初中数学中心对称图形专题训练50题(含参考答案)
人教版九年级上册数学同步练习《中心对称》(习题+答案)

23.2中心对称内容提要1.把一个图形绕着某一个定点旋转180︒,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.3.中心对称作图的步骤:(1)首先确定对称中心和图形中的关键点;(2)作出关键点关于对称中心的对称点;(3)连接对应点部分,形成相应的图形.4.将一个图形绕着某个定点旋转180︒后能与自身重合,则这种图形叫做中心对称图形,这个定点叫做对称中心,常见的中心对称图形有:线段、平行四边形(包括:矩形、菱形、正方形)等.5.点(),--.P x y',P x y关于原点的对称点为()23.2.1中心对称基础训练1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图,ABC∆关于点O成中心对称,则下列结论不成立的是()∆和'''A B CA.点A与点'A是对称点B.'=BO B OC.''∥AB A BD.'''∠=∠ACB C A B3.如下图是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()4.如图,ABC∆绕点O转了度到达∆和DEF∆关于点O中心对称,则ABCAO OD=.DEF∆,且:5.如图,把ABC∠=∆绕边AC的中点O旋转180︒到CDA∆的位置,则BC=,BAC ,ABC∆关于点O成对称.∆与CDA6.如图,直线EF经过平行四边形ABCD的对角线的交点,若3AE cm=,四边形AEFB的面积为215cm,则CF=,四边形EDCF的面积为.7.如图,已知ABC∆与ABC∆关于点P成中心对称.A B C∆,使'''∆和点P,画出'''A B C8.如图,ABC ∆和DEF ∆关于点O 成中心对称. (1)找出它们的对称中心O ;(2)若6AB =,5AC =,4BC =,求DEF ∆的周长;(3)连接AF ,CD ,试判断四边形ACDF 的形状,并说明理由.9.在平面直角坐标系中,ABC ∆的三个顶点坐标分别为()2,1A -,()3,3B -,()0,4C -. (1)画出ABC ∆关于原点O 成中心对称的111A B C ∆; (2)画出111A B C ∆关于y 轴对称的222A B C ∆.10.如图所示,已知ABC∆中,AD是中线,(1)画出以点D为对称中心,与ABD∆成中心对称的三角形;(2)猜想2AD与AB AC+的大小关系,并说明理由.23.2.2中心对称图形基础训练1.下列交通标志中,既是轴对称图形又是中心对称图形的是()2.如图,对于它的对称性表述正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形3.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.线段是中心对称图形,它的对称中心是;平行四边形是对称图形,它的对称中心是.6.正方形是轴对称图形,它的对称轴共有条.7.如图,在数轴上,A,P两点表示的数分别是1,2,1A,2A关于点O对称,2A,3A关于1点P对称,A,4A关于点O对称,4A,5A关于点P对称……依此规律,则点14A表示的数3是.8.如图,在44⨯的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形),再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形.9.图①、图②均为76⨯的正方形网格,点A,B,C在格点上.(1)在图①中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).10.如图,将正方形ABCD中的ABD∆的位置,EF交AB于M,GF∆绕对称中心O旋转至GEF交BD于N,请猜想BM与FN有怎样的数量关系?并证明你的结论.23.2.3 关于原点对称的点的坐标基础训练1.如图所示,已知平行四边形ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为()2,3-,则点C 的坐标为( ) A .()3,2-B .()2,3--C .()3,2-D .()2,3-2.在平面直角坐标系中,点()3,4P -关于原点对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如果点(),P x y 关于原点对称的点是'P ,则'P 的坐标是( ) A .(),x yB .(),x y -C .(),x y -D .(),x y --4.如图,点A ,B ,C 的坐标分别为()0,1-,()0,2,()3,0.从下面四个点()3,3M ,()3,3N -,()3,0P -,()3,1Q -中选择一个点,使以点A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .点MB .点NC .点PD .点Q5.点()2,3P -关于x 轴对称的点的坐标是 ,关于原点对称的点的坐标是 .6.以下各点中,()5,0A -,()0,2B ,()2,1C -,()2,0D ,()0,5E ,()2,1F -,()2,1G --,关于原点对称的两点是.7.点(),4A a 与点()3,B b 关于原点对称,则a =,b =.8.如图所示,PQR ∆是ABC ∆经过某种变换后得到的图形,如果ABC ∆中任意一点M 的坐标是(),a b ,那么它的对应点N 的坐标为.9.在下列网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,试在图中画出直角坐标系,并标出A ,C 两点的坐标; (3)根据(2)中的坐标系作出与ABC ∆关于原点对称的图形222A B C ∆,并标出2B ,2C 两点的坐标.10.直角坐标系第二象限内的点()22,3P x x +与另一点()2,Q x y +关于原点对称,试求2x y +的值.能力提高1.已知点()1,1A a -和()2,1B b -关于原点对称,则a b +的值为( ) A .1-B .0C .1D .3-2.如图,将ABC ∆绕点()0,1C 旋转180︒得到''A B C ∆,设点A 的坐标为(),a b ,则点'A 的坐标为( )A .(),a b --B .(),1a b ---C .(),1a b --+D .(),2a b --+3.下列命题:(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等图形;(3)两个全等的图形一定成中心对称.其中真命题的个数是( ) A .0个B .1个C .2个D .3个4.如图,顺次连接矩形ABCD 各边中点,得到菱形EFGH ,这个由矩形和菱形所组成的图形( )A .是轴对称图形但不是中心对称图形B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性5.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,过点O 作直线分别交AD ,BC 于点E ,F .如果四边形AEFB 的面积为8,则平行四边形ABCD 的面积是.6.已知0a <,则点()21,3P a a ---+关于原点对称的点'P 在第象限.7.如图所示,点A ,B ,C 的坐标分别是()2,4,()5,1,()3,1-.若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为.8.如图,将等腰三角形ABC 绕底边BC 的中点O 旋转180︒. (1)画出旋转后的图形.(2)旋转后得到的三角形与原三角形拼成什么图形?说明理由.(3)要使拼成的图形为正方形,那么ABC ∆还应满足什么条件?为什么?9.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C . (1)试画出ABC ∆向左平移5个单位长度后得到的111A B C ∆; (2)试画出ABC ∆关于原点对称的222A B C ∆;(3)在x 轴上求作一点P ,使PAB ∆周长最小,试画出PAB ∆,并直接写出点P 的坐标.拓展探究1.有一块如图所示的土地,请划出一条分界线,把这块土地平均分给两户农民.(在以下的几个图形中用三种方法进行分割)2.有两块形状完全相同的不规则的四边形木板,如图所示,两位木工师傅通过测量可知∠=∠=︒,AD CD=.现要将其拼成正方形,思考一段时间后,一位木工师傅说“我可B D90以将这两块木板拼成一个正方形.”另一位木工师傅说:“我可以将一块木板拼成一个正方形,两块木板拼成两个正方形.”两位师傅把每一块木板都只分割一次,你知道他们是怎么做的吗?画出图形,并说明理由.23.2 参考答案:23.2.1 中心对称 基础训练1.C 2.D 3.C 4.180 1:1 5.AD DCA ∠ 中心 6.3cm 215cm 7.略 8.(1)略 (2)15 (3)四边形ACDF 为平行四边形,因为它的对角线互相平分. 9.(1)111A B C ∆如图所示;(2)222A B C ∆如图所示. 10.(1)如图所示(2)2AD AB AC <+.理由:ABD ∆与ECD ∆成中心对称,ADB EDC ∴∆∆≌.CE AB ∴=. AE CE AC >+,2AD AB AC ∴<+.23.2.2 中心对称图形 基础训练1.D 2.B 3.B 4.B 5.线段的中点 中心 对角线的交点 6.4 7.25-8.答案不唯一,如图(1)、(2)、(3)、(4)中任何一个位置都行. 9.(1)如图(1);(2)如图(2).10.猜想:BM FN =.证明:在正方形ABCD 中,BD 为对角线,O 为对称中心,BO DO ∴=,45BDA DBA ∠=∠=︒.GEF ∆为ABD ∆绕O 点旋转所得,FO DO ∴=,F BDA ∠=∠,OB OF ∴=,OBM OFN ∠=∠,OBM OFN ∴∆∆≌,BM FN ∴=.23.2.3 关于原点对称的点的坐标 基础训练1.D 2.D 3.D 4.C 5.(2,3) (2,3)- 6.C 和F 7.3- 4- 8.(,)a b -- 9.如图所示的11AB C ∆;(2)建立如图所示的直角坐标系,点A 的坐标为(0,1),点C 的坐标为(3,1)-; (3)如图所示的222A B C ∆,点2B 的坐标为(3,5)-点2C 的坐标为(3,1)-.10.根据题意,得2(2)(2)0x x x +++=,3y =-.11x ∴=-,22x =-. 点P 在第二象限, 220x x ∴+<.1x ∴=-.27x y ∴+=-. 能力提高1.A 2.D 3.B 4.C 5.16 6.四 7.(0,1) 8.(1)略;(2)菱形,理由是它的四条边都相等; (3)90∠=︒,因为有一个角是直角的菱形是正方形.9.如图所示,A ,B C 向左平移5个单位后的坐标分别为(4,1)-,(1,2)-,(2,4)-,连接这三个点,得111A B C ∆.(2)如图所示,A ,B ,C 关于原点的对称点的坐标分别为(1,1)--,(4,2)--,(3,4)--连接这三个点,得222A B C ∆.(3)如图所示,(2,0)P .作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,则点P 即为所求作的点.拓展探究1.如图2.如图(1),将两块四边形拼成正方形,连接BD ,将DBC ∆绕D 点顺时针旋转90度,即可得出B BD '∆,此时三角形BB D '是等腰直角三角形,同理可得到正方形B EBD '.如图(2)将一个四边形拼成正方形,过点D 作DE BC ⊥于点E ,过点D 作DF BA ⊥交BA 的延长线于点F ,90FDA ADE CDE ADE ∴∠+∠=∠+∠=︒,FDA CDE ∴∠=∠,(AAS)AFD CED ∴∆∆≌,FD DE ∴=.又90B F BED ∠=∠=∠=︒,∴四边形FBED 为正方形.。
初中数学:《轴对称和中心对称》练习(有答案)

初中数学:《轴对称和中心对称》练习一、扫描与聚集1 .我国的文字非常讲究对称美,下列四个图案,有别于其余三个图案是(2 .下列图形不一定是轴对称图形的是()A.直角三角形B.正方形C.半圆D.等腰三角形3.观察图中的汽车商标,其中是轴对称图形的个数为()A. 2B. 3C. 4D. 54.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A. 9cmB. 12cmC. 9cm或12cmD.在9cm或12cm之间5 .在等边三角形ABC中,C混/ACB的平分线,过D作DE// BC交AC于E,若4 ABC勺边长为a,则△ ADE的周长为()A. 2aB. wmC. 1.5aD. a6 .下列说法中,不正确的是()A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C. 一条线段是以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的7.在等腰△ABM , AB=AC BE CD分别是底角白^平分线,DE// BC图中等腰三角形有()A. 3个B. 4个C. 5个D. 6个8 .如图,AB=AC/A=36° , / 1 = /2, / ADE=/EDB则图中等腰三角形有(9 .等腰三角形一腰上的高与底边所成的角等于()A.顶角B.顶角的一半C.底角的一半D.底角的2倍10 .已知:在△ABC+ , AB=AC。
为不同于A的一点,且OB=OC则直线AO与底边BC的关系为()A.平彳fB. AO垂直且平分BCC.斜交D. AO垂直但不平分BC二、思考与表达11 .如图,是从镜中看到的一串数字,这串数字应为一.3X001812 .如图所示,在^ ABC中,DE是AC的中垂线,AE=3cm △ABD勺周长为13cmi 则△ABC勺周长是cm.13 .等腰三角形底边长为4cm则月^长X的取值范围是14 .五角星有条对称轴.15 .如下图,在^ ADC^, AD=BD=BC若/ C=25 ,则/ ADB= 度.16 .等腰三角形一个顶角和一个底角之和是110°,则顶角是17 .如图,△ABC+, OB平分/ABC。
初中数学中心对称简答题专题训练含答案

初中数学中心对称简答题专题训练含答案姓名:__________ 班级:__________考号:__________一、解答题(共15题)1、如图,△ABC是等腰直角三角形,△ABC绕点A逆时针旋转得到△ADE.(1)指出△ABC与△ADE中的对应线段与对应角;(2)指出△ABC的旋转角度.2、如图,在边长为1的正方形组成的网格中,⊿AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3)。
⊿AOB绕点O逆时针旋转90°后得到⊿A1OB1。
(直接填写答案)(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为。
3、如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.4、如图,梯形ANMB是直角梯形,(1)请在图上拼上一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形.(2)将补上的直角梯形MNPQ以点M为旋转中心,逆时针旋转得梯形,(不要求写作法,但要保留作图痕迹)5、如图,在平面直角坐标系中,图形①与②关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形②向下平移4个单位,画出平移后的图形③,并判断图形③与图形①的位置关系.(直接写出结果)6、如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC的三个顶点都在格点上.(1)画出将△ABC向右平移3个单位,再向上平移1个单位所得的△A′B′C′;(友情提醒:对应点的字母不要标错!)(2)建立如图的直角坐标系,请标出△A′B′C′的外接圆的圆心P的位置,并写出圆心P 的坐标:P(,);(3)将△ABC绕BC旋转一周,求所得几何体的全面积.(结果保留π)7、如图,正六边形ABCDEF是由边长为2厘米的六个等边三角形拼成,那么图中(1)三角形AOB沿着___________方向平移_________厘米能与三角形FEO重合;(2)三角形AOB绕着点______顺时针旋转________度后能与三角形EOF重合;(3)三角形AOB沿着BE所在直线翻折后能与________重合;(4)写一对中心对称的三角形:_________________________.8、如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.[来源:]9、如图,已知,点都在格点上.(1)求的长;(2)若将向右平移2个单位得到,求点的对应点的坐标;(3)在坐标系中标出点关于坐标原点对称的点,并写出点的坐标.10、作图题(1)如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″请你画出△A′B′C′和△A″B″C′(不要求写画法).(2)如图,已知点O和△ABC,试画出与△ABC关于点O成中心对称的图形.11、如图,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.12、我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.(1)如图①,△ABC与△DEF能完全重合,△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(2)如图②,△AB C与△MNK能完全重合,△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)13、 已知平面直角坐标系中三点的坐标分别为:A (4、4),B (-2,2),C (3,0) (1)画出它的以原点O 为对称中心的△AˊBˊCˊ(2)写出 Aˊ,Bˊ,Cˊ三点的坐标。
