b为常数。
3. 不定积分有积分微分的逆运算性质,即函数f(x)在[a, b]上可积的充分必要条件是它在[a, b]上有连续的原函数。
三、定积分与不定积分的关系在计算上,定积分和不定积分是相互联系的。
下面是一些常见的关系:1. 定积分可以通过不定积分来求解,即∫(a, b)f(x)dx = F(x)∣_(a, b) = F(b) - F(a),其中F(x)为f(x)的一个原函数。
高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

的图形的面积S,正确的是 ( )
A.S= 10 (x-x2)dx C.S= 10 (y2-y)dy
B.S= 10 (x2-x)dx D.S= 10 (y- y )dy
【解析】选A.根据题意,如图所示,阴影部分为曲线 y=x2与y=x所围成的图形,其面积S= 10 (x-x2)dx.
2.(选修2-2P67T7改编)直线y=3x与曲线y=x2围成图形
b a
f(x)dx=_F_(_b_)_-_F_(_a_)_,这个结论叫做微积
分基本定理,又叫做牛顿-莱布尼茨公式.其中F(x)叫做
f(x)的一个原函数.为了方便,常把F(b)-F(a)记成
F(x)|ab ,即
b a
f(x)dx=F(x)
|ab
=F(b)-F(a).
【常用结论】 1.定积分应用的两条常用结论 (1)当曲边梯形位于x轴上方时,定积分的值为正;当曲 边梯形位于x轴下方时,定积分的值为负;当位于x轴上 方的曲边梯形与位于x轴下方的曲边梯形面积相等时, 定积分的值为零.
(1)设函数y=f(x)在区间[a,b]上连续,则
b a
f(x)dx
= ab f(t)dt.
(
)
(2)若函数y=f(x)在区间[a,b]上连续且恒正,
则 ab f(x)dx>0. ( )
(3)若
b a
f(x)dx<0,那么由y=f(x),x=a,x=b以及x轴
所围成的图形一定在x轴下方. ( )
(4)微积分基本定理中的F(x)是唯一的. ( )
第五节 定积分的概念与微积分基本定理、
【知识梳理】 1.定积分的概念与几何意义 (1)定积分的定义 如果函数f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等分成n个
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的概念和基本思想

定积分的概念和基本思想一、定积分的概念和基本思想1、定积分的概念一般地,如果函数$f(x)$在区间$[a,b]$上连续,用分点$a=x_0<x_l<$$\cdots<$$x_{i-l}<x_i<$S\cdots<$$x_n=b$将区间$ la, b] S等分成$n$ 个小区间,在每个小区间$[x_{iT},x_i]$上任取一点$ C _i (i=l, 2, \cdots, n)$,作和式$\underset{i=l}{\overset{n}{\sum}}f(4 _i)Ax=$$\underset{i=l}{\overset {n} {\sum ))\frac(b-a} {n}f(C_i)$,当Sn-8$时,上述和式无限接近某个常数,这个常数叫做函数$f (x) $在区间$[a,b]$上的定积分,记作$\int_{a} * (b}f (x) (\rm d}x$,即$\int_{a}*{b}f(x){\rmd}x=$$\underset(n~* °°}{\lim}\underset{i=l}{\overset{n}{\sum}}\frac{b_ a}{n}f(g_i)$,这里,$a$与$b$分别叫做积分下限与积分上限,区间$[a,b]$叫做积分区间,函数$f(x)$叫做被积函数,$x$叫做积分变量,$f(x) {\rm d}x$叫做被积式。
(1)定积分$\int_{a}*{b}f(x) {\rm d}x$不是一个函数式,而是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即$\int_{a}*{b}f(x){\rm d}x=$S\int_{a}*{b}f(t)(\rm d}t=$$\int_{a}*{b}f(u){\rm d}u$o(2)定义中区间的分法和$ g _i$的取法是任意的。
2、定积分的基本思想定积分的基本思想就是以直代曲,即求曲边梯形的而积时,将曲边梯形分割成一系列的小曲边梯形,用小矩形近似代替,利用矩形面积和逼近的思想方法求出曲边梯形的面积。
定积分的基本概念

