轴向应力-轴向位移关系曲线
高等土力学部分知识总结

高等土力学部分学问总结第七章土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体渐渐排解,土体收缩的过程。
更准确地说,固结就是土体超静孔隙水应力渐渐消散,有效应力渐渐增加,土体压缩的过程。
(超静孔压渐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的状况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的状况下,随时间进展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向);饱和土,水土二相;土体匀称,土颗粒和水的压缩忽视不计,压缩系数为常数,仅考虑土体孔隙的压缩;孔隙水渗透流淌符合达西定律,并且渗透系数K为常数;外荷载为均布连续荷载,并且一次施加。
固结微分方程:u为孔隙水压力,t时间,z深度渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
土的固结系数,与土的渗透系数K成正比和压缩系数成反比。
初始条件:t=0,;边界条件:透水面u=0不透水面4.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
固结度U是时间因数Tv的单值函数。
5.太沙基三维固结理论依据土体的连续性,从单元体中流出的水量应当等于土体的压缩量由达西定律:若土的各个方向的渗透系数相同,取将达西定律公式代入连续方程:太沙基三维固结理论假设三向总应力和不随时间变化即:即6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流淌。
依据纽曼卡里罗定理:多向渗流时孔隙压力比等于各单向渗流时孔隙压力比的乘积。
则可以分解为两个式子,7.Biot固结理论假设:均质/饱和/线弹性/微小变形/土颗粒和水不行压缩/渗流满意达西定律方程建立:1.单元体的平衡微分方程2.有效应力原理,总应力为孔隙水应力和有效应力之和,而孔隙水不能担当剪应力 3.本构方程(线弹性),也可以考虑弹塑性矩阵[D],将应力和应变联系起来 4.几何方程,将应变和位移联系起来,最终代入得到位移和孔压表示的平衡微分方程(有效应力和孔压表示的拉梅方程) 5.连续性方程,土的体积变化=土体孔隙的体积变化=流入流出水量差。
材料力学性能-第一章-应力应变曲线和弹性变形

2021年10月24日 第一章 单向静载下材料的力学性能 星期日 纯弹性型
大多数玻璃、陶瓷、 岩石、低温下的金属
弹性-均匀塑性型
许多金属和合金、部 分陶瓷和非晶态高聚物
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
低温和高应变 速率下的fcc金属。 其塑性变形常常是 通过孪生实现的。 当孪生速率超过夹 头运动速率时出现 此种类型曲线。
弹性-不均匀塑性型
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
弹性-不均匀塑 性-均匀塑性型
弹性-不均匀塑 性-均匀塑性型
一些bcc的铁基合金 和若干有色合金。
一些结晶态的高聚 物和未经拉伸的非晶 态高聚物
2021年10月24日 第一章 单向静载下材料的力学性能 星期日 同一种材料在不同拉伸条件下其应 力-应变曲线也会不同。比如,退火低 碳钢在低温下脆性大大增加,其拉伸曲 线就只有弹性变形部分。
表1-2 几种常用材料的比弹性模量
材料
铜 钼 铁 钛 铝 铍 氧化铝 碳化硅
比弹性模量/×108cm 1.3 2.7 2.6 2.7 2.7 16.8 10.5 17.5
2021年10月24日 第一章 单向静载下材料的力学性能 星期日 三、弹性比功 表示金属材料吸收弹性变形功的能力。
用金属材料开始塑性 σ
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
影响因素
弹性变形是原子间距在外力作用
下可逆变化的结果,因而弹性模量E与
原子间作用力和原子间距都有关系。原 子间作用力取决于原子本性和晶格类
型,故E也取决于原子本性与晶格类
型。
2021年10月24日 第一章 单向静载下材料的力学性能 星期日
室内岩石试验(三轴)