专题02 中心对称图形(解析版)

1专题02 中心对称图形学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下面四个图形,是中心对称图形的是( )A .B .C .D .【答案】D【解析】解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项符合题意.故选:D .2.如图,在ABCD 中,若110A C ∠+∠=︒,则B 的度数是( )A .70︒B .105︒C .125︒D .135︒【答案】C【解析】解:∵平行四边形ABCD , ∵AD//BC ,∵A=∵C ,∵∵A +∵B =180°,∵∵A +∵C =110°,∵∵A =∵C =55°,∵∵B =125°.故选:C .3.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ∵AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8CD .6【答案】A【解析】解:∵四边形ABCD 是菱形,∵OA =OC =6,OB =OD ,AC ∵BD ,∵AC =12,∵DH ∵AB ,∵∵BHD =90°,∵12OH BD =,∵菱形ABCD 的面积11124822AC BD BD =⨯⨯=⨯⨯=, ∵BD =8,∵142OH BD ==;故选:A . 4.如图,在ABC 中,∵CAB =70°,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置.使得//CC AB ',则旋转角为( )A .30°B .40°C .50°D .80°【答案】B【解析】解:∵CC ′∵AB ,∵CAB =70°,∵∵C ′CA =∵CAB =70°,又∵C 、C ′为对应点,点A 为旋转中心,∵AC =AC ′,即∵ACC ′为等腰三角形,∵∵ACC ′=∵AC ′C ,∵∵BAB ′=∵CAC ′=180°﹣2∵C ′CA =40°.即旋转角为40°.故选:B .5.如图,在∵ABC 中,D 是AB 上一点,AD =AC ,AE ∵CD ,垂足为点E ,F 是BC 的中点,若BD =16,则EF 的长为( )A .32B .16C .8D .4【答案】C【解析】∵AD =AC∴ACD △是等腰三角形∵AE ∵CD ∵CE DE =∵E 是CD 的中点 ∵F 是BC 的中点∵EF 是∵BCD 的中位线∵1116822EF BD ==⨯=故答案为:C . 6.如图,在四边形ABCD 中,AC=BD=6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2的值为( )A .9B .18C .36D .48【答案】C【解析】解:连接EF、FG、GH、EH,设EG和FH交于点O,∵E、F、G、H分别是AB、BC、CD、DA的中点,∵EF∵AC,HG∵AC,EF=12 AC,FG=12BD,∵EF∵HG,同理EH∵FG,∵四边形EFGH为平行四边形,∵AC=BD,∵EF=FG,∵平行四边形EFGH为菱形,∵EG∵FH,EG=2OG,FH=2OH,∵EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=4EH2=4×(12BD)2=62=36;故选:C.7.如图,∵ABC中,∵B=90°,过点C作AB的平行线,与∵BAC的平分线交于点D,若AB=6,BC=8.E,F分别是BC,AD的中点,则EF的长为()A.1B.1.5C.2D.4【答案】C【解析】解:在Rt∵ABC中,∵B=90°,AB=6,BC=8∵10AC==∵AD平分∵BAC∵∵BAD=∵CAD∵AB//CD∵∵BAD=∵CDA∵∵CDA=∵CAD∵DC =AC=10延长EF交AC于点G,如图,∵EG是∵ADC的中位线,FG是∵ABC的中位线,∵1111105,63 2222EF DC FG AB==⨯===⨯=3∵532EF EG FG =-=-= 故选:C .8.如图.正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,H 是AF 的中点,CH =3,那么CE 的长是( )A .3B .4C D【答案】D【解析】解:连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,设CE 的长为x∵∵ACD =45°,∵FCG =45°,AC BC ,CF CE x , ∵∵ACF =45°+45°=90°,在Rt∵ACF 中,AF∵H 是AF 的中点,∵CH =12AF =3.,解得x ,故选:D .9.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ′,C ′上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为( )cm .A32B.52CD.32【答案】A【解析】解:如图1中,∵四边形ABCD是矩形,∵AB∵CD,∵∵1=∵3,由翻折的性质可知:∵1=∵2,BM=MB′,∵∵2=∵3,∵MB′=NB′,∵NB'===cm),∵BM NB'==(cm).如图2中,当点M与A重合时,同理可得:AE=EN,设AE=EN=x cm,在Rt∵ADE中,则有2222(4)=+-x x,解得x=52,∵53422DE=-=(cm),如图3中,当点M运动到MB′∵AB时,DE′的值最大,DE′=5-1-2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)51(4=--=(cm),5∵点E 的运动轨迹E →E ′→E ″,运动路径3322(4)22EE E B '''=+=-+-=(cm ).故选:A . 10.如图,在正方形ABCD 中,E 是对角线BD 上一点,且满足BE BC =.连接CE 并延长交AD 于点F ,连接AE ,过B 点作BG AE ⊥于点G ,延长BG 交AD 于点H .在下列结论中:∵AH DF =;∵45AEF ∠=︒;∵AH DE =;∵DEFAGHEFHG S SS=+四边形,其中正确的结论有( )个A .1B .2C .3D .4【答案】C【解析】解:∵BD 是正方形ABCD 的对角线,∵∵ABE =∵ADE =∵CDE =45°,AB =BC ,∵BE =BC ,∵AB =BE ,∵BG ∵AE ,∵BH 是线段AE 的垂直平分线,∵ABH =∵DBH =22.5°,在Rt∵ABH 中,∵AHB =90°﹣∵ABH =67.5°,∵∵AGH =90°, ∵∵DAE =∵ABH =22.5°, 在∵ADE 和∵CDE 中,45DE DEADE CDE AD CD =⎧⎪∠=∠=︒⎨⎪=⎩, ∵∵ADE ∵∵CDE (SAS ),∵∵DAE =∵DCE =22.5°,∵∵ABH =∵DCF , 在∵ABH 和∵DCF 中,BAH CDF AB CDABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵ABH ∵∵DCF (ASA ),∵AH =DF ,∵CFD =∵AHB =67.5°,7∵∵CFD =∵EAF +∵AEF ,∵67.5°=22.5°+∵AEF ,∵∵AEF =45°,故∵∵正确; ∵∵FDE =45°,∵DFE =∵F AE +∵AEF =22.5°+45°=67.5°,∵∵DEF =180°﹣45°﹣67.5°=67.5°,∵DF =DE ,∵AH =DF ,∵AH =DE ,故∵正确; 如图,连接HE ,∵BH 是AE 垂直平分线,∵AG =EG ,∵S ∵AGH =S ∵HEG ,∵AH =HE ,∵∵AHG =∵EHG =67.5°,∵∵DHE =45°,∵∵ADE =45°,∵∵DEH =90°,∵DHE =∵HDE =45°, ∵EH =ED ,∵∵DEH 是等腰直角三角形,∵EF 不垂直DH ,∵FH ≠FD ,∵S ∵EFH ≠S ∵EFD ,∵S 四边形EFHG =S ∵HEG +S ∵EFH =S ∵AHG +S ∵EFH ≠S ∵DEF +S ∵AGH ,故∵错误, ∵正确的是∵∵∵.故选:C 二、填空题11.在平面直角坐标系中,点6(4,)P -与点(,1)Q m n +关于原点对称,那么m n +=________. 【答案】1.【解析】由点6(4,)P -与点(,1)Q m n +关于原点对称,得4,16m n =-+=,所以5n =.则451m n +=-+=,故答案为:1.12.如图,ABCD ,E 是BA 延长线上一点,AB AE =,连接CE 交AD 于点F ,若CF 平分BCD ∠,6AB =,则BC 的长为______.【答案】12【解析】解:∵四边形ABCD 是平行四边形,6AB =,AB AE =, ∵//,//AB CD AD BC ,6AB CD AE ===,AD =BC ,∵DFC ECB ∠=∠,E ECD ∠=∠,∵CF 平分BCD ∠,∵BCE DCE ∠=∠,∵DFC DCE ∠=∠,∵DF=DC =6,∵EFA DFC ∠=∠,∵EFA E ∠=∠,∵AF =AE =6∵12BC AD AF DF ==+=.13.如图,在平行四边形ABCD 中,//AB CD ,按以下步骤作图:∵以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;∵分别以M ,N 为圆心,以大于12MN 长为半径作弧,两弧相交于点P ;∵作射线AP ,交边CD 于点Q ,若110D ∠=︒,则AQD ∠的度数为__________.【答案】35° 【解析】由作图可知,AQ 平分DAB ∠,根据角平分线的定义及平行四边形的性质证明DAQ AQD ∠=∠即可解决问题.解:由作图可知,AQ 平分DAB ∠,DAQ QAB ∴∠=∠,∵四边形ABCD 是平行四边形,//CD AB ∴,QAB AQD ∴∠=∠, DAQ AQD ∴∠=∠,110D ∠=︒,()1180110352AQD DAQ ∴∠=∠=︒-︒=︒, 故答案为35︒.14.如图,在边长为10的菱形ABCD 中,对角线BD =16,点O 是线段BD 上的动点,OE ∵AB 于E ,OF ∵AD 于F .则OE +OF =___.【答案】485【解析】如图所示,连接AC 交BD 于P 点,延长EO 交CD 于G 点,根据菱形的性质得:AB =10,BP =8,∵APB =90°,∵在Rt ∵APB 中,根据勾股定理得:AP =6,∵AC =2AP =12,又根据菱形的对称性得:OF =OG ,∵OE +OF =EG ,9根据菱形的面积公式:12AC BD AB EG =,∵11216102EG ⨯⨯=, 解得:485EG =,即:485OE OF +=,故答案为:485.15.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∵ABO =60°,若矩形的对角线长为2,则线段AD 的长是______.【解析】解:∵四边形ABCD 是矩形,∵AC =2AO ,BD =2BO ,AC =BD =2, ∵AO =OB =1,∵∵ABO =60°,∵∵AOB 是等边三角形,∵AB =1=OA , ∵AD==16.如图,∵ABC 中,BD 平分∵ABC ,CD ∵BD ,垂足为D ,E 为AC 中点.若AB =10,BC =6,则DE 的长为___.【答案】2【解析】解:延长CD 交AB 于F ,在∵BDC 和∵BDF 中,90DBC DBFBD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∵∵BDC ∵∵BDF (ASA ),∵BF =BC =6,CD =DF ,∵AF =AB ﹣BF =4, ∵CD =DF ,CE =EA ,∵DE =12AF =2,故答案为:2.三、解答题17.如图,在平行四边形ABCD中,AD=6,点E在边AD上,且AE=2(1)若直线l经过点E,将该平行四边形的面积平分,并与平行四边形的另一边交于点F,用无刻度的直尺画出点F;(2)连接AF,CE,判断四边形AFCE的形状,并说明理由.【答案】(1)见解析;(2)四边形AFCE是平行四边形,理由见解析.【解析】解:(1)如图所示,点F即为所求作的点.(2)四边形AFCE是平行四边形,理由是:∵四边形ABCD是平行四边形,∵OA=OC,AD∵BC.∵∵OAE=∵OCF.∵∵AOE=∵COF,∵∵AOE∵∵COF.∵OE=OF.∵四边形AFCE是平行四边形.18.如图,在四边形ABCD中,AB=AD,CB=CD,点F是AC上一点,连接BF、DF.11(1)证明:∵ABF ∵∵ADF ;(2)若AB //CD ,试证明四边形ABCD 是菱形.【答案】(1)见解析;(2)见解析.【解析】(1)证明:在∵ABC 和∵ADC 中,∵AB ADAC AC BC DC=⎧⎪=⎨⎪=⎩,∵∵ABC ∵∵ADC (SSS ),∵∵BAC =∵DAC ,在∵ABF 和∵ADF 中,∵AB ADBAF DAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∵∵ABF ∵∵ADF (SAS );(2)解:∵AB ∵CD ,∵∵BAC =∵DCA ,∵∵ABF∵∵ADF,∵∵BAF =∵DAC ,∵∵DAC =∵DCA ,∵AD =DC ,∵AB =AD ,∵AB =DC ,又AB ∵CD ,∵四边形ABCD 是平行四边形,∵AB =AD ,∵平行四边形ABCD 是菱形.19.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点.(1)求证:BM DM =;(2)求证:MN BD ⊥.【答案】(1)见解析;(2)见解析.【解析】证明:(1)如图,连接BM 、DM ,∵90ABC ADC ∠=∠=︒,M 是AC 的中点, ∵12BM AC =,12DM AC =,∵BM DM =; (2)∵BMDM =,点N 是BD 的中点, ∵MN BD ⊥.20.[阅读] 材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l 平分这个角.材料2:如图2中,三角板OAB 绕点O 顺时针旋转60°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 顺时针旋转60°到OC 、OD 的位置;如图3中,三角板OAB绕点 O 逆时针旋转90°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 逆时针旋转90°到OC 、OD 的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A 、C 重合).现在将三角板OCD 固定不动,从起始位置(图4)开始,将三角板OAB 绕点O 顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB 转动的时间为t 秒.∵当三角板OAB 转动到图5的位置时,它的一边OA 平分∵COD ,求t 的值; ∵当三角板OAB 的一边OB 所在直线平分∵COD 时,t = 秒;(直接写出结果) (2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A 、O 、C 在一条直线上).在三角板OAB 绕点O 以每秒5°的速度顺时针匀速转动的同时,三角板OCD 绕点O 以每秒3°的速度逆时针匀速转动,当三角板OAB 转动一周时停止转动,此时三角板 OCD 也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t 秒.当三角板OAB 的一边OB 所在直线平分∵COD 时,t = 秒.(直接写出结果)【答案】(1)∵t的值是6;∵60;(2)15或37.5.【解析】解:(1)∵由三角板可知∵DOC=60°,∵三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°,∵t秒后,∵AOC=5t.当OA平分∵DOC时,∵AOC=30°,∵5t=30°,解得t=6.答:t的值是6.∵∵OB平分∵DOC时,∵∵BOC=30°,∵AOC=90°﹣30°=60°,∵5t=360°﹣60°=300°,解得t=60.故答案为:60.(2)设三角板OAB和三角板OCD旋转后分别为三角板OA′B′和三角板OC′D′,∵线段OB平分∵DOC时,如图:∵AOA′=5t,∵COC′=3t,∵∵B′OC′=30°,∵∵A′OC′=60°,∵5t+3t+60°=180°,解得t=15;∵直线OB平分∵DOC时,如图:13∵AOA′=5t,∵COC′=3t,∵AOA′=90°∵∵B′OC′=30°,∵∵A′OC′=90°+30°=120°,∵5t+3t﹣120°=180°,解得t=37.5;故答案为:15或37.5.。
