生长素的作用机理

合集下载

植物生长素的作用与应用

植物生长素的作用与应用

植物生长素的作用与应用标题:植物生长素的作用与应用植物生长素是一类自然存在于植物体内的重要激素,它在植物生长和发育过程中起着关键的调节作用。

本文将介绍植物生长素的作用机制以及其在农业生产和园艺种植中的应用。

一、植物生长素的作用机制植物生长素主要由植物体内合成,其作用机制涉及到细胞分裂、植物生长和发育、植物生理代谢等多个方面。

1.1 细胞分裂与伸长生长素能够刺激细胞分裂和伸长,促进植物器官的生长。

它通过激活特定基因的表达来调节细胞分裂,促进幼嫩叶片、嫩芽和根系的伸长,从而增加植物体积和生物产量。

1.2 维持植物生理平衡植物生长素还能调控植物的生理代谢,包括光合作用、呼吸作用、植物免疫等。

它能够帮助植物更好地吸收营养物质,提高光合效率和产物累积,同时增强植物的抗逆性和健康状态。

二、植物生长素在农业生产中的应用随着对植物生长素作用机理的深入研究,人们开始将其应用于农业生产,以提高农作物的产量和质量。

2.1 促进种子萌发和生长种子是农作物生产的基础,植物生长素可以促进种子的萌发和生长。

通过在种子处理中添加适量的生长素,可以提高种子的发芽率和发芽速度,从而缩短生长周期,增加产量。

2.2 促进果实发育和甜度提高在果树和蔬菜种植中,喷施生长素能够促进果实的发育和增大,提高果实的品质和甜度。

同时,在蔬菜生产中,通过调节生长素的浓度和时机,可以实现早熟和延迟衰老的效果,延长蔬菜的上市期,提高经济效益。

2.3 控制植物生长和发育植物生长素的应用还可以用于农作物生长和发育的调控。

通过喷施生长素,可以促进侧芽分化,控制植株的分枝和株型,达到增加分蘖或减少分蘖的目的。

此外,生长素还可以调控植物的开花和结果,提高农作物的坐果率和产量。

三、植物生长素在园艺种植中的应用除了在农业生产中的应用,植物生长素在园艺种植领域也有广泛的应用。

3.1 繁殖与移植植物生长素可以促进植物的有性和无性繁殖。

通过在插条和接穗上涂抹生长素溶液,可以促使其更好地扎根和生根,提高成活率。

植物生长素的作用机理

植物生长素的作用机理

植物生长素的作用机理植物生长素是一类重要的植物激素,对植物的生长和发育起着关键作用。

它通过调节细胞分裂、细胞伸长、根系发育等生理过程,促进植物的生长和发育。

植物生长素的作用机理主要包括以下几个方面。

植物生长素在细胞分裂中起到重要的调节作用。

生长素能够促进细胞分裂,使植物体内细胞数量增加。

它能够刺激细胞分裂素的合成,从而促进细胞的分裂。

同时,生长素还能够抑制细胞分裂素的降解,使其在细胞中积累,进一步促进细胞的分裂。

细胞分裂是植物生长和发育的基础,植物生长素在细胞分裂中的调节作用对于植物的正常生长和发育至关重要。

植物生长素参与调节细胞伸长。

细胞伸长是植物生长的重要过程,植物生长素能够促进细胞的伸长。

生长素能够增加细胞壁松弛酶的合成,降低细胞壁的粘性,使细胞壁松弛,从而促进细胞的伸长。

此外,生长素还能够促进细胞内蛋白质的合成,增加细胞的体积,进一步促进细胞的伸长。

细胞伸长是植物生长和发育的重要过程,植物生长素在细胞伸长中的调节作用对于植物的正常生长和发育具有重要意义。

植物生长素还参与调节根系发育。

根系是植物吸收水分和养分的重要器官,植物生长素能够促进根系的发育。

生长素能够促进根尖细胞的分裂和伸长,增加根系的体积和长度。

此外,生长素还能够促进根毛的生长,增加根系对土壤养分的吸收能力。