σ3 =12
2)、绘制应力差~轴向 应变(εL)曲线。 3)、计算弹性模量和泊 松比。
σ3 =4 σ3 =8
0 0 0.005 0.01 0.015
εL
三轴压缩强度和变形试验
—成果整理
4、破坏后试件描述
描述破坏形式,并量测破坏面与最大主应力作 用面之间的夹角。
三轴压缩强度和变形试验
—试验方法
断层泥
三、三轴压缩强度和变形试验
—试验方法 2)安装试件: a、套热缩管、隔油;
三轴压缩强度和变形试验
—试验方法
三轴压缩强度和变形试验
—试验方法
以0.05MPa/s——同时施加侧压 力和轴向压力至预定侧压力值 以0. 5~1.0MPa/s——施加轴向 荷载,直至试件完全破坏。
试样安装完 毕,给压力 室注油,准 备施加围压
50 40 30 20 10 τ( )
φ
C
0 10 20 30 40 50 60 σ(
应力莫尔圆
三轴压缩强度和变形试验
—成果整理 3)以σ1纵坐标, σ3为横坐标点绘的 最佳关系曲线为直 线,可按下式直接求 C、 φ值。
轴压 σ 1 (MPa) y = 12.8x + 165.04 400 350 300 250 200 150 100 50 0 0 5 10 15 围压 σ3 (MPa)
2、三轴压力室
利用伺服控制刚性试验机 提供轴向荷载,将三轴压力室 底座推至试验机活塞中心,放 下三轴压力室,并用螺栓与底 座连接。
—仪器设备
三轴压力室底座 滑轨
三轴压力室
轴向荷载加 压油缸
三、三轴压缩强度和变形试验
—仪器设备 3、液压稳压综合控制系统 围 压: 0~100MPa; 试件尺寸: φ25×50mm; φ50×100mm; φ100×200mm。
Gleeble-3800热模拟试验机压缩模块低应力加载试验设计

Gleeble-3800热模拟试验机压缩模块低应力加载试验设计胡加佳;熊自柳;薛峰;史远【摘要】A low stress loading test was designed based on single axial compression module on Gleeble-3800 thermal simulation test machine.The test scheme overcame the instability problem of low stress control of the Gleeble-3800 compression module,and realized the single-axial low stress loading under the fixed temperature,and the loading force was maintained between - 200 N and - 500 N.Through this test,the process of the bainite transformation could be measured under the condition of single-axial low stress loading at the same time.The test scheme provided a solution for the study of bainite transformation process under the low stress loading on the Gleeble-3800 thermal simulation test machine.%在Gleeble-3800热模拟试验机上,利用单轴压缩模块设计了一种低应力加载试验.该试验克服了Gleeble-3800试验机压缩模块低应力控制不稳定的问题,实现了固定温度下单轴低应力加载,加载力维持在-200~-500 N.通过该试验可以在完成材料单轴压缩试验的同时,测得材料在低应力加载条件下的贝氏体相变过程,为在Gleeble-3800热模拟试验机上实现低应力加载条件下研究贝氏体相变过程提供了解决方案.【期刊名称】《理化检验-物理分册》【年(卷),期】2017(053)009【总页数】4页(P638-641)【关键词】热模拟试验机;低应力加载;单轴压缩试验【作者】胡加佳;熊自柳;薛峰;史远【作者单位】河钢集团钢研总院,石家庄 050000;河钢集团钢研总院,石家庄050000;河钢集团钢研总院,石家庄 050000;河钢集团钢研总院,石家庄 050000【正文语种】中文【中图分类】TG115.9随着物理热模拟技术的不断发展,热模拟试验机的功能也在不断完善。
GDS标准应力路径三轴系统操作说明

标准应力路径三轴测试系统操作说明——安徽建筑工业学院STDTTS系统1.GDSLAB软件操作1.1.打开GDSLAB软件1.2.检查硬件的通讯参数点击Management,出现如下图并点击Object Display,出现系统硬件的连接图,8通道数据采集板Comm Port: 1Baud: 4800Parity: n(此处必须为None,否则无法正常通讯,这一点很重要)Data Bits: 8Stop Bits: 2设置上面的参数后,就开始设置压力/体积控制器 STDDPC V2,包括反压、轴压和围压的通讯参数,点击“Select STDDPC controller”,会弹出“GDS USB controller selection tool ”,然后选择下拉菜单下的文件,从3个控制器的通讯文件选择一个,之后点击“Selected”,系统就会为反压控制器选择通讯文件。
图29为反压控制器通讯设置正常后的状态。
轴向压力/体积控制通讯参数跟反压一样,当反压和轴向控制器选好后,一定要注意控制器与压力室的链接情况。
当三个图标的通讯参数设置好以后,就点击“Read”图标,查看各个传感器是否有读数。
注意,本系统在已经选好通讯文件,一般情况下,如果不出现系统错误,不需要再进行设置,只需要在实验前检查下就可以了。
在每个控制器后面有个序列号,反压为12813,轴压为12811,围压为12809,注意检查控制器与压力室管路连接是否正确。
选择控制的通讯文件STDDPC V2 连接状态1.3.传感器和控制器清零在装土样前,要对传感器和控制器清零1.3.1. 传感器清零,只能在软件上清零点击某个传感器所对应的眼睛图标,会出现对话框,点击Advanced,然后在“Soft Zero Offset”旁边点击“Set Zero”,观察传感器的读数就会变成0。
如果出现很小的波动为正常。
轴向力、孔压和轴向位移传感器清零都是如此。
1.3.2. 控制器清零需要在控制器上操作,否则会造成控制器上显示的读数跟软件显示的不一致。
无侧限抗压强度试验.