初中数学中心对称图形专题训练50题(含答案)

初中数学中心对称图形专题训练50题含参考答案一、单选题1.在平面直角坐标系中,点(2-,6)关于原点对称的点坐标是()A.(6-,2)B.(2,6-)C.(2,6)D.(2-,6-)2.下列图标中,既是中心对称又是轴对称的图标是()A.B.C.D.3.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.(2,5)B.(-3,2)C.(3,-2)D.(3,2)4.我国已经进入5G时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,属于中心对称图形的是()A.B.C.D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正五边形C.正六边形D.正七边形8.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形9.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1B.2C.3D.410.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个12.在下列四个图形中,是中心对称图形的是()A.B.C.D.13.这四个汽车标志图中,既是中心对称图形又是轴对称图形的是()A.B.C.D.14.下列①平行四边形,①矩形,①菱形,①正方形四个图形中,是中心对称图形,但不是轴对称图形是()A.①B.①C.①D.①15.下列图形中,可以看作是中心对称图形的有()A.0个B.1个C.2个D.3个16.下列图案中不是中心对称图形的是()A.B.C.D.17.下列图形中,是中心对称图形,但不是轴对称图形的是()A.(A)B.(B)C.(C)D.(D)18.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.19.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A .B .C .D .二、填空题20.平面直角坐标系内一点(5,3)P -,关于原点对称的点的坐标为____________. 21.在平面直角坐标系中点M (2,﹣4)关于原点对称的点的坐标为 _____. 22.在平面直角坐标系中,点()2,3A 关于x 轴的对称点是_____;关于y 轴的对称点是_____;关于原点的对称点是_____.23.点(2,1)P -与点Q 关于原点对称,则点Q 的坐标为__________.24.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b =_____.25.将点()2,3P 绕原点O 旋转180°后P 点的对应点坐标为______.26.已知点(,1)A a 与点(3,1)B --关于原点对称,则=a __ .27.点A (-1,2)关于原点中心对称点的坐标是___________28.在平面直角坐标系中,已知点(),2A a -和点()3,B b 关于原点对称,则a b +=________.29.在平面直角坐标系中,若点(),3A a 与点()4,B b 关于原点O 对称,则ab =__________.30.在四张完全相同的卡片上,分别画有:线段、正三角形、矩形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是____.31.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.32.已知点(2,)A m -与点(,3)B n 关于原点对称,则n m 的值为____________________. 33.已知实数a 、b 是方程22530x x --=的两根,a b <,则点(),P a b 关于原点的对称点Q 的坐标是___________.34.下列图形中,其中是中心对称图形有_____个.①圆;①平行四边形;①长方形;①等腰三角形.35.在直角坐标系中,点(﹣1,2)关于原点对称的点的坐标是___.36.点2(1)A -,关于x 轴对称的点的坐标是_____;点A 关于原点对称的点的坐标是_____.37.平面直角坐标系中,点(31)P a -,与点(23)Q b ,+关于原点对称,则a b +=_____. 38.如图,在平面直角坐标系中,11OA B 是边长为1的等边三角形,作122B A B 与11B AO 关于点1B 成中心对称,再作233B A B 与221B A B 关于点2B 成中心对称,继续作344B A B 与332B A B 关于点3B 成中心对称,….按此规律作下去,则202120222022B A B 的顶点2022A 的坐标是__________.39.如图,C 是线段AB 的中点,B 是线段CD 的中点,线段AB 的对称中心是点__,点C 关于点B 成中心对称的点是点__.三、解答题40.如图,已知①ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)画出①ABC 关于原点成中心对称的三角形①A′B′C′;(2)将①ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出点B 的对应点B″的坐标;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.41.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △;(2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.42.利用图甲所示的地板砖各两块,在图乙(1)中铺成一个只是轴对称的图形;在图乙(2)铺成一个只是中心对称的图形,在图乙(3)中铺成既是轴对称图形,又是中心对称的图形.43.如图:在网格中按题目要求画图(1)把ABC 先向右平移5格,再向上平移3格得到111A B C △;(2)作ABC 关于原点对称的图形得到222A B C △.44.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,①ABC 的顶点都在格点上.(1)将①ABC 向右平移6个单位长度得到①A 1B 1C 1,请画出①A 1B 1C 1;(2)画出①ABC 关于点O 的中心对称图形①A 2B 2C 2;(3)若将①A 1B 1C 1绕某一点旋转可得到①A 2B 2C 2,请直接写出旋转中心的坐标:_________.45.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,①ABC 的顶点均在格点上,点C 的坐标为(0,1),请按要求画图与作答:(1)请画出①ABC关于原点成中心对称的①A1B1C1;(2)请画出①ABC绕着点C顺时针旋转90°后的①A2B2C2;(3)求①A2B2C2的面积.46.如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.47.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB 扫过的面积.48.如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1) 请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.49.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF①x轴于点F,设EF=m,问:当m为何值时,①BFE与①DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案:1.B【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:B.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.2.A【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.既是中心对称又是轴对称,符合题意;B.不是中心对称,是轴对称,不符合题意;C.不是中心对称,是轴对称,不符合题意;D.既不是中心对称也不是轴对称,不符合题意;故选:A.【点睛】本题考查了轴对称图形与中心对称图形的识别,牢记轴对称图形和中心对称图形的概念是解答本题的关键.3.A【详解】①P(m,m-n)与点Q(-2,3)关于原点对称,①m=2,n=5,①点P的坐标为(2,5).故选A.4.C【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项不合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不合题意;C.是中心对称图形,但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.5.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】根据中心对称图形的概念进行求解即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,解题的关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A【分析】根据中心对称图形和轴对称图形的概念,即可得出正确选项.【详解】解:A.此图既是轴对称图形又是中心对称图形,故此选项符合题意;B.此图不是中心对称图形,是轴对称图形,故此选项不合题意;C.此图是中心对称图形,不是轴对称图形,故此选项不合题意;D.此图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查中心对称图形和轴对称图形的概念,属于基础题,熟练掌握概念是本题的关键.11.A【详解】试题分析:根据轴对称图形与中心对称图形的概念求解.解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,不是中心对称图形,故本选项错误,C、不是中心对称图形,故本选项错误,D、是中心对称图形,故本选项正确.故选D.13.C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项正确;B、矩形既是轴对称图形,又是中心对称图形,故此选项错误;C、菱形既是轴对称图形,也是中心对称图形,故此选项错误;D、正方形既是轴对称图形,也是中心对称图形,故此选项错误.故答案为:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.C【详解】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:①、旋转180°,与原图形不能够重合,不是中心对称图形,故错误;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,不是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;综上可得有两个正确.故选C.此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.16.D【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,对四个选项分别进行判断,即可得出结论.【详解】解:A、B、C三个选项的图形都是中心对称图形,D不是中心对称图形.故选:D.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义并能运用定义对图形进行准确判断是解题的关键.17.B【详解】分析:根据轴对称图形与中心对称图形的概念进行判断即可.详解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选B .点睛:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.D【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A 、不是中心对称图形,故本选项不符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、是中心对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.20.(-5,3).【详解】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P (5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.21.()2,4-【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M (2,﹣4)关于原点对称的点的坐标为()2,4-故答案为:()2,4-【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.22. ()2,3- ()2,3- ()2,3--【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可直接写出答案.【详解】解:在平面直角坐标系中,点()2,3A 关于x 轴的对称点是()2,3-;关于y 轴的对称点是()2,3-;关于原点的对称点是()2,3--.故答案为:()2,3-;()2,3-;()2,3--.【点睛】此题主要考查了关于x 轴、y 轴、以及关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.23.(21)-,【详解】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),所以点Q 的坐标为(−2,1).,故答案为()21-, 24.1【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b .【详解】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数, ①a=4且b=-3,①a+b=1.故答案为125.()2,3--【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【详解】点()2,3P 绕原点O 旋转180°后,P 点的对应点与点P 关于原点对称,则其坐标为()2,3--.故答案为:()2,3--.【点睛】本题考查了平面直角坐标系中关于原点对称的两点的坐标特征,掌握这一特征是关键.26.3【分析】直接利用关于原点对称点的性质即可得出答案. 【详解】解:点(,1)A a 与点(3,1)B --关于原点对称,3a ∴=.故答案为:3【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.1,2【详解】根据关于原点成中心对称的两个点的横、纵坐标互为相反数即可得出答案. 解:点A (-1,2)关于原点中心对称点的坐标是(1,-2).故答案为(1,-2).28.-1【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a 、b 即可求得答案.【详解】①点(),2A a -和点()3,B b 关于原点对称,①a=-3,b=2,①a+b=-3+2=-1,故答案为:-1.