植物生长素在根系发育中的调节作用对于植物的正常生长和发育非常重要。

植物生长素还参与调节植物的生殖发育。

生长素能够促进花芽的分化和开花过程。

生长素能够抑制花芽抽薹素的合成,从而促进花芽的分化。

此外,生长素还能够促进花粉管的伸长和胚珠的发育,促进花粉与胚珠的结合,从而促进受精和种子的形成。

植物生长素在植物的生殖发育中发挥着重要的调节作用,对于植物的繁殖和种群的遗传变异具有重要意义。

植物生长素通过调节细胞分裂、细胞伸长、根系发育和生殖发育等生理过程,促进植物的生长和发育。

植物生长素的作用机理主要包括促进细胞分裂、调节细胞伸长、促进根系发育和调节生殖发育等方面。

简要说明生长素的作用机理。

简要说明生长素的作用机理。

简要说明生长素的作用机理。

生长素是一种植物激素,它在植物生长和发育过程中起着至关重要的作用。

生长素主要通过调节细胞分裂和伸长来影响植物的形态和功能。

这种激素在植物中的合成和运输受到许多内部和外部因素的调节。

本文将详细介绍生长素的作用机理。

1.生长素的生物合成和运输生长素是由植物的叶片、茎和根系等组织合成的。

在生长素合成途径中,半胱氨酸、色氨酸和天冬氨酸等氨基酸是最初的前体物质。

这些氨基酸通过植物体内的生物合成途径,产生生长素前体物质。

生长素前体物质在植物体内经过一系列的生化反应后,最终转化为生长素。

生长素经过细胞间的运输,可以影响植物的各个器官。

最初的运输方式是通过植物的茎和根系进行的。

生长素可以通过茎的韧皮部运输到茎尖部分和叶片。

在根系中,生长素可以通过根的顶端和侧根发生运输。

此外,生长素还可以通过叶片和花朵的运输,影响植物的形态和功能。

2.生长素的作用机理生长素的主要作用是促进植物的细胞分裂和伸长。

生长素在植物细胞的质壁分离中起到重要的作用。

它可以影响细胞壁的松弛和伸长,从而使细胞在伸长过程中产生更多的细胞壁。

这个过程被称为细胞伸长。

生长素也可以通过调节细胞分裂来影响植物的生长。

生长素影响细胞分裂的机制是通过促进细胞分裂前期的基质合成以及细胞周期的调节。

生长素还能够影响植物的形态和功能。

生长素可以影响植物的光合作用和呼吸作用,从而影响植物的生长和发育。

它还可以通过影响叶片、茎和根的细胞分化和伸长,影响植物的形态和结构。

生长素还可以调节植物的代谢途径,提高植物的抗逆能力。

生长素的作用机理还受到许多内部和外部因素的调节。

内部因素包括植物体内的代谢物质和其他植物激素。

例如,植物的脱落酸可以影响生长素的合成和运输。

外部因素包括光照、温度、水分和营养素等环境因素。

这些因素可以通过影响生长素的生物合成和运输来调节生长素的作用。

生长素在植物生长和发育过程中起着重要的作用。

它可以通过调节细胞分裂和伸长,影响植物的形态和功能。

简要说明生长素的作用机理。

简要说明生长素的作用机理。

生长素:指引植物生长的魔力生长素是一种植物内源激素,可以通过调节植物的生长和发育来发挥作用。

其作用机理包括以下几个方面:
1.促进细胞增长:生长素可以通过作用于植物细胞壁和细胞膜,调节蛋白质、糖类和酶的合成,从而促进细胞的伸长和分裂。

2.促进分化和发育:生长素可以促进植物的分化和发育,包括根系、茎、叶和花的生长。

在根系中,生长素可以促进根系的伸长和分化;在茎和叶中,生长素可以促进细胞伸长和膨大,增加植物的体积和面积;在花中,生长素可以促进雌蕊和雄蕊的发育,从而实现受粉和结实。

