汽轮机轴向位移异常

合集下载

#6机组轴向位移正向高报警原因分析与对策处理王纪刚

#6机组轴向位移正向高报警原因分析与对策处理王纪刚

#6机组轴向位移正向高报警原因分析与对策处理王纪刚发布时间:2023-06-03T08:38:20.499Z 来源:《中国科技信息》2023年6期作者:王纪刚[导读] 江苏射阳港发电有限责任公司660MW汽轮机的推力轴承与支持轴承分开,位于高中压缸与低压缸A之间,采用倾斜平面式双推力盘结构,这种结构的推力轴承由沿圆周方向的10条油槽将推力瓦面分割10个扇形瓦块,每块沿圆周方向倾斜,以保证瓦块内径处的润滑流量均匀,轴向推力通过推力盘直接作用在推力轴承的工作面或非工作面上,传递给组装在推力盘轴承的瓦块上,经瓦块的支承块、平衡块、基环、推力轴承的外壳传递到机座上。

射阳港发电有限责任公司江苏盐城 224346摘要:江苏射阳港发电有限责任公司660MW汽轮机的推力轴承与支持轴承分开,位于高中压缸与低压缸A之间,采用倾斜平面式双推力盘结构,这种结构的推力轴承由沿圆周方向的10条油槽将推力瓦面分割10个扇形瓦块,每块沿圆周方向倾斜,以保证瓦块内径处的润滑流量均匀,轴向推力通过推力盘直接作用在推力轴承的工作面或非工作面上,传递给组装在推力盘轴承的瓦块上,经瓦块的支承块、平衡块、基环、推力轴承的外壳传递到机座上。

如果汽轮机轴向推力超过了推力承轴允许的负载限度,则会导致推力承轴的损坏,较常见到的就是推力瓦磨损和烧毁,严重时还会造成更大的设备损坏事故。

轴向位移报警严重影响机组的安全稳定运行。

本文针对东汽660MW机组轴向位移出现正向高报警的原因进行综合分析,同时也总结了一些对策措施和建议。

关键词:轴向位移正向报警原因分析对策处理0.引言江苏射阳港发电有限责任公司660MW超超临界机组是东方汽轮机厂生产的,在汽轮机运行过程中中,推力承轴承担汽流在其通道中流动时所产生的轴向推力。

不同负荷下,轴向推力的大小不同的,推力承轴在受压时产生的弹性变形也不同。

在运行中,我们将位移数值和准值相比较,从而判断机组运行是否正常。

轴向位移保护装置是用来检测汽轮机转子和静子之间相对位移,它根据推力轴承承载能力和流通部分间隙规定了报警值和停机值,当轴向位移骤增值超过规定值时,轴向位移保护装置能自动报警和自动停机,防止轴向位移增大时汽轮机受到损伤。