【点睛】此题考查原点对称点的性质,熟记性质并运用解题是关键.29.12【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:①点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,①a=-4,b=-3,则ab=12.故答案为:12.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.30.3 4【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对线段、正三角形、矩形、圆进行判断,然后求概率即可.【详解】解:由题意知,既是中心对称图形又是轴对称图形的为线段、矩形、圆,①卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是34,故答案为:34.【点睛】本题考查了中心对称图形,轴对称图形的定义,概率等知识.解题的关键在于熟练掌握中心对称图形,轴对称图形的定义.31.(﹣3,﹣4),(3,4),(3,﹣4)【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,①点A关于x轴对称的点的坐标是(﹣3,﹣4),①关于y轴对称时,横坐标为相反数,纵坐标不变,①点A关于y轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.32.9【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数求得,m n的值,进而求得n m 的值. 【详解】解:点(2,)A m -与点(,3)B n 关于原点对称,3,2m n ∴=-=∴n m ()239=-= 故答案为:9【点睛】本题考查了关于原点对称的点的坐标特征,有理数的乘法,掌握关于原点对称的点的坐标特征是解题的关键.33.1,32⎛⎫- ⎪⎝⎭【分析】先利用因式分解法解一元二次方程求出,a b 的值,进而利用关于原点对称点的坐标性质得出即可.【详解】①实数a 、b 是方程22530x x --=的两根,a b <,()()2130x x ∴+-=,1,32a b ∴=-=, 1,32P ⎛⎫∴- ⎪⎝⎭, ①点1,32P ⎛⎫- ⎪⎝⎭关于原点的对称点Q 的坐标是1,32⎛⎫- ⎪⎝⎭, 故答案为:1,32⎛⎫- ⎪⎝⎭. 【点睛】本题考查了关于原点对称的点的坐标和解一元二次方程-因式分解法,熟练掌握知识点是解题的关键.34.3【分析】根据中心对称图形的特点进行分析即可.【详解】解:①圆;①平行四边形;①长方形是中心对称图形,共3个,①等腰三角形不是中心对称图形.故答案为:3.【点睛】本题考查中心对称图形的识别,熟练掌握中心对称图形的特点是解题关键. 35.1,2【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可【详解】点(﹣1,2)关于原点对称的点的坐标是1,2故答案为:1,2【点睛】本题考查了关于原点对称的点的坐标的特点,掌握平面直角坐标系中对称点的坐标特点是解题的关键.36. (1,2) (﹣1,2)【详解】解:点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),关于原点对称点的坐标P″(﹣m ,﹣n );所以点A (1,﹣2)关于x 轴对称的点的坐标为(1,2),关于原点对称的坐标是(﹣1,2).故答案为:(1,2);(﹣1,2)37.﹣1【分析】根据原点对称的点,横坐标和纵坐标都互为相反数,即可得到答案.【详解】解:①P 与Q 关于原点对称,故3=-(b +2),1-a =-3,解得:a =4,b =-5,①a +b =-1,故答案为-1.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.38.40432⎛ ⎝⎭【分析】首先根据11OA B 是边长为1的等边三角形,可得A 1的坐标为1,2⎛ ⎝⎭,B 1的坐标为(1,0);然后根据中心对称的性质,分别求出点A 2、A 3的坐标各是多少;最后总结出An 的坐标的规律,求出A 2n +1的坐标是多少即可.【详解】解:①11OA B 是边长为1的等边三角形,①A 1的坐标为:1,2⎛ ⎝⎭,B 1的坐标为:(1,0), ①233B A B 与221B A B 关于点2B 成中心对称,①点A 2与点A 1关于点B 1成中心对称, ①132122⨯-=,①点A 2的坐标是:32⎛ ⎝⎭,①①B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,①点A 3与点A 2关于点B 2成中心对称, ①153122⨯-=①点A 3的坐标是:5,2⎛ ⎝⎭,①An 的横坐标是:n −12,当n 为奇数时,An 的纵坐标是:,当n 为偶数时,An 的纵①2022是偶数,14043202222-=①2022A 的坐标是40432⎛ ⎝⎭,故答案为:40432⎛ ⎝⎭. 【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出An 的横坐标和纵坐标是解题的关键.39. C D【详解】根据中心对称图形的对称中心的定义,点C 是线段AB 的中点,点B 是线段CD 的中点,线段AB 的对称中心是点C ;点C 关于点B 成中心对称的对称点是点D. 故答案为C ;D.40.(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D 坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 的对应点的坐标;(3)分AB 、BC 、AC 是平行四边形的对角线三种情况解答.。
初中数学中心对称图形专题训练50题含答案

初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列各图中为中心对称图形的是()A.B.C.D.3.下列四个图形中,是中心对称图形的是()A.B.C.D.4.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下面四个交通标志中,是中心对称图形的是()A.B.C.D.7.下列图形中,是中心对称图形的是()A.B.C.D.8.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图形属于中心对称图形的是()A.B.C.D.10.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .11.在平面直角坐标系中,点()2,4P -关于原点对称的点的坐标是( )A .()2,4-B .()2,4C .()2,4--D .()4,2- 12.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 13.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .15.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 16.已知点()31,21P a a -+关于原点的对称点在第四象限,则a 取值范围是( )A .13a >B .12a <-C .1123a -<<D .无解集17.已知点A (1x ,1y )与点B (2x ,2y )关于原点对称,若112x y +=,则22x y +的值为( )A .2B .12C .12-D .2-18.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D . 19.下列新能源汽车的标志中,是中心对称图形的是( )A .B .C .D .二、填空题20.将点(3,1)B -绕坐标原点O 旋转180︒,则点B 的对应点B '坐标为______.21.如图,ABCD 的对角线AC 、BD 交于点O ,则图中成中心对称的三角形共有______对.22.在平面直角坐标系内,点A (a ,﹣3)与点B (1,b )关于原点对称,则a +b 的值_________.23.在平面直角坐标系中,点 A(﹣4,1)关于原点的对称点的坐标为_____24.点(a ,2)与点(b ,﹣2)关于原点中心对称,则a +b 的值是__.25.若点P (m ,-2)与点Q (3,n )关于原点对称,则2019()m n +=______.26.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.27.在直角坐标系中,点()3,5-M 关于原点O 对称的点N 的坐标是(),x y ,则x y +=_____________;28.点P(1,-1)关于原点对称的点的坐标是_________.29.如图,所示的美丽图案中,既是轴对称图形又是中心对称图形的有_____个.30.在平面直角坐标系中,点()11P a -,与点()15Q b +,关于原点对称,ab = _______.31.已知三点A 、B 、O .如果点A'与点A 关于点O 对称,点B'与点B 关于点O 对称,那么线段AB 与A'B'的关系是_____________.32.平面直角坐标系内一点P (3,-1)关于原点对称的坐标为_____33.若点P 的坐标为()1,1x y +-,其关于原点对称的点'P 的坐标为()3,5--,则(),x y 为________.34.在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为__________.35.已知()12P a -,和()23P b ,关于原点对称,则()2021a b +的值为 ___________.36.有下列图形:①线段,①三角形,①平行四边形,①正方形,①圆,①等腰梯形.其中不是中心对称图形的是__.(填序号)37.平面直角坐标系中,点1A 是点()2,3A -关于原点对称点;点1A 的坐标是________.38.三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.39.一辆汽车车牌的最后两个数字刚好组成一个中心对称图形,并且这两个数字不相等,则这两个数字的和是_____.三、解答题40.如图,已知三角形ABC 、直线l ,点O 是线段AB 的中点.(不写画法,保留画图痕迹,并写出画图结论)(1)画出三角形ABC关于直线l的轴对称的图形;(2)画出三角形ABC关于点O的中心对称的图形.41.如图,平面直角坐标系中,①ABC三个顶点的坐标分别为A(﹣3,5),B(﹣5,3),C(﹣2,2)平移到①A1B1C1,其中点A的对应点A1的坐标为(3,3).(1)请在图中画出①A1B1C1;(2)若将①ABC到①A1B1C1的过程看成两步平移,请描述平移过程:;(3)已知①A1B1C1与①A2B2C2关于原点O中心对称,请在图中画出①A2B2C2,此时①A2B2C2与①ABC关于某点中心对称这一点的坐标为.42.①ABC在平面直角坐标系xOy中的位置如图所示,A,B,C的坐标分别是(﹣2,3),(﹣1,1),(0,2).(1)作①ABC关于原点对称的①A1B1C1,并写出点A1的坐标.(2)求①ABC的面积.43.如图,已知ABC 和直线MN ,点O 在直线MN 上.(1)画出111A B C △,使111A B C △与ABC 关于直线MN 成轴对称;(2)画出222A B C △,使222A B C △与ABC 关于点O 成中心对称.44.在下列网格图中,每个小正方形的边长均为1个单位,在,90,3,4Rt ABC C AC BC ︒∆∠===.(1)在图中画出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,点C 的坐标为()3,1-,在图中建立直接坐标系,并画出ABC ∆关于原点对称的图形222A B C .45.(1)请画出①ABC 关于直线l 的轴对称图形①A 1B 1C 1.(2)将①ABC 绕着点B 旋转180°得到①A 2B 2C 2,并画出图形.(保留作图痕迹,不写画法,注明结论)46.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(4,2),(3,0),(1,2)A B C ---.(1)将ABC ∆先向右平移4个单位长度,再向上平移2个单位长度,得到111A B C ∆,画出111A B C ∆;(2)222A B C ∆与ABC ∆关于原点O 成中心对称,画出222A B C ∆;(3)111A B C ∆和222A B C ∆关于点M 成中心对称,请在图中画出点M 的位置.47.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出ABC 关于原点O 的对称图形111A B C △;(2)将ABC 绕点C 顺时针旋转90︒得到22A B C ,画出22A B C ,并求2AA 的长度; 48.(1)解方程:2430x x -+=(2)已知点P (a +b ,-1)与点Q (-5,a -b )关于原点对称,求a ,b 的值.49.如图,在网格图中建立平面直角坐标系,ABC 的顶点坐标为(2,3)A -、(3,2)B -、(1,1)C -.(1)若将ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C ∆;(2)画出111A B C ∆绕C 1顺时针方向旋转90°后得到的221A B C ∆;(3)A B C '''∆与ABC 是中心对称图形,请写出对称中心的坐标: ;并计算ABC 的面积: .参考答案:1.D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,也是中心对称图形,故本选项不符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选B.【点睛】考核知识点:中心对称图形的识别.3.A【分析】根据中心对称图形的定义,逐项判断即可求解.【详解】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.C【分析】根据轴对称图形和中心对称图形的概念判断即可.答案第1页,共19页【详解】A.图为轴对称图形不是中心对称图形,不满足题意;B.图为轴对称图形不是中心对称图形,不满足题意;C.图为中心对称图形不是轴对称图形,满足题意;D.图为轴对称图形不是中心对称图形,不满足题意;故选C.【点睛】本题考查轴对称图形和中心对称图形的判别,关键在于熟记基础概念.5.C【分析】根据轴对称和中心对称图形的概念可判别.【详解】A、既不是轴对称也不是中心对称,不合题意;B、是轴对称但不是中心对称,不合题意;C、是轴对称和中心对称,符合题意;D、是中心对称但不是轴对称,不合题意故选:C6.A【分析】根据中心对称图形的概念判断即可.【详解】A:图形旋转180°后能与原图形重合,故是中心对称图形;B:图形旋转180°后不能与原图形重合,故不是中心对称图形;C:图形旋转180°后不能与原图形重合,故不是中心对称图形;D:图形旋转180°后不能与原图形重合,故不是中心对称图形;故选:A.【点睛】本题考查了中心对称图形的概念,绕对称中心旋转180°后能与原图形重合是中心对称图形,熟知其概念是解题的关键.7.A【分析】根据中心对称图形的概念即可作出判断.【详解】A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意.故选:A.【点睛】本题考查了中心对称图形的概念,正确把握相关定义是解题关键.8.A【分析】根据各个选项中的图形,可以写出是否为中心对称图形或轴对称图形,然后即可判断哪个选项符合题意.【详解】解: A .是中心对称图形,又是轴对称图形,故选项A 符合题意;B .不是轴对称图形,是中心对称图形,故选项B 不符合题意;C .是轴对称图形,不是中心对称图形,故选项C 不符合题意;D .不是中心对称图形,是轴对称图形,故选项D 不符合题意;故选:A .【点睛】本题考查中心对称图形、轴对称图形,解答本题的关键是明确题意,写出各个图形是否为中心对称图形或轴对称图形.9.C【详解】解:A .是轴对称图形,不是中心对称图形,故选项错误;.B .不是中心对称图形,故选项错误;.C .是中心对称图形,故选项正确;.D .是轴对称图形,不是中心对称图形,故选项错误.故选C .10.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .是轴对称图形,不是中心对称图形,故本选项符合题意;B .是中心对称图形但不是轴对称图形,故本选项不符合题意;C .是轴对称图形,也是中心对称图形,故本选项不符合题意;D .不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点()2,4P -关于原点对称的点的坐标是()2,4-,故选:A.