方法与手段导入幻灯幻灯幻灯幻灯详讲详讲详讲幻灯下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。
事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。
好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。
解决步骤:大化小:在区间[a,b]中任意插入n −1个分点a =x 0<x 1<x 2<⋯<x n−1<x n−1=b ,用直线x =x i 将一个曲边梯形分成n 个小的曲边梯形;常带变:在第k 个窄边梯形上任取ξk ∈[x k−1,x k ]作以[x k−1,x k ]为底,f(ξk )为高的小矩形,并以此小矩形面积近似代替相应窄曲边梯形面积∆S k ,得∆S k ≈f (ξk )∆x k (∆x k =x k −x k−1,k =1,2,⋯n) 近似和:S =∑∆S k n k=1≈∑f(ξk )∆x k n k=1取极限:令λ=max {∆x 1,∆x 2⋯,∆x n } S =lim λ→0∑∆S k n k=1=lim λ→0∑f(ξk )∆x k n k=1这样我们就可以求出曲边梯形的面积,我们再看一个定积分问题例子。
(2)变速直线运动的路程:设某物体做直线运动,已知()v v t =在区间[1T ,2T ]上t 的连续函数,且()0v t ≥,求在这段时间内物体所经过的路程s 。
考虑:当()0y f x C ==≥,()0v v t C ==≥时(其中C 为常数),上面问题的求解。
在解决这个问题之前我们先分析一下这个问题与上个问题之间的关系,我们可以发现其实求路程和求面积本身是同一类问题,变化的无非是函数名,区间名称,本质上是一样的,我们其实只需做一个按照上面的思路做一个变量替换就可以了,具体的解决步骤是。
解决步骤: 详讲 总结λ→0是个障碍,我们能不能把λ→0替换掉?其实把[0,1]区间n 等分,λ=1n →0,其实就是n →+∞,lim n→+∞∑(k n )21n n k=1,要求这个极限我需要先求∑(k n )21n n k=1,化简一下可以得到1n 3∑k 2n k=1,∑k 2n k=1=?,∑k 2n k=1=16n(n +1)(2n +1),lim n→+∞∑(k n )21n n k=1=lim n→+∞n(n+1)(2n+1)6n 3=13。
定积分概念、性质ppt课件

上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1
定积分定义考研题库

定积分定义考研题库定积分定义考研题库定积分是高等数学中的一个重要概念,也是考研数学中的热门考点之一。
在考研数学中,定积分的定义题是经常出现的题型。
本文将从不同角度出发,对定积分的定义考研题库进行分析和解答。
一、基本概念定积分是微积分中的一个重要概念,它是反映函数在一定区间上面积的度量。
在数学上,我们通常将定积分表示为∫abf(x)dx,其中f(x)为被积函数,a和b 为积分的上下限。
二、定积分的几何意义定积分的几何意义是函数曲线与x轴所围成的面积。
当被积函数f(x)为非负函数时,定积分表示曲线上方的面积;当被积函数f(x)为负函数时,定积分表示曲线下方的面积。
三、定积分的定义定积分的定义可以从黎曼和的角度来理解。
对于一个函数f(x),我们可以将其在区间[a, b]上进行分割,得到若干个小区间。
在每个小区间上,我们可以选择一个代表点,然后计算出该点的函数值与小区间长度的乘积。
将所有小区间上的乘积相加,就得到了定积分的近似值。
当我们将小区间的长度趋近于零时,这个近似值就会趋近于定积分的准确值。
四、定积分的性质定积分具有一系列的性质,这些性质在解题过程中经常被用到。
其中包括定积分的线性性质、定积分的区间可加性、定积分的保号性等。
这些性质可以帮助我们简化计算,提高解题效率。
五、定积分的计算方法在实际计算定积分时,我们可以利用一些常用的计算方法。
其中包括换元法、分部积分法、瑕积分的计算等。
这些方法在解题过程中起到了重要的作用,可以帮助我们解决一些复杂的定积分计算问题。
六、定积分的应用定积分在实际生活中有着广泛的应用。
它可以用于计算曲线长度、曲线与x轴所围成的面积、物体的质量、质心等。
在物理学、经济学、工程学等领域中,定积分都有着重要的应用价值。
七、定积分的推广除了黎曼和,定积分还有其他的推广形式,如黎曼-斯蒂尔杰斯和、勒贝格积分等。
这些推广形式在理论研究和实际应用中都具有重要的地位,对于深入理解定积分的性质和应用有着重要的意义。
定积分、微积分基本定理-高中数学知识点讲解

定积分、微积分基本定理1.定积分、微积分基本定理【定积分】定积分就是求函数在区间中图线下包围的面积.即由所围成图(f X)[a,b] y=0,x=a,x=b,y=(f X)形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个面积,是一个数.定积分的求法:求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.【微积分基本定理】在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.其中,微积分的核心(基本)定理是푏푎F(x)=(f x)(f x)푓(푥)푑푥= 퐹(푏)―퐹(푎),其中,而必须在区间(a,b)内连续.2例 1:定积分|3 ―2푥|푑푥=1解:1 | 3﹣2x | dx2=321(3 ―2푥)푑푥+232(2푥―3)푑푥3=(﹣2)1 +(x2﹣3x)|233x x |221/ 2=12通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有;第二,每一段对应的被积分函数的表dx达式要与定义域相对应;第三,求出原函数代入求解.例 2:用定积分的几何意义,则39 ―푥2푑푥.―3解:根据定积分的几何意义,则39 ―푥2푑푥表示圆心在原点,半径为3的圆的上半圆的面积,―3故3―39 ―푥2푑푥=12 × 휋× 32 =9휋.2这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.【考查】定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.2/ 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。
也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。
2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。
(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。
(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。
(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。
二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。
2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。
三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。