3.逆转衰老:生长素还可以延缓植物的衰老,促进植株的生长和果实的成熟。

因为在植物老化的过程中,生长素的含量会逐渐降低,因此补充生长素可以延缓老化过程。

总之,生长素在植物的生长和发育中起着至关重要的作用。

利用生长素的作用机制,可以加速农作物的生长和成熟,提高作物产量。

同时,合理利用生长素也可以对绿化、园艺和林业等方面产生积极的影响。

生长素作用机理

生长素作用机理

生长素作用机理
生长素,又称植物激素,是一类影响植物生长发育的重要物质。

生长素通过调节植物代谢、细胞分裂、伸长等生理过程,发挥着至关重要的作用。

生长素的作用机理十分复杂,涉及到多种生物化学反应和信号传导机制。

生长素的种类
生长素主要分为赤露酸、生长素酯、生长素脂等多种类型。

它们在植物发育中发挥着不同的作用,相互之间又存在复杂的调节关系。

生长素的合成与代谢
生长素在植物体内主要是通过生物合成途径合成的,同时也会经过代谢途径进行降解和调节。

这些过程受到植物内外环境的种种因素的影响。

生长素的作用机制
促进细胞分裂
生长素能够促进细胞分裂,从而增加植物组织和器官的生长。

它通过影响细胞间的信号传导网络,调控细胞周期的进行,达到促进细胞分裂的作用。

促进细胞伸长
生长素还能够促进细胞的伸长,特别是在植物的胚芽生长和根部伸长过程中具有重要作用。

生长素通过调节细胞壁结构和细胞内蛋白质合成等方式,实现对细胞伸长的促进。

参与植物生长发育的调节网络
生长素不仅与细胞分裂、伸长等生长过程直接相关,还参与到植物生长发育的调节网络中。

它能够调控其他植物激素的合成和效应,与环境信号的互作,共同影响植物的生长发育进程。

生长素的调控和应用
生长素的作用受多种调控因素的影响,包括内源性调控和外源性调控等。

在实际应用中,可以通过调节生长素水平和利用其生物活性,来促进作物生长、改善产量和品质等方面发挥作用。

总之,生长素作用机理是一个复杂而精彩的领域,深入研究生长素的作用机制有助于更好地理解植物生长发育的本质,为农业生产和生物学研究提供有益参考。

生长素促进扦插枝条生根的原理

生长素促进扦插枝条生根的原理

生长素促进扦插枝条生根的原理
生长素是一种植物激素,它可以促进扦插枝条生根。

扦插是植物繁殖的常见方法,它是将一段植物的枝条或叶片插入到土壤中,让它生根成为独立的植株。

但是,扦插过程中,许多植物枝条往往难以生根,这时候就需要用到生长素。

生长素的作用机理是通过调节植物细胞分裂和伸长的过程,从而促进扦插枝条的生根。

具体来说,生长素可以刺激植物细胞的分裂和伸长,增加细胞数量和细胞大小,从而促进扦插枝条的生根。

同时,生长素还可以调节植物的生长方向,使扦插枝条生长向下,从而更容易生根。

生长素的使用方法一般是将生长素溶液涂抹在扦插枝条的切口处或浸泡在生长素溶液中。

生长素的浓度和使用方法需要根据具体植物的情况而定,一般建议在使用生长素前先进行试验,以确定最佳浓度和使用方法。

生长素虽然可以促进扦插枝条生根,但是过量使用也会产生负面影响。

过量使用生长素可能会导致植物细胞分裂过度,形成病态生长,甚至出现畸形植株。

因此,在使用生长素时,一定要掌握好浓度和使用方法,避免过量使用。

除了生长素外,还有一些其他的方法也可以促进扦插枝条生根。

例如,可以使用生物制剂、有机肥料和水培等方法,来提高扦插枝条
的生根率。

此外,扦插时还需要注意土壤的湿度和光照等条件,以保证扦插枝条的生长和生根。

生长素是一种有效的促进扦插枝条生根的方法,但是在使用时需要注意浓度和使用方法,以避免产生负面影响。

同时,还需要综合使用其他方法,来提高扦插枝条的生根率,从而获得更好的繁殖效果。

《生长素的作用》课件

《生长素的作用》课件

4 调节植物的光反应
生长素参与调节植物对光的感应和反应,影 响植物的光合作用。
生长素的应用
植物培育
生长素广泛用于植物培育中, 促进植物的生长和繁殖。
农艺栽培
生长素在农业栽培中有重要 应用,改善作物产量和质量。
传统中药
许多中药中含有生长素成分, 具有药理活性。
生长素的研究
1
生长素合成机制
科学家正在研究生长素的合成途径和相
生长素作用机理
2
关基因。
研究生长素对植物生长发育的调控机制,
揭示其作用原理。
3
生长素生物合成
探索生长素的生物合成途径,为生长素 的应用提供基础。
结论
生长素在植物的生长、发育和代谢都具有重要作用。它在植物培育、农业栽培和医学药物领域得到广泛应用。
《生长素的作用》PPT课 件
# 生长素的作用 ## 简介 生长素是植物合成的激素,对生长发育具有重要调节作用。
生长素的作用
1 促进植物细胞的伸长
生长素刺激细胞壁松弛和伸展,使细胞在垂 直方向上增长。
2 促进根系的发育
生长素在根系发育中发挥重要作用,促进根 系的延伸和分支。
Hale Waihona Puke 3 催化花蕾的形成生长素调控花蕾的分化,促进花蕾的形成和 开放。