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.C【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.【详解】解:①点(-2,3)关于原点对称,①点(-2,3)关于原点对称的点的坐标为(2,-3).故选:C.13.C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 既是轴对称图形,又是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.14.B【分析】根据轴对称和中心对称图形的定义判断即可;【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了轴对称图形和中心对称图形的判定,准确判断是解题的关键.15.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不合题意;B 、不是轴对称图形,不是中心对称图形,不合题意;C 、是轴对称图形,不是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,符合题意.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.C【分析】直接利用关于原点对称点的性质以及第四象限内点的坐标特点得出关于a 的不等式组进而得出答案.【详解】解:①点()31,21P a a -+关于原点对称的点为:()'13,21P a a ---在第四象限,①130210a a ->⎧⎨--<⎩解得:1123a -<< 故选:C.【点睛】此题主要考查了关于原点对称点的性质以及解一元一次不等式组,正确解不等式组是解题关键.17.D【分析】首先根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得2x ,2y 的值,进而得到答案.【详解】解: ①A (1x ,1y )与点B (2x ,2y )关于原点对称,①2x = -1x , 2y = -1y ,①1x +1y =2,①2x +2y = -1x -1y = -(1x +1y )=-2,故选D.【点睛】本题考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 18.A【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.19.D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意,C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故选项符合题意.故选:D .【点睛】本题考查了中心对称图形,熟记定义是解答本题的关键.20.(3,1)-【分析】将点(3,1)B -绕坐标原点O 旋转180︒,即点B 关于原点对称,则点B 坐标与对应点B '坐标的横纵坐标互为相反数,由此即可求解.【详解】解:根据题意得,点B 坐标与对应点B '坐标的横纵坐标变为相反数, ①1()3,B '-,故答案是:(3,1)-.【点睛】本题主要考查求绕原点旋转一定角度的点的坐标,理解点关于原点对称的特点是解题的关键.21.4【分析】▱ABCD 是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.【详解】解:图中成中心对称的三角形有①AOD 和①COB ,①ABO 与①CDO ,①ACD 与①CAB ,①ABD 和①CDB 共4对.故答案为:4【点睛】本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.22.2【分析】根据点关于原点对称的坐标特点即可完成.【详解】①点A (a ,﹣3)与点B (1,b )关于原点对称①13a b ,①132a b +=-+=故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.23.(4,-1)【分析】根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可得出结论.【详解】解:点 A(﹣4,1)关于原点的对称点的坐标为(4,-1)故答案为:(4,-1).【点睛】此题考查的是求一个点关于原点对称点的坐标,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解题关键.24.0.【分析】直接利用关于原点对称点的性质得出答案.【详解】①点(a ,2)与点(b ,﹣2)关于原点中心对称,①a+b =0.故答案为:0.【点睛】本题主要考查了关于原点对称的点的坐标,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--. 25.-1【分析】根据坐标的对称性求出m,n 的值,故可求解.【详解】依题意得m=-3,n=2①2019()m n +=2019)1(1-=-故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点. 26. (﹣3,﹣4), (3,4), (3,﹣4)【分析】根据在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数,关于y 轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数, ①点A 关于x 轴对称的点的坐标是(﹣3,﹣4),①关于y 轴对称时,横坐标为相反数,纵坐标不变,①点A 关于y 轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A 关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x 轴,y 轴及原点对称时横纵坐标的符号,难度适中.27.2-【分析】根据关于原点对称的点的坐标特点求出x 、y ,计算即可.【详解】点()3,5-M 关于原点O 对称的点N 的坐标是()3,5M -,①3x =,5y =-,则2x y +=-,故答案为:2-.【点睛】本题考查的是关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--.28.(-1,1)【详解】点P (1,-1)关于原点对称的点的坐标是(-1, 1).故答案为(-1, 1).点睛:平面直角坐标系中若两个点关于原点对称,那么这两个点的横坐标互为相反数,纵坐标也互为相反数.29.3.【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:(1),(3),(4)是轴对称图形,也是中心对称图形.(2)是轴对称图形,不是中心对称图形.故答案为:3.【点睛】本题考查了轴对称与中心对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 30.12-【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.【详解】①点()11P a -,与点()15Q b +,关于原点对称, ①11b -=+,15a -=-,解得:6a =,2b =-,①()6212ab =⨯-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.31.平行且相等【详解】根据中心对称的性质,对应线段AB 与A'B'的关系是平行且相等,故答案为平行且相等.32.(-3,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ),进而得出答案.【详解】点P(3,−1)关于原点对称的点的坐标是:(−3,1).故答案为(−3,1)【点睛】此题考查关于原点对称的点,解题关键在于掌握关于原点对称的点的坐标. 33.()2,6【分析】根据两个点关于原点对称时,它们的坐标符号相反可得13x +=,15y -=,解可得x 、y 的值,进而可得答案.【详解】由题意得:13x +=,15y -=,解得:2x =,6y =,则(),x y 为()2,6.故答案为:()2,6.【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 34.12【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,先判断4张卡纸中是中心对称图形的是线段、平行四边形,再由概率公式解题即可.【详解】解:在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,是中心对称图形的是线段、平行四边形, 所以抽到的图形是中心对称图形的概率为21=42, 故答案为:12.【点睛】本题考查中心对称图形、概率公式等知识,是基础考点,难度较易,掌握相关知识是解题关键.35.1-【分析】点1P 和点2P 关于原点对称,则它们的横坐标互为相反数,纵坐标互为相反数. 【详解】解:因为()12P a-,和()23P b ,关于原点对称, 所以32a b =-=,,将32a b =-=,代入()2021a b +, 原式=()2021321-+=-,故答案为:1-.【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.36.①①【分析】根据中心对称图形的特点即可依次判断求解.【详解】线段,平行四边形,正方形,圆是中心对称图形,三角形,等腰梯形不是中心对称图形.故答案为:①①.【点睛】此题主要考查中心对称图形的识别,解题的关键是熟知中心对称图形的特点. 37.()2,3-【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:①点1A 是点A (−2,3)关于原点对称点,①点1A 的坐标是(2,−3).故答案为(2,−3).【点睛】本题主要考查关于原点对称的点的坐标,熟悉掌握是关键.38.)3- 【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA()11209030,18012030,2MOE MBO MOB ∴∠=︒-︒=︒∠=∠=︒-︒=︒ 60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON∴三点共线,,,A O B∴关于O对称,,A BA3,3.故答案为:)3.-【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.39.15【分析】逐个对0—9这十个数字进行分析即可,同时要满足两个数字不相等.【详解】解:逐个对0—9这十个数字进行分析,由题意可知,这两个数字同时要满足组成一个中心对称图形和两个数字不相等,故只有6和9,两个数字的和为15,故答案为15【点睛】理解中心对称的定义是解题的关键.40.(1)图形见解析;(2)图形见解析【分析】(1)分别作出点A、B、C关于直线l的对称点F、H、G,再依次连接即可画出三角形ABC关于直线l的轴对称的图形;(2)延长CO至E使OE=OC,则①ABE即为三角形ABC关于点O的中心对称的图形.【详解】(1)如图所示,①ABC关于直线l的轴对称的图形为①FHG;(2)如图所示,①ABC关于点O的中心对称的图形①BAE;【点睛】本题考查的是作图-轴对称作图和作中心对称图形,熟知轴对称和中心对称的性质是解答此题的关键.41.(1)见解析;(2)点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)画图见解析,()3,1-【分析】(1)根据平移的性质得出坐标,进而画出图形即可;(2)根据平移的性质即可求解;(3)根据中心对称的性质作出对称点,连接即可.(1)解:由题意知:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置, ①①ABC 平移到①A 1B 1C 1时,点B 、C 对应的点B 1(1,1)、C 1(4,0),连接A 1B 1、B 1C 1、A 1C 1,如下图,则①A 1B 1C 1即为所求;(2)解:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)解:①①A 1B 1C 1与①A 2B 2C 2关于原点O 中心对称,点A 2(-3,-3)、B 2(-1,-1)、C 2(-4,0),连接A 2B 2、B 2C 2、A 2C 2,如图,则①A 2B 2C 2即为所求;连接AA 2、BB 2、CC 2交于点(-3,1).故答案为:(-3,1).【点睛】本题主要考查中心变换和平移变换,熟练掌握中心变换和平移变换的定义是解题的关键.42.(1)图见解析,(2,﹣3);(2)32. 【分析】(1)根据网格结构找出点A 、B 、C 旋转后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据所作图形得出点A 1坐标;(2)利用割补法即可求①ABC 的面积.【详解】解:(1)如图,①A 1B 1C 1即为所求;点A 1的坐标为(2,﹣3);(2)①ABC 的面积=2×2﹣12×1×2﹣12×1×1﹣121×2=32. 【点睛】本题考查基本作图-中心对称图形、三角形的面积公式,熟练掌握中心对称图形的性质,会利用网格特点个割补法求解图形面积是解答的关键.43.(1)见解析(2)见解析【分析】(1)根据对称轴垂直平分对应点连线,可找到各点的对称点,顺次连接即可得到111A B C △;(2)根据中心对称点平分对应点连线,可得各点的对称点,顺次连接可得222A B C △.【详解】(1)解:111A B C △即为所求;;(2)解:222A B C △即为所求.【点睛】本题考查了中心对称作图及轴对称作图的知识,解答本题的关键是掌握轴对称及中心对称的性质.44.(1)见解析;(2)见解析【分析】(1)根据旋转的性质找出B 、C 的对应点B 1、C 1的位置,顺次连接即可;(2)首先根据点B 、C 的坐标建立直角坐标系,然后分别找出点A 、B 、C 关于原点对称的对应点A 2、B 2、C 2的位置,顺次连接即可.【详解】解:(1)11AB C ∆如图所示;(2)直角坐标系和222A B C ∆如图所示.【点睛】本题考查了作图—旋转变换和中心对称,准确找出对应点的位置是解题的关键. 45.(1) 答案见解析;(2)答案见解析.【分析】(1)分别作出点A ,B ,C 关于直线l 的对称点,再首尾顺次连接可得;(2)作出点A 与点C 绕着点B 旋转180°得到的对应点,再与点B 首尾顺次连接可得.。
人教版 九年级数学上册 23.2 中心对称(含答案)