654374213 天平:称量500 g ,分度值0.1 g 。
4 其他:切土盘、重塑筒、秒表、0.1 mm 精度卡尺、切土刀、钢丝锯、凡士林等。
19.0.4 试验操作应按下列步骤进行:1 按本规程第18.3节制备试样。
试样直径宜为35~50 mm ,高径比宜为2.0~2.5。
2 将已制备的试样置于下传压板上,开始转动转轮,使试样与上传压板刚好接触,并将轴向测力计和轴向位移计的读数均调整到零。
3 以每分钟1%~3%的应变速度(每分钟约5~15转)转动转轮,使整个试验在8~10 min 内完成。
4 轴向应变小于3%时,每增加0.5%记录测力计和位移计读数一次;轴向应变到达3%以后,每增加1%记录测力计和位移计读数一次。
5 测力计读数达到峰值或稳定值以后,应继续转动转轮,再继续进行3%~5%的应变值,即可停止试验。
当读数无稳定值时,则试验应进行到轴向应变达20%为止。
6 试验结束后,迅速反转转轮,取出试样,并描述破坏后试样的形状。
7 当需测定灵敏度时,应将已破坏后的试样刮掉表面上的凡士林,再加入少量切削下来的余土,包以塑料布,用手搓捏,以破坏其原来结构。
按本规程第3.2节制成与原状试样密度相等的重塑试样。
然后按上述步骤进行试验。
19.0.5 试验结果应按下列公式计算及制图: 1 轴向应变:10001⨯∆=h hε (19.0.5-1) 式中1ε——轴向应变(%);h ∆——轴向变形(mm); h 0——试样的初始高度(mm)。
2 校正后的试样面积:101.01ε-a A A =(19.0.5-2)式中 A a ——校正后试样面积(cm 2);A 0——试样初始面积(cm 2)。
3 试样所受的轴向应力:10a⨯⋅=A RC σ (19.0.5-3) 式中 σ——轴向应力(kPa);C ——测力计率定系数(N/0.01mm);5 灵敏度:uut q q S '=(19.0.5-4)式中S t——灵敏度;q u——原状试样的无侧限抗压强度(kPa);q'——重塑试样的无侧限抗压强度(kPa)。
岩体力学期末复习知识总结

4.c-d段σ—εa曲线斜率迅速减小,岩石体积膨胀加速,变形随应力迅速增长。至d点,应力达最大值。D点的应力值称峰值强度或单轴极限抗压强度。
5.d点以后岩石并不是完全拾取承载力,而是保持较小的数值,即为残余强度。
刚性压力机:用岩石试件的变形作为控制变量,并用着一信号的反噬来控制机器压板的位移速率或加速速率的压力机。
单调加载:岩石在峰值前承受的荷载一直增加。它可分为等加载速率加载和等应变速率加载两种方式。循环加载:逐级循环加载:指在试验过程中,当荷载加到一定值时,将荷载全部卸除,然后又加载至比原来卸载点高的压力值,再卸载,如此不断循环的加载方式。反复循环加载:指在同一压力水平上反复加、卸的加载方式。弹性滞后:卸载后,大部分变形很快恢复,但还有一部分变形要经过一段时间才能恢复,这时卸载曲线与加载曲线不重合的现象。残余变形:卸载后,变形不能完全恢复,不能恢复的变形。
粗糙起伏结构面的抗剪强度有什么基本特点?
规则锯齿状结构面抗剪强度:1:正应力较小时,发生剪涨现象,结构面的抗剪强度较小,由于运动方向与剪力方向偏离:τ=σtg(φb+i)2:正应力较大时,不再发生剪涨现象,结构面的抗剪强度不再取决于锯齿表面的摩擦阻力,是由结构面两壁岩石的抗剪强度决定:τ=σtgφ+c二.不规则起伏结构的抗剪强度:受结构面粗糙度,结构面所受正应力大小,及结构面两壁岩石的影响。
稳定性系数:时滑动面上可利用的抗剪力与维持平衡所需要的极限抗剪力之比值。用他来说明相对给定滑动面的岩体稳定程度。
RQD值:大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。
土工实验