阿尔斯通公司600MW机组汽轮机轴向位移异常分析及处理

阿尔斯通公司600MW机组汽轮机轴向位移异常分析及处理

6 .2 [ 中图分类 号] T K 2 4 4
[ 献标识 码] B 文 [ 章 编 号] 文
1 02— 3 4( 0 0 36 2 07) 2 — 0 59—03 1 0
国电北仑 第一 发 电有 限公 司 ( 北仑 电厂 ) 2号 汽 轮 机 为法 国阿尔 斯 通 ( S OM ) 司设 计 生 产 的 T 一 AL T 公 2 A 6 03 ——6型亚 临 界 、 次 中间 再 热 、 轴 、 一 5-044 一 单 四缸 、
块 有磨损 以及 瓦块后 支撑 弹性板 变形等 。轴 向位 移 检
先减 小至 +0 4 II . 2II 再升 至 + 0 4 1mm TT . 3 2号 调 节
阀 : 向位 移值 随着 调节 阀关 小增 大至 +0 4 4 mm, 轴 . 5
又 随调节 阀开大 而减小 至 +0 4 1 . 3 mm; 调 节 阀 : 3号 轴
四排 汽 、 冲动 凝汽 式 机组 , 、 高 中压 缸 分别 设 有 4个 主 汽 阀和 4个 调 节 阀 , 4根 高 压 导 汽管 与 高 压 缸 之 间 采
用上 、 1 0垂直 的布置 方式 , 下 8。 2号 、 3号调 节 阀在上 半 弧段 , 1号 、 4号 调 节 阀在 下半 弧 段 。汽 轮机 采 用全 周 进汽、 喷嘴调节 方式 。
E ma l ‘ i: xe h n 4 0 1 3 C r i eg 9 @ 6 .O c n
维普资讯
力 , 时的轴 向位移值 应 为零 。机组在 满负 荷运 行 时 , 此 轴 向推力 最大 不超 过 2 , 应 轴 向位 移 正 向值 不超 0t对 过+ 0 3 . 0mm 的设计 报警 值 。在 调 试 期 间 机 组 负 荷 首次达 到 3 0Mw 时 , 向位移值 已超 过+0 3 0 轴 . 0mm。 由于 机 组 未 发 现 异 常 , TOM 公 司将 设 计 报 警 值 AI S 改为 +0 4 . 5mm, 余值 未变 。 其 19 9 4年 2号机 组投产 ,9 5年底第 一次 大修 时解 19 体 检查推 力轴 承未见 异常 , 其后 至 2 0 0 6年 6月 经过 8 次检修 , 每次 检查情 况虽稍 有不 同 , 但从 未 发现 推力 瓦

轮机轴向位移异常的原因分析与消除

轮机轴向位移异常的原因分析与消除

表 2 轴 向位 移 间隙 与油 压 髓负荷 变化 的关 系
C。 分 别 由 向 前 和 向 后 地 推 动 转 子 , 录 3个 百 分 表 记
数 据 见 表 3 。
表 3 转 子轴 向位 移 间 隙测量 值 II II ll
测量结果表 明 :
球 面 瓦 枕 移 动 0 0 . 1mm; 试 验 中 , 机 组 负 荷 升 到 15 0k 以 上 时 , 向 当 0 W 轴 轴 承 内瓦 移 动 0 1 . 5mm; 推 力 瓦 块 间 隙 0 3 —0 1 = 0 2 UI . 6 . 5 . 11 T。 T 可 见 , 力 间 隙 虽 合 格 , 因 轴 承 内 瓦 具 有 0 1 i 推 但 . 5r n a
1 缺 陷情 况
南 通 醋 酸 纤 维 公 司 1台 C B6—3 4 / . 8/ . 9 . 3 0 9 1 0 4
型调整抽汽背压 式 汽轮 机 于 1 9 9 4年 投入 运行 。在 运 行 中曾发现 1 2 、 号轴承振动偏 大 , 停机 检查发 现 , 轴 该 承下 瓦乌金有脱 壳剥落现象 。检修时 , 更换 了新 轴瓦 ,
低外下缸 已经焊有加强筋 。方案 2 实施工作量 和技术 难 度较 大 , 实施 不 当会 产生 反作用 。若 能够保 证安 全 和详 细计 算低压 缸的受 力情 况 , 采取 加 固低压 缸是 一 个较为根本 的解决方法 。
方案 3 在 达 拉 特 电厂 1 机 的 5号 、 号 6号 瓦 温 差
和汽缸 台板 间隙 , 根据 变形 情况调整焊接 的顺 序 , 使变 形量最小 。低 压缸加 固后 , 若发生变形 , 导致 5 6 会 、 号 轴承洼 窝变形 , 应根据 测量情 况 , 瓦枕 间隙 、 对 轴封 的

案例丨某厂空分机组汽轮机轴位移问题分析

案例丨某厂空分机组汽轮机轴位移问题分析

案例丨某厂空分机组汽轮机轴位移问题分析1. 设备概述该空分机组由汽轮机驱动,工作机包括空压机和增压机。

其中,汽轮机型号为NKS50/63/28,空压机型号为RIK100-4,增压机型号为RZ35-7。

机组调速范围为4238r/min~5933r/min,额定运行转速为5650 r/min。

汽轮机进汽压力为3.72MPa,进汽温度为430°C,排汽压力为0.016MPa。

推力轴承型式为金斯伯雷,轴位移报警门限为±0.50mm,联锁门限为±0.70mm。

图1 机组总貌图2. 故障现象机组正常运行期间,各设备振动幅值均不高,其中汽轮机振动值保持在15μm左右,空压机振动幅值低于15μm,齿轮箱高、低速轴振动幅值均在15μm以下,增压机振动幅值在30μm,总体振动幅值趋势均比较平稳,从相关图谱评估,振动表现无异常。