人教版九年级数学23.2 中心对称一、选择题(本大题共10道小题)1. 如图,如果甲、乙两图关于点O对称,那么乙图中不符合题意的一块是()2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 如图所示的图案中,是中心对称图形的是()4. 若点A(-3,2)关于原点的对称点是点B,点B关于x轴的对称点是点C,则点C的坐标是()A.(3,2) B.(-3,2)C.(3,-2) D.(-2,3)5. 如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形菱形OA′B′C′,再作菱形OA′B′C′关于点O的中心对称图形菱形OA″B″C″,则点C的对应点C″的坐标是()图25-K-1A.(2,-1) B.(1,-2)C.(-2,1) D.(-2,-1)6. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是()A.O1B.O2C.O3D.O47. 如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是()A.点E B.点FC.点G D.点H8. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为()A.A2P的中点B.A1B2的中点C.A1O的中点D.PO的中点9. 如图示,在Rt△ABC中,∠ACB=90°.P是半圆AC的中点,连接BP交AC于点D.若半圆所在圆的圆心为O,点D,E关于圆心O对称,则图两个阴影部分的面积S1,S2之间的关系是()A .S 1<S 2B .S 1>S 2C .S 1=S 2D .不确定10. 2020·河北模拟如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线OA 1A 2A 3A 4关于点A 4中心对称的图形,得折线A 8A 7A 6A 5A 4,再作折线A 8A 7A 6A 5A 4关于点A 8中心对称的图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t 秒.当t =2020时,点P 的坐标为( )A .(1010,3)B .(2020,32)C .(2016,0)D .(1010,32)二、填空题(本大题共8道小题)11. 王老师、杨老师两家所在的位置关于学校对称.如果王老师家距学校2千米,那么他们两家相距________千米.12. 点P (1,2)关于原点的对称点P ′的坐标为__________.13. 若点A (x +3,2y +1)与点A ′(y -5,1)关于原点对称,则点A 的坐标是________.14. 若将等腰直角三角形AOB 按图所示的方式放置,OB =2,则点A 关于原点对称的点的坐标为________.15. 如图所示,在△ABC 中,已知∠ACB =90°,AC =BC =2.若以AC 的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,则BB′=________.16. 在平面直角坐标系中,若点A(x+1,2y+1)与点A′(y-2,x)关于原点O对称,则代数式x2-y2的值为________.17. 如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.18. 如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为____________.三、解答题(本大题共4道小题)19. 如图,在正方形网格中,△ABC的三个顶点都在格点上,点A,B,C的坐标分别为(-2,4),(-2,0),(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(0,2)的位置,画出平移后的△A2B2C2,并写出点B2,C2的坐标;(3)在△ABC,△A1B1C1中,△A2B2C2与________成中心对称,其对称中心的坐标为________.20. 如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.21. 如图,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF =CE.求证:DF=BE.22. 如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1.(2)作出点A关于x轴的对称点A′.若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.人教版九年级数学23.2 中心对称-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] .2. 【答案】C3. 【答案】D4. 【答案】A5. 【答案】A[解析] ∵点C的坐标为(2,1),∴点C′的坐标为(-2,1),∴点C″的坐标为(2,-1).故选A.6. 【答案】A[解析] 如图,连接HC和DE交于点O1.7. 【答案】D[解析] 由于点B,D,F,H在同一条直线上,根据中心对称的定义可知,只能是点B和点H是对称点,点F和点D是对称点.故选D.8. 【答案】D[解析] 因为P,O是对称点,所以PO的中点是对称中心.9. 【答案】C[解析] ∵P是半圆AC的中点,∴半圆关于直线OP对称,且点D,E关于圆心O对称,因而S1,S2在直径AC上面的部分面积相等.∵OD=OE,∴CD=AE.∵△CDB的底边CD与△AEB的底边AE相等,高相同,∴它们的面积相等,∴S 1=S 2.10. 【答案】A二、填空题(本大题共8道小题)11. 【答案】4 [解析] ∵王老师、杨老师两家所在的位置关于学校对称, ∴王老师、杨老师两家到学校的距离相等. ∵王老师家距学校2千米, ∴他们两家相距4千米. 故答案为4.12. 【答案】(-1,-2)13. 【答案】(6,-1) [解析] 依题意,得⎩⎨⎧x +3=-(y -5),2y +1=-1,解得⎩⎨⎧x =3,y =-1.∴点A 的坐标为(6,-1).14. 【答案】(-1,-1)[解析] 如图,过点A 作AD ⊥OB 于点D.∵△AOB 是等腰直角三角形,OB =2,∴OD =AD =1,∴A(1,1),∴点A 关于原点对称的点的坐标为(-1,-1).15. 【答案】25 [解析] ∵△ABC 绕AC 的中点O 旋转了180°,∴OB =OB′,∴BB′=2OB. 又∵OC =OA =12AC =1,BC =2,∴在Rt △OBC 中,OB =OC 2+BC 2=12+22=5, ∴BB′=2OB =2 5.16. 【答案】5[解析] ∵点A (x +1,2y +1)与点A ′(y -2,x )关于原点O 对称,∴⎩⎨⎧x +1+y -2=0,2y +1+x =0,解得⎩⎨⎧x =3,y =-2. 故x 2-y 2=9-4=5. 故答案为5.17. 【答案】(0,1)18. 【答案】(-a ,-b +2)[解析] 如图,过点A 作AD ⊥y 轴于点D ,过点A′作A′D′⊥y 轴于点D′,则△ACD ≌△A′CD′,∴A′D′=AD =a ,CD′=CD =-b +1,∴OD′=-b +2,∴点A′的坐标为(-a ,-b +2).三、解答题(本大题共4道小题)19. 【答案】解:(1)△ABC 关于原点O 对称的△A 1B 1C 1如图所示.(2)平移后的△A 2B 2C 2如图所示,其中点B 2的坐标为(0,-2),点C 2的坐标为(-2,-1).(3)△A 1B 1C 1 (1,-1)20. 【答案】解:(1)∵点D 和点D 1是对称点, ∴对称中心是线段DD 1的中点, ∴对称中心的坐标是(0,52).(2)B(-2,4),C(-2,2),B 1(2,1),C 1(2,3).21. 【答案】证明:∵△ABO 与△CDO 关于点O 中心对称, ∴BO =DO ,AO =CO.∵AF =CE ,∴AO -AF =CO -CE , 即FO =EO.在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB(SAS), ∴DF =BE.22. 【答案】【思维教练】要作△ABC 关于点O 的中心对称图形,可先分别求出点A ,B ,C 关于点O 中心对称点,再顺次连接即可;(2)先作出点A′,再根据点A′在ΔA 1B 1C 1,从而得出平移距离a 满足A′A 1<a <A′D(其中点D 是A′A 1与B 1C 1的交点). 解:(1)如解图,△A 1B 1C 1就是所求作的图形:(2分) (2)A′如图所示;(4分)a 的取值范围是4<a <6.(6分)。
初中数学中心对称图形专题训练50题含参考答案

初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,是中心对称的图形是()A.B.C.D.【答案】B【详解】某个图形绕着它的中心旋转180°能够重合的图形是中心对称图形,以上四个图形中,图B符合题意,故选B2.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称与中心对称图形的概念求解即可.【详解】解:A.该图形是中心对称图形,但不是轴对称图形,不符合题意;B.该图形是轴对称图形,但不是中心对称图形,不符合题意;C.该图形是轴对称图形,但不是中心对称图形,不符合题意;D.该图形既是中心对称图形又是轴对称图形,符合题意.故选:D.【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,则四幅图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【分析】利用轴对称图形和中心对称图形的定义逐一判断即可得解;【详解】解:A、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是中心对称图形,也不是轴对称图形,故本选项不合题意;故选:A.【点睛】本题主要考查轴对称图形和中心对称图形,解题的关键是明确轴对称图形和中心对称图形的特征.5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.下列图形中既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.正方形D.正五边形【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.平行四边形是中心对称图形,但不是轴对称图形,故此选项错误;B.等边三角形是轴对称图形,但不是中心对称图形,故此选项错误;C.正方形是中心对称图形,又是轴对称图形,故此选项正确;D.正五边形是轴对称图形合,但不是中心对称图形,故此选项错误.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.下列图形是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.不是中心对称图形,故该选项不正确,不符合题意;B. 是中心对称图形,故该选项正确,符合题意;C. 不是中心对称图形,故该选项不正确,不符合题意;D. 不是中心对称图形,故该选项不正确,不符合题意;故选:B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.正五边形B.平行四边形C.矩形D.圆【答案】A【分析】根据轴对称图形与中心对称图形的概念结合正五边形、平行四边形、矩形、圆的性质求解.【详解】解:A、正五边形是轴对称图形,不是中心对称图形,故此选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;C、矩形是轴对称图形,也是中心对称图形,故此选项错误;D、圆是轴对称图形,也是中心对称图形,故此选项错误.故选:A【点睛】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.10.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、不是轴对称图形,是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项合题意;故选C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.11.垃圾分类人人有责.下列垃圾分类标识是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】A. 不是中心对称图形,不符合题意;B.是中心对称图形,符合题意;C. 不是中心对称图形,不符合题意;D. 不是中心对称图形,不符合题意;故选B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.12.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【答案】A【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意;故选:A.【点睛】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.下列命题中,真命题的个数为()①一个锐角和一条边分别相等的两个直角三角形全等;①定理的逆定理一定成立;①经过旋转,对应线段平行且相等;①等腰三角形的角平分线和中线重合;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数.A.1B.2C.3D.4【答案】A【分析】利用全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点分别判断后即可确定正确的选项.【详解】解:①一个锐角和一条边分别相等的两个直角三角形不一定全等,故错误,是假命题,不符合题意;①定理的逆定理不一定成立,故错误,是假命题,不符合题意;①经过旋转,对应线段相等,但不一定平行,故错误,是假命题,不符合题意;①等腰三角形的顶角平分线和底边中线重合,故错误,是假命题,不符合题意;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数,正确,是真命题,符合题意,综上分析可知,真命题有1个,故A正确.故选:A.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点,难度不大.15.下列图形中,既是轴对称图形,又是中心对称图形的是()A.角B.平行四边形C.矩形D.等边三角形【答案】C【分析】根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.【详解】A.角是轴对称图形,不是中心对称图形,故本选项错误;B.平行四边形不轴对称图形,是中心对称图形,故本选项错误;C.矩形既是轴对称图形也是中心对称图形,故本选项正确;D.等边三角形是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形和轴对称图形的概念,属于基础题.16.下列图形中,可以看作既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故选项A不符合题意;B、不是轴对称图形,是中心对称图形,故选项B不符合题意;C、是轴对称图形,不是中心对称图形,故选项C不符合题意;D、是轴对称图形,也是中心对称图形;故选项D符合题意;故选:D.【点睛】本题考查中心对称图形以及轴对称图形的识别,掌握它们的定义是解题的关键.17.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形及中心对称图形定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫轴对称图形,逐项验证即可得到答案.【详解】解:A、该图形不是轴对称图形,是中心对称图形,不符合题意;B、该图形既是轴对称图形,又是中心对称图形,符合题意;C、该图形是轴对称图形,不是中心对称图形,不符合题意;D、该图形是轴对称图形,不是中心对称图形,不符合题意;故选:B.【点睛】本题考查轴对称图形及中心对称图形的定义与判断,熟练掌握轴对称图形及中心对称图形的定义是解决问题的关键.18.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】D【详解】试题解析:A、是轴对称图形,但不是中心对称图形.故错误;B、既不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,但不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.19.点 P (2,﹣3)关于原点对称的点的坐标是_________. 【答案】(-2,3)【分析】根据平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.【详解】解:已知点P (2,-3),则点P 关于原点对称的点的坐标是(-2,3),故答案为:(-2,3).【点睛】本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键. 20.将点()1,2P -绕坐标原点旋转180︒后点的坐标为________.【答案】()1,2-【分析】根据中心对称图形的性质即可解答.【详解】解:点()1,2P -绕坐标原点旋转180︒后点的坐标为()1,2-,故答案为:()1,2-.【点睛】本题主要考查了中心对称图形的性质,熟记关于原点对称横、纵坐标都变为相反数是解题的关键.21.已知(,3)M a -和(4,)N b 关于原点对称,则a b +=______.【答案】-1【分析】根据关于原点对称点的坐标特征,求出a b 、的值,相加即可;【详解】解:(,3)M a -和(4,)N b 关于原点对称,则=-4=3a b 、,-4+3=-1a b +=;故答案为:-1【点睛】本题考查了关于原点对称点的坐标变化规律,解题关键是求出a b 、的值. 22.在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是__________.【分析】根据中心对称的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形即可解答.【详解】当涂黑4时,将图形绕O旋转180°,与原图重合,阴影部分为中心对称图形.故答案为:4.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义是关键.23.点A(-6,m)与点A′(n,3)关于原点中心对称,则m+n的值是____ .