To DO:
实验步骤: 1.对准上下盒,插入固定销钉,在下盒内放洁净透 水石一块及湿滤纸一张。 2.将盛有试样的环刀,平口向下,刀口向上,对准 u 剪切盒上盒,在试样上面放湿润滤纸张及透水石一 . 块,然后将试样用透水石徐徐压入盒底。并顺次加 上活塞钢珠及加压框架。 3.本试验至少取四个试样,分别加不同的垂直压力, 其大小按估计所受计算荷重的范围而定。一般可按 0.25,0.5,1,2,3及4kg/cm2施加。加荷时一次 轻轻加上。但必须注意,如土质松软,为防止其挤 出,应分次施加,切不可一次加上去。 4.如系饱和试样,则在施加垂直压力5分钟后,加 水饱和;非饱和土不必加水饱和但须防止水分蒸发,
u 2、加压设备——磅秤式、杠杆式;
. 3、测微表(或称百分表,量程 10mm,感量
0.01mm)秒表; 4、物理天平(称重1000g、感量0.1g);
5、电热烘箱(温度能控制在105~110℃);
6、其他——如环刀、切土刀、大铝盒、滤纸、 凡士林、方玻璃片等。
To在切取原状土样时,应 u 使土样的受荷方向与天然土层受荷方向一致), . 当整个环刀压入土样后,用刀将上下面削平, 将外壁擦净后称重(准确至0.1克),测定土 样的湿密度。取修下的土样(不沾有凡士林的 土)测定土样试验前的含水量。
食指执锥柄,事锥尖与试样面接触,并保持锥体垂 直,使锥体在其自重作用下沉入土中,注意,放锥 要平稳,避免产生冲击力。 u 2)放锥15s后,观察锥体沉入土中的深度,以土样 . 表面与锥接触处为准,若恰为10mm(锥上有刻度 标志),则认为这时的含水率为液限,若锥体进入 土体深度大于或小于10mm时,则认为式样含水率 大于或小于液限。此时,应重新调土直至锥体下沉 深度恰为10mm为止。
To DO:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴向应力与轴向位移之间的关系曲线,主要反映在以下几个方面:
1. 压缩机启动和汽轮机甩负荷时,由于轴向力改变方向,且主推力块和副推力块与主轴上的推力盘有间隙,因而造成转子窜动,产生轴向位移。
为保护机组,当主推力块与推力盘接触时,副推力块与推力盘的间隙应该小于转子与定子之间的最小间隙。
2. 因轴向推力过大,造成油膜破坏使瓦块上的乌金磨损或熔化,造成轴向位移。
为保证机组当乌金熔化时不会造成过大的轴向位移,瓦块上乌金的厚度都不大于1.5mm。
3. 由于机组负荷的增加,使推力盘和推力瓦块后的轴承座、垫片、瓦架等因轴向力产生弹性变形,也会引起轴向位移,这种轴向位移叫做轴向弹性位移,弹性位移与结构及负荷有关,一般在0.2~0.3mm之间。
机组的轴向位移应保持在允许的范围内,一般为0.8~1mm。
超过这个数值就会引起动静部分发生摩擦碰撞,发生严重损坏事故,如轴弯曲、隔板和叶轮破裂、汽轮机大批叶片折断等。
因此,轴向应力与轴向位移之间的关系曲线是一个复杂的非线性关系,受到多种因素的影响。
在实际应用中,需要根据具体的情况进行实验和测量,以获得准确的轴向应力与轴向位移之间的关系曲线。