机组中修后,自2020年2月15日起开始启机运行,起初各监测参数均比较稳定,但在一周后,汽轮机轴位移出现了缓慢变化的趋势,两通道轴位移数值分别从-0.12mm和-0.20mm缓慢变化,一直到2020年7月4日停机时,汽轮机轴位移数值分别变化至-0.45mm和-0.56mm,累计变化范围达到0.35mm,触发报警门限。

在此期间,汽轮机主推力轴承温度也有同步变化,从65°C缓慢上涨至80°C左右。

而同一时间段内,监测的压缩机低压缸和高压缸轴位移数值和推力轴承温度均无明显变化。

图2 汽轮机轴位移趋势图3. 故障分析及结论查看此时间段内,查看汽轮机轴位移传感器的GAP电压趋势,两通道GAP电压值分别从初始的-11V和-12V左右变化至-13.5V和-14.5V,变化范围达2.5V左右,经过计算,GAP电压值的变化量与位移值的变化基本吻合(1V对应125μm),评估此数值变化为设备真实轴位移数据,排除仪表方面的异常因素。

图3 汽轮机轴位移探头GAP电压趋势图另外,从GAP电压数值的变化上看,表现为位移盘在逐渐远离传感器探头,结合机组的结构和传感器布置位置,判断转子在向着主推力方向缓慢变化。

浅谈汽轮机TSI轴向位移保护误动原因分析及控制措施

浅谈汽轮机TSI轴向位移保护误动原因分析及控制措施

汽轮机TSI轴向位移保护误动原因分析及控制措施神华神东电力新疆准东五彩湾发电有限公司左东明[摘要]汽轮机安全监视装置硬件配置,并针对系统使用中存在的问题提出了几点建议。

[关键词]汽轮机本体监测系统硬件配置、保护逻辑优化。

前言汽轮机TSI系统是用来测量汽轮机本体的位移、振动、转速、胀差、偏心等信号,并将其转换为电信号进行监视的系统。

做为火力发电机组热控系统的重要组成部分,该系统既向DCS的数据采集系统提供汽轮机轴系的各种监视参数,又向保护系统提供跳闸动作信号,因此TSI系统对于机组的安全稳定运行起着至关重要的作用。

1.事故经过2014年8月4日21时35分43秒至21时35分45秒,某电厂#1汽轮机轴向位移3号测点从-0.012mm升至-1.997mm、轴向位移4号测点从+0.058mm升至-1.927mm,满足轴向位移4取2跳机条件(保护动作值为≥+1.2mm或≥-1.65mm),触发“轴向位移大跳机”。

2.检查处理与原因分析:1)打开2瓦润滑油箱观察孔,检查轴向位移就地测点安装正常;2)检查轴向位移就地前置器及接线正常;3)检查轴向位移前置器公共端、输出端对地电阻,电源对地电压均正常;4)检查轴向位移前置器公共端与输出端信号正常,公共端与24V电源正常;5)检查#1机TSI板卡3瓦盖振、4瓦盖振与3号、4号轴向位移探头在同一板卡。

检查历史曲线(见下图),汽轮机轴向位移3号测点从-0.012mm升至-1.997mm、轴向位移4号测点从+0.058mm升至-1.927mm,23秒后两测点自动恢复正常显示,与轴向位移1、2测点显示值基本一致;3瓦盖振下降0.2um,1秒后恢复正常。

初步判断,轴向位移3与轴向位移4的板卡故障。

6)8月5日,联系厂家人员到厂,对上述2、3、4、5项内容再次进行核查,并检查#1机组TSI监控系统历史报警记录,排除就地设备故障或回路接地造成板卡电压降低等因素,判断为板卡故障,需返厂进行板卡故障诊断。

汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差汽轮机轴向位移与胀差 (1)一、汽轮机轴向位移增大的原因 (1)二、汽轮机轴向位移增大的处理 (1)三、汽机轴向位移测量失灵的运行对策 (1)汽轮机的热膨胀和胀差 (2)相關提問: (2)1、轴向位移和胀差的概念 (3)2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3)使胀差向正值增大的主要因素简述如下: (3)使胀差向负值增大的主要原因: (4)正胀差 - 影响因素主要有: (4)3、轴向位移和胀差的危害 (6)4、机组启动时胀差变化的分析与控制 (6)1、汽封供汽抽真空阶段。

(7)2、暖机升速阶段。

(7)3、定速和并列带负荷阶段。

(7)5、汽轮机推力瓦温度的防控热转贴 (9)1 润滑油系统异常 (9)2 轴向位移增大 (9)3 汽轮机单缸进汽 (10)4 推力轴承损坏 (10)5 任意调速汽门门头脱落 (10)6 旁路系统误动作 (10)7 结束语 (10)汽轮机轴向位移与胀差轴向位移增大原因及处理一、汽轮机轴向位移增大的原因1)负荷或蒸汽流量突变;2)叶片严重结垢;3)叶片断裂;4)主、再热蒸汽温度和压力急剧下降;5)轴封磨损严重,漏汽量增加;6)发电机转子串动;7)系统周波变化幅度大;8)凝汽器真空下降;9)汽轮机发生水冲击;10)推力轴承磨损或断油。

二、汽轮机轴向位移增大的处理1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3)若主、再热蒸汽参数异常,应恢复正常;4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。

否则手动打闸紧急停机;6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机;7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。

火力发电厂汽轮机轴位移监测系统异常分析

火力发电厂汽轮机轴位移监测系统异常分析

火力发电厂汽轮机轴位移监测系统异常分析1 前言现在300MW、600MW的火力发电机组,为了提高效率,汽轮机的动静叶之间的间隙设计的都很小,其轴向间隙是靠转子的推力盘及推力轴承固定的。

汽轮机高速运转过程中,轴向间隙不当,汽轮机动、静部分就会磨损,转子前后窜动,造成推力瓦块温度升高损坏,严重时就会损坏汽轮机大轴,造成严重事故。

所以要对汽轮机的轴向间隙进行监视,一旦间隙达到危险值,就要停机,避免发生事故。

然而在现场实际测量中,轴向位移测量受到很多因素的影响。

2 电涡流传感器测量原理传感器系统的工作原理是电涡流效应。

当接通传感器系统电源时,前置器内会产生一个高频电流信号,该信号通过延伸电缆送到探头头部,在头部周围会产生一个交变磁场H1。

如果在磁场H1范围内没有金属导体材料接近,则发射到这一范围内的能量会全部释放;反之,如果有金属导体材料接近探头头部,则交变磁场H1将在导体的表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2.由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。

这种变化即与电涡流效应有关,又与静磁学效应有关,即与金属的电导率、磁导率、几何形状、线圈几何参数、励磁电流频率以及线圈到到金属导体的距离等参数有关。

3 轴位移出现异常原因3.1 被测体表面平整度对传感器的影响不规则的被测体表面,会给实际测量带来附加误差,因此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻痕、凹槽等缺陷,一般要求位移测量被测表面粗糙度要求在0.4~1.6μm 。