【答案】3【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】①点A(−6,m)与点A′(n,3)关于原点中心对称,①n=6,m=−3,①m+n=3,故答案为3.【点睛】考查关于原点对称的点的坐标特征,横坐标和纵坐标都互为相反数.24.如图,以平行四边形ABCD对角线的交点O为原点,平行于BC边的直线为x 轴,建立如图所示的平面直角坐标系.若D点坐标为(5,3),则B点坐标为__________.【答案】(-5,-3)【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD对角线的交点O 为原点和点D的坐标,即可得到点B的坐标.【详解】解:①坐标原点O为平行四边形ABCD对角线的交点①B 、D 两点关于点O 对称①D (5,3)①B (-5,-3)故答案为:(-5,-3)【点睛】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.25.在平面直角坐标系中,已知点()4,3A -与点B 关于原点对称,则点B 的坐标是______. 【答案】(-4,3)【分析】根据关于原点对称的点横纵坐标都互为相反数即可得到答案.【详解】解:①点()4,3A -与点B 关于原点对称,①点B 的坐标是()4,3-,故答案为:()4,3-.【点睛】本题考查了点的坐标,掌握关于原点对称的点的横纵坐标都互为相反数,是解题的关键.26.若点(),2P a 与点()5,Q b 关于原点对称,则=a _____,b =_____. 【答案】 5- 2-【分析】根据平面直角坐标系中关于原点对称的点的坐标特征:相应坐标互为相反数,即可得到答案.【详解】解:①点(),2P a 与点()5,Q b 关于原点对称,①52a b =-=-,,故答案为:5,2--.【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标特征,熟练掌握关于原点对称的点的坐标特征:相应坐标互为相反数是解决问题的关键.27.已知点A (a ,5)与点B (-3,b )关于原点对称,则a +b 的值是______.【答案】2-【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),根据这一结论求得a ,b 的值,再进一步计算.【详解】解:①点A (a ,5)与点B (-3,b )关于原点对称,①35a b =⎧⎨=-⎩, ①a +b=3-5=-2;故答案为:2-.【点睛】本题主要考查了关于原点对称的点的坐标,掌握关于原点对称的点的坐标特征是解题的关键.28.若点()1,5P a -与点()5,1Q b -关于原点成中心对称,则a b -=______. 【答案】10-【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:点()1,5P a -与点()5,1Q b -关于原点成中心对称,15,15a b ∴-=--=-,解得4,6a b =-=,则4610a b -=--=-,故答案为:10-.【点睛】本题主要考查了关于原点对称点的性质(点的横、纵坐标均互为相反数),正确得出a ,b 的值是解题关键.29.若点M (3,a ),N (b ,﹣5)关于原点对称,则a +b =____.【答案】2【分析】根据关于原点对称的点的坐标特征,得到a ,b 的值,进而求a +b 即可求解.【详解】解:①点M (3,a ),N (b ,﹣5)关于原点对称,①b =-3,a =5,①a +b =-3+5=2.故答案是: 2.【点睛】本题主要考查关于原点对称的点的坐标特征,掌握关于原点对称的两点的横纵左边分别互为相反数,是解题的关键.30.直角坐标系中,直线y =2x+3关于原点对称的解析式为_____.【答案】y =2x ﹣3【分析】若两条直线关于原点对称,则这两条直线平行,即k 值不变;与y 轴的交点关于原点对称,即b 值互为相反数.【详解】解:直线y =2x+3关于原点对称的解析式为y =2x ﹣3,故答案为:y =2x ﹣3.【点睛】本题考查一次函数,能够数形结合来分析此类型的题,根据图形,发现k 和b 值之间的关系.31.已知点()2,2A -关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,则四边形ABCD 的面积为_____. 【答案】16【分析】根据关于x 轴、y 轴、原点对称的点的坐标特征可得出B 、C 、D 点的坐标,可得四边形ABCD 是边长为4的正方形,进而可得面积.【详解】①关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,①()2,2B --,()2,2C -,()2,2D .①四边形ABCD 是边长为4的正方形,①其面积为16,故答案为16【点睛】本题考查关于原点对称的点的坐标;关于x 轴、y 轴对称的点的坐标,关于x 轴的对称点,横坐标不变,纵坐标变成相反数;关于y 轴的对称点,纵坐标不变,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.32.在等腰直角ABC 中,90C =∠,2BC cm =,如果以AC 的中点D 为旋转中心,将这个三角形旋转180°,点B 落在点B '处,则DB '的长度为______.1133.将二次函数y =x 2+2x -3的图象绕原点旋转180°,若得到的新的函数图象上总有两个点在直线y =x -m 上,则m 的取值范围是____.34.若点(,2)P a -与点(3,)Q b 关于原点对称,则b a =_____________.【答案】9【分析】根据关于原点的对称点的特征计算即可.【详解】解:①点(,2)P a -与点(3,)Q b 关于原点对称,①3a =-,2b =,①239b a ==,故答案为:9.【点睛】本题主要考查了关于原点对称的点的有关计算,解题的关键是熟知直角坐标系中两点的坐标关于原点对称,这两个点横坐标互为相反数,纵坐标互为相反数.35.如图所示,△ABC与△A'B'C'关于点O成中心对称,则下列结论成立的是__.(填序号)①点A与点A'关于点O对称;①BO=B'O;①AC①A'C';①①ABC=①C'A'B'.【答案】①①①【分析】根据中心对称的性质解答.【详解】①①ABC与△A′B′C′关于点O成中心对称,①点A与点A′是对称点,BO=B′O′,①ABC=①A′B′C′,△ABC①①A′B′C′,△BOC①①B′OC′,①①ACB=①A′C′B′,①OCB=①O′C′B′,①①ACO=①A′C′O,①AC①A'C'①结论①ACB=①C′A′B′错误.故答案为①①①【点睛】本题考查了中心对称的性质,熟记性质并准确识图是解题的关键.36.在同一直角坐标系中,点A、B分别是函数y=x−2与y=−2x−1的图象上的点,且点A、B关于原点对称,则点A的坐标是______.【答案】(1,−1)【详解】解:设点A的坐标为(m,n),则点B的坐标为(−m,−n).根据题意得:221 n mn m=-⎧⎨-=-⎩,解得:11 mn=⎧⎨=-⎩,①点A的坐标为(1,−1).故答案为(1,−1).【点睛】本题考查了一次函数图象上点的坐标特征以及关于原点对称的点的坐标,根据一次函数图象上点的坐标特征,列出关于m、n的二元一次方程组是解题的关键.37.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,−300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标可以表示为_____.【答案】(3,240°),(3,−120°),(3,600°)【分析】根据中心对称的性质解答即可.【详解】①P(3,60°)或P(3,−300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,−120°),(3,600°),故答案为(3,240°),(3,−120°),(3,600°)【点睛】此题考查中心对称的性质,解题关键在于掌握其性质.三、解答题38.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)△ABC绕点C顺时针旋转90°得到△A1B1C;(2)画△A1B1C关于点O的中心对称图形△A2B2C2.【答案】(1)见解析(2)见解析【分析】(1)分别作出A、B、的对应点A1、B1即可;(2)分别作出A1、B1、C的对应点A2、B2、C2即可;【详解】(1)解:①ABC绕点C顺时针旋转90°得到①A1B1C如图所示;(2)解:①A 1B 1C 关于点O 的中心对称图形①A 2B 2C 2如图所示;【点睛】本题考查作图﹣旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换、中心对称的性质,属于中考常考题型.39.作图题:已知①ABC 在方格纸中的位置如图所示,每个小方格的边长为1个单位长度;(1)将①ABC 向右平移4个单位长度得到①111A B C ,请你画出①111A B C ;(2)①ABC 与①222A B C 关于原点O 对称,请你画出①222A B C .【答案】(1)①111A B C 如图所示;(2)①222A B C 如图所示.【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位的对应点111A B C 、、 的位置,然后顺次连接即可;(2) 根据网格结构找出点A 、B 、C 关于原点的对称点2A 、2B 、2C 的位置,然后顺次连接即可.(1)由图可得A (-2,5),B (-4,1),C (-1,3)则右平移4个单位的对应点1A (2,5)、1B (0,1)、C 1(3,3),如图所示;(2)①ABC 与①222A B C 关于原点O 对称,则2A (2,-5),2B (4,-1),2C (1,-3),如图所示.【点睛】本题考查作图——旋转和平移:根据旋转和平移的性质作图是解题的关键. 40.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,点A 、点C 关于点O 成中心对称,点B 、点D 关于点O 成中心对称,且点B 、D 关于AC 成轴对称.求证:四边形ABCD 是菱形.【答案】见解析【分析】根据轴对称的性质可得AC 垂直平分BD ,进而得到,BO DO AC BD =⊥,再根据点A 、点C 关于点O 成中心对称,可得AO CO =,然后根据对角线互相垂直且平分的四边形是菱形可证出结论.【详解】证明:∵点B 、D 关于AC 成轴对称,∴AC 垂直平分BD ,∴,BO DO AC BD =⊥,∵点A 、点C 关于点O 成中心对称,∴AO CO =,∴四边形ABCD 是菱形.【点睛】此题主要考查了菱形的判定,轴对称和中心对称,掌握对角线互相垂直平分的四边形是菱形是解题的关键.41.如图,在5×5的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2中各画一个四边形(所画四边形的顶点均在小正方形的顶点上)(1)在图1中画四边形ABCD ,使其为中心对称图形.(2)在图2中画以A,B,E,F为顶点的平行四边形,且其中一条对角线长等于3.【答案】见解析【分析】(1)以AB为边画一个平时四边形即可;BF ,然后以AB为边,BF为对角线画平行四边形即可.(2)先作对角线3【详解】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABEF为所作.【点睛】考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.42.如图,①ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将①ABC向右、向下分别平移1个单位长度和5个单位长度得到①A1B1C1,请画出①A1B1C1,并写出点A1,C1的坐标;(2)请画出①ABC关于原点O成中心对称的①A2B2C2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列四边形中,是中心对称但不是轴对称的图形是()A.矩形B.等腰梯形C.正方形D.平行四边形4.下列选项中的垃圾分类图标,属于中心对称图形的是()A.B.C.D.5.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等腰三角形B.矩形C.平行四边形D.正五边形6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列汽车车标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .10.如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----11.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线相等且互相垂直D .矩形的对角线不能相等12.下列图案中,既是中心对称又是轴对称图形的个数有( )A .1个B .2个C .3个D .4个 13.对于等边三角形,下列说法正确的为( )A .既是中心对称图形,又是轴对称图形B .是轴对称图形,但不是中心对称图形C .是中心对称图形,但不是轴对称图形D .既不是中心对称图形,又不是轴对称图形14.在平面直角坐标系中,点(2,1)-关于原点对称的点的坐标是( )A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)-- 15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .16.下列图形中,是轴对称图形不是中心对称图形的有( )A .1个B .2个C .3个D .4个 17.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .18.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5-- 19.如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .//AD EF =,//AB GF =B .BO GO =C .B 、O 、G 三点在一条直线上D .DO HO =20.下列图形中既是轴对称图形又是中心对称图形的是( )A .AB .BC .CD .D二、填空题21.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.22.请写出一个是轴对称图形但不一定是中心对称图形的几何图形名称:____________________.23.已知点()4,3P -和点(),Q x y 关于原点对称,则x y +=______.24.下列图形:①平行四边形;①菱形;①等边三角形;①正方形,其中既是轴对称图形,又是中心对称图形的有_____(填序号).25.在平面直角坐标系中,点(-1,2)关于x 轴对称的点的坐标是____________,关于y 轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.26.已知点A (a ,1)与点B (﹣3,b )关于原点对称,则ab 的值为_____. 27.在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.28.数轴上A B 点表示-2,则A 点关于B 点的对称点A '表示的数为_______________.29.成中心对称的两个图形________,对应点的连线都经过________,并且被对称中心________.30.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P '的坐标是P '___.31.直线2y x =+上有一点()1,,P m 则P 点关于原点的对称点为P'________________(不含字母m ).32.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB ,求作线段AB 的垂直平分线.小明的作法如下:(1)分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧交于点C ; (2)再分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于点D ; (3)作直线CD ,直线CD 即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC ,BC ,AD ,BD由作图可知:AC BC =,AD BD =①点C ,点D 在线段的垂直平分线上(依据1:______)①直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A ,B ,C ,D 恰好均在格点上,依次连接A ,C ,B ,D ,A 各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.33.若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;①()0m y m x =≠;①31y x =-;①2y x .其中是“H 函数”的为________.(填上序号即可)34.旋转对称图形______________(填“一定是”、“一定不是”或“不一定是”)中心对称图形;中心对称图形________(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.35.给出下列5种图形:①平行四边形①菱形①正五边形、①正六边形、①等腰梯形中,既是轴对称又是中心对称的图形有________个.36.若点P (﹣m ,3﹣m )关于原点的对称点在第四象限,则m 满足_____. 37.在下列字型的数字中,既是轴对称图形又是中心对称图形的有______________.38.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.39.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题40.(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O . (2)如图①所示,已知①ABC 的三个顶点的坐标分别为A (4,﹣1),B (1,1),C (3,﹣2).将①ABC 绕原点O 旋转180°得到①A 1B 1C 1,请画出①A 1B 1C 1,并写出点A 1的坐标.41.如图,ABC 的三个顶点都在正方形网格的格点上,其中点A 的坐标为()1,0-.(1)在网格中作A B C ''',使A B C '''与ABC 关于原点O 成中心对称.(2)如果四边形BCDE 是以BC 为一边,且两条对角线相交于原点O 的平行四边形,请你直接写出点D 和点E 的坐标.42.如图,在85⨯的正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点均在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使ABD △与ABC 全等,且点D 在直线AB 的下方(点D 不与点C 重合);(2)在图2中画ABE △(点E 在小正方形的顶点上),使ABE △与ABC 全等,且//AC BE ;(3)请直接写出ABC 的面积.43.如图,有三张背面相同的纸牌A B C 、、,其正面分别画有三个不同的图形,将这三张纸牌背面朝上洗匀后随机摸出一张,记下图案放回洗匀后再随机摸出一张.求两次摸出的纸牌正面图形都是中心对称图形的概率,(纸牌用A B C 、、表示)44.如图,在平面直角坐标系内,已知①ABC 的三个顶点坐标分别为A (1,3)、B (4,2)、C (3,4).(1)将①ABC 沿水平方向向左平移4个单位得①A 1B 1C 1,请画出①A 1B 1C 1; (2)画出①ABC 关于原点O 成中心对称的①A 2B 2C 2;(3)若①A 1B 1C 1与①A 2B 2C 2关于点P 成中心对称,则点P 的坐标是45.如图,D 是△ABC 边BC 的中点,连接AD 并延长到点E,使DE=AD ,连接BE .(1)图中哪两个图形成中心对称;(2)若△ADC 的面积为4,求△ABE 的面积.46.如图所示的正方形网格中,ABC ∆的顶点均在格点上,在所给直角坐标系中解答下列问题;(1)作出ABC ∆关于坐标原点成中心对称的111A B C ∆;(2)分别写出点11,A B 两点的坐标;47.作出下列图形的对称中心.48.如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.49.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.参考答案:1.D【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3.D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合的图形,依次进行判定即可.【详解】A、既是轴对称图形,也是中心对称图形,故不符题意;B、是轴对称图形,不是中心对称图形,故不符题意;C、既是轴对称图形,也是中心对称图形,故不符题意;D、是中心对称图形,不是轴对称图形,故符合题意;故选:D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是熟练掌握轴对称和中心对称图形的概念.4.C【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是中心对称图形,故选项错误,不符合题意;B.不是中心对称图形,故选项错误,不符合题意;C.是中心对称图形,故选项正确,符合题意;D.不是中心对称图形,故选项错误,不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形对各选项进行判断即可.【详解】解:①等腰三角形,正五边形均为轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;故A,C,D不符合题意;矩形既是轴对称图形又是中心对称图形故B符合题意;故选B.【点睛】本题考查了轴对称图形与中心对称图形.解题的关键在于熟练掌握轴对称图形与中心对称图形的定义.6.B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A是轴对称图形,不是中心对称图形.不符合题意;B既是轴对称图形,又是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D既不是轴对称图形,又不是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.8.A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【分析】中心对称图形定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,根据定义逐项判定即可得出结论.【详解】解:A、是轴对称图形,不是中心对称图形,故选项不符合题意;B、是轴对称图形,也是中心对称图形,故选项符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:B .【点睛】本题考查中心对称图形与轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是解决问题的关键.10.C【分析】根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A’的坐标是(x ,y ), 则12a x +=,12b y +=, 解得x =−a+2,y =−b+2,①点A’的坐标是()2,2a b -+-+.故选:C .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. 11.C【分析】根据菱形、平行四边形、正方形、矩形的性质逐项判断即可得出答案.【详解】解:菱形的对角线互相垂直,但不一定相等,故选项A 说法错误,不合题意; 平行四边形不是轴对称图形,是中心对称图形,故选项B 说法错误,不合题意; 正方形的对角线相等且互相垂直,故选项C 说法正确,符合题意;矩形的对角线一定相等,故选项D 说法错误,不合题意;故选C .【点睛】本题考查菱形、平行四边形、正方形、矩形的性质,以及轴对称、中心对称图形的识别,属于基础题,熟练掌握特殊平行四边形的特点是解题的关键.12.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B .【点睛】本题考查了轴对称图形,中心对称图形的识别,解题的关键是掌握轴对称图形,中心对称图形的定义.13.B【分析】根据中心对称图形与轴对称图形的概念分析即可.【详解】等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查判断轴对称图形与中心对称图形.掌握轴对称图形和中心对称图形的概念是解答本题的关键.14.B【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(2,1)-关于原点对称的点的坐标是(2,1)-,故选:B .【点睛】本题考查了关于原点对称的点的坐标,掌握两个点关于原点对称时,它们的坐标符号相反是解题的关键.15.D【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】①不是中心称图形,①不符合题意;①不是对称图形,①不符合题意;①不是轴对称图形,①不符合题意;①是轴对称图形,也是中心对称图形,①符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.16.A【分析】利用轴对称图形和中心对称图形的定义即可求解.【详解】解:等腰三角形是轴对称图形,不是中心对称图形,符合题意;菱形既是轴对称图形,又是中心对称图形,不符合题意;圆既是轴对称图形,又是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查识别轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解题的关键.17.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.B【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】①菱形是中心对称图形,且对称中心为原点,①A、C坐标关于原点对称,2,5-,①C的坐标为()故选C.【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.19.D【分析】根据中心对称的性质即“中心对称的两个图形全等,对称点到对称中心的距离相等”可得到结论.【详解】解:①四边形ABCD与四边形FGHE关于点O成中心对称,=,B、O、G三点在一条直线① AD与EF、AB GF与的关系是相等并且平行,BO GO=,上,DO EO①A、B、C选项正确,D选项错误.故选D.【点睛】本题考查中心对称的图形性质,得出对应顶点、对应边是解题关键.20.D【详解】根据轴对称图形又和中心对称图形的定义,易得D.21.中心对称圆心【分析】圆是一种比较特殊的几何图形,圆既是轴对称图形,又是中心对称图形,对称中心是圆心.【详解】解:圆是轴对称图形,圆也是中心对称图形,圆心是其对称中心,故答案为中心对称,圆心.【点睛】此题考查的知识点是中心对称图形,关键是结合中心对称图形和轴对称图形的概念对圆的认识.22.等腰三角形(答案不唯一)【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:是轴对称,但不是中心对称的几何图形名称:如等腰三角形或正三角形(答案不唯一).故答案为:等腰三角形(答案不唯一).【点睛】本题考查的是中心对称图形与轴对称图形的含义.掌握“轴对称图形与中心对称图形的概念”是解本题的关键.23.1-【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ),进而得出答案.【详解】解:①点()4,3P -和点(),Q x y 关于原点对称,①4,3x y =-=,则1x y +=-.故答案为:1-.【点睛】此题主要考查了关于原点对称点的性质,解题的关键是正确掌握横纵坐标的符号关系.24.①①【分析】根据中心对称图形及轴对称图形的定义即可解答.【详解】①只是中心对称图形;①、①两者都既是中心对称图形又是轴对称图形,①只是轴对称图形.故答案为①①.【点睛】本题主要考查了中心对称与轴对称的概念.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.25. (-1,-2) (1,2) (1,-2)【详解】试题分析:根据关于x 轴、y 轴、原点对称的点的坐标的特征即可得到结果. 点(-1,2)关于x 轴对称的点的坐标是(-1,-2),关于y 轴对称的点的坐标是(1,2),关于原点对称的点的坐标是(1,-2).考点:本题考查的是关于x 轴、y 轴、原点对称的点的坐标的特征点评:解答本题的关键是熟练掌握关于x 轴对称的点的横坐标不变,纵坐标变为相反数;关于y 轴对称的点的纵坐标不变,横坐标变为相反数;关于原点对称的点的横、纵坐标均变为相反数.26.-3【分析】根据关于原点对称的两个点横纵坐标互为相反数得出,a b 的值,代入计算即可.【详解】解:①点A (a ,1)与点B (﹣3,b )关于原点对称,①a =3,b =﹣1,故ab =﹣3.故答案为:﹣3.【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.(-3,5)【分析】根据旋转180°后的对应点与点A 关于原点对称进行求解即可.【详解】解:①将点A 绕原点逆时针旋转180°后,点A 的对应点B 与点A 关于原点对称, ①点B 的坐标为(-3,5),故答案为:(-3,5).【点睛】本题主要考查了绕原点旋转一定角度的点的坐标特征,熟知绕原点旋转180度对应点关于原点对称是解题的关键.28.4-【分析】根据对称中心是对应点的中点,可得答案.【详解】①点A 和点A '关于点B 对称,①B 是A 与A '连线的中点,设A '表示的数是x ,则)122x =-,解得:4x =-故答案为:4-.【点睛】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解答本题的关键.29. 全等 对称中心 平分【分析】根据中心对称的性质直接填空得出即可.【详解】成中心对称的两个图形全等,对应点的连线都经过对称中心,并且被对称中心平分.故填:全等,对称中心,平分.【点睛】此题主要考查了中心对称的定义,熟练掌握中心对称的定义是解题关键.30.(3,-1)【详解】试题分析:根据中心对称的性质,得点P(﹣3,1)关于原点对称的点的坐标是(3,﹣1).故答案为(3,-1).考点:关于原点对称的点的坐标.31.(-1,-3).【分析】根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【详解】解:①直线y=x+2上有一点P(1,m),①x=1,y=1+2=3,①P(1,3),①P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【点睛】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.32.(1)到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)见解析【分析】(1)根据线段的垂直平分线的判定进行解题即可.(2)根据题意用基本图形设计中心图案即可.【详解】解:(1)连接AC,CB,AD,DB.由作图可知:AC=BC,AD=BD.①点C,点D在线段的垂直平分线上(到一条线段两个端点距离相等的点在这条线段的垂直平分线上).①直线就是线段的垂直平分线(两点确定一条直线).故答案为:到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)如图所示:【点睛】本题考查利用旋转设计图案,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.33.①①【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --, ①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;①将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ①将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;①将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①①,故答案为:①①.【点睛】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 34. 不一定是; 一定是【分析】根据中心对称的定义及旋转对称的定义:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;即可得出答案.【详解】旋转对称图形不一定是中心对称图形,中心对称图形一定是旋转对称图形. 故答案为:不一定是;一定是。