3.2 轴位移零位不准机组的轴位移机械安装零位和监测系统保护零位不统一。

检修后经常发生机组因轴位移监测系统传感器的零位设置不当,使系统测量误差较大,检修后机组的轴位移传感器的零位设置直接影响到启机后轴位移监测系统能否正常工作。

轴位移定位基本是根据机组厂家设计的要求来定,我厂#3机组是将转子推向工作面来定位零位。

汽轮机TSI轴向位移信号异常原因分析及处理

汽轮机TSI轴向位移信号异常原因分析及处理
轴 向位移1 轴向位移2 轴向位移3
图1 高压缸轴向位移测点安装示意 1 1 测量偏差大
某电厂高压缸3 个轴向位移测点均匀并排布置 于半圆环形支架上,支 架 轴 承 箱 采 用 4 螺栓刚性连
收稿日期:2016 -07 -26;修回日期:2017 -07 -17
接 ,可能引起3 个 测 点 偏 差 超 过 0.200 m m 因素为:
机组在完成前轴承箱测点安装后的多半年时间 内 ,出现3 个高压缸轴向位移测量偏差0.200 m m ,且 其 中 1 个轴向位移出现周期性信号波动问题,影响 了 机 组 重 要 参 数 的 监 视 ,极 大 地 影 响 了 热 工 测 点 测 量结果的准确性和可靠性。
1 信号异常原因分析
某 电 厂 发 电 机 安 装 于 高 中 压 缸 侧 ,机 组 可 实 现 背 压 工 况 运 行 ,机 组 高 压 缸 轴 向 位 移 测 点 安 装 于 机 组 #3 轴承箱半圆形支架上。机组高压缸轴向位移 测点安装示意如图1 所示。
第39卷 第 8 期 2017年 8 月
华电技术
Huadian Technology
Vol.39 No.8 Aug.2017
汽 轮 机 TSI轴向位移信号异常原因分析及处理
刘 亚 峰 ,杜 舰 川 ,王继强
(华能太原东山燃机热电有限责任公司,太 原 030043)
摘 要 :针对汽轮机安全监视系统(TSI)在安装完成后出现的轴向位移测点偏差大和周期性波动等问题,通过分析信号
由于机组正在运行,通 过 对 高 压 缸 轴 向 位 移 2 前置器、间隙 电 压 、延 长 电 缆 、安 全 监 视 系 统 (TSI) 机柜屏蔽电缆、T S I 机柜高压缸轴向位移卡件、分散 控制系统(D C S )机 柜 A I 卡分别进行检查、测 量 、排 除 ,结合线缆敷设桥架为3 层隔离,虽电缆桥架中无 6 k V 动力电缆,但有信号线与220 V A C 电源线缆合 并敷设的情况,可以断定,高压缸轴向位移2 周期性 波动是由于220 V A C 电源线路高频干扰引起,需要 对信号电缆进行处理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机轴向位移异常
造成汽轮机推力轴承损坏,严重时导致汽轮机动静部分磨损。

主要现象:
1.轴向位移指示增大,发声光报警,胀差随之变化。

2.推力轴承金属温度及回油温度升高。

3.机组振动增大,并伴有异音。

主要原因:
1.主蒸汽参数、真空、机组负荷大幅度波动,造成轴向推力增加。

2.汽轮机水冲击。

3.推力瓦块乌金磨损,润滑油压过低或油温过高使油膜破坏。

4.通流部分结垢、断叶片或漏汽严重,造成轴向推力增加。

5.平衡鼓、汽封片磨损。

6.抽汽运行方式发生变化。

7.发电机转子串动。

8.周波下降。

处理要点:
1.发现轴向位移增大时,应检查负荷、蒸汽参数、轴封汽温度、真空、润滑油温、推力瓦块温度、差胀等的变化,并设法调整,必要时通知热工校表。

2.汽温、汽压降低时,通知锅炉提高进汽参数,并适当减少负荷使轴向位移降低。

3.当轴向位移上升至报警值,汇报值长,采取降低负荷或适当调整抽汽运行方式使之下降至正常。

4.当轴向位移上升并伴有不正常的响声,机组剧烈振动,应破坏真空紧急停机。

5、汽轮机发生水冲击,应破坏真空紧急停机。

6.如因叶片结垢严重使轴向位移增大时,汇报值长适当降低负荷,使轴向位移恢复至正常。

7.轴向位移升至跳阐时,机组应自动跳闸,否则应紧急故障停机。

8.轴向位移增大时,推力瓦块温度异常升高,任意一块瓦温升高至90℃时,减负荷;如升高至107℃时,应破坏真空紧急停机。

防范措施:
1、机组升降负荷过程中,加强对振动等参数监视,保证蒸汽参数与负荷、缸温相匹配,防止负荷蒸汽参数大幅度变动。

2.保证汽水品质合格。

3.加强对高/低加热器、除氧器运行监视,确保水位正常。

相关文档
最新文档