简要说明生长素的作用机理

简要说明生长素的作用机理

简要说明生长素的作用机理生长素,听起来是不是像个神秘的化学物质?其实,它在植物界的地位可不一般,简直就是“植物生长的金钥匙”。

咱们先来聊聊它到底是个啥。

生长素主要是指一类植物激素,最著名的就是吲哚乙酸(IAA),这个名字听起来有点拗口,但别担心,听我慢慢道来。

1. 生长素的基本作用1.1 促进细胞生长首先,生长素的最基本作用就是促进细胞的生长。

想象一下,如果没有生长素,植物就像个没精神的小孩,长得慢得像蜗牛,光站着不动。

所以说,生长素就像是植物的“能量饮料”,让它们活力四射,细胞分裂得欢快,快速长高、长大,真是让人羡慕得不行。

1.2 影响根系生长接下来,咱们聊聊生长素对根系的影响。

它可是根系生长的重要推手。

生长素在植物的根部浓度高,就会促进根系的生长。

就像小孩爱吃糖,根系也爱“吸”生长素。

根部吸收到的水分和养分更丰富,植物自然长得更茁壮。

试想一下,如果根系不发达,植物就像一只无头苍蝇,东倒西歪,根本不可能长得好。

2. 生长素的分布和作用2.1 光向性和地向性说到生长素,咱们不得不提一个特别有趣的现象,那就是光向性和地向性。

光向性就是植物向光源生长的现象,而生长素在其中起着关键作用。

植物在光照下,一侧的生长素浓度高,另一侧低,结果那一侧长得快,植物就“傲娇”地向光源弯曲,追求阳光。

就好比小姑娘在阳光下转圈圈,生机勃勃的样子让人心都融化了。

而地向性呢,就是植物的根部向下生长。

根系里也有生长素的分布,根部受重力影响,生长素分布不均,结果也就形成了根向下生长、茎向上生长的现象。

这种“相辅相成”的机制,真是太妙了,简直是大自然的魔法!2.2 生长素与其他激素的配合当然,生长素也不是单打独斗,它和其他植物激素一起“搭档”工作。

比如,生长素和细胞分裂素一起配合,让植物更快地生长;和脱落酸合作,帮助植物应对干旱等不良环境。

这种“团结就是力量”的合作,真是让人感慨万分。

就像我们在生活中,朋友之间齐心协力,才能克服困难,迎接挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生长素的作用机理学院:农业资源与环境专业:10农资学号:2010310501 姓名:夏选发生长素(auxin)是最早被发现的植物激素,它的发现史可追溯到1872年波兰园艺学家西斯勒克(Ciesielski)对根尖的伸长与向地弯曲的研究。

他发现,置于水平方向的根因重力影响而弯曲生长,根对重力的感应部分在根尖,而弯曲主要发生在伸长区。

他认为可能有一种从根尖向基部传导的剌激性物质使根的伸长区在上下两侧发生不均匀的生长。

它能调控细胞伸长、细胞分裂与分化、顶端优势、向性生长、根原基的发生、胚的形成和维管分化等。

很多研究表明, 生长素是茎伸长生长所必需的, 生长素的亏缺(deficiency)会导致茎伸长受阻。

外源生长素处理能促进茎切段的伸长, 促进亏缺生长素的整体植株茎伸长。

作为植物的一种重要的内源激素,生长素参与植物生长和发育的诸多过程,如根和茎的发育和生长、器官的衰老、维管束组织的形成和分化发育,以及植物的向地和向光反应等。

研究生长素的作用机制对深入认识植物生长发育的许多生理过程有重要意义。

早在上个世纪30年代有关生长素作用机制的研究就已经开始,到60年代末、70年代初形成两派学说,即基因表达学说和酸生长学说。

之后,随着生物化学和生物学技术的发展,两种学说都有了新的发展,但同时其所存在的不足之处也日益暴露。

近年来,由于分子生物学和遗传工程实验手段的广泛应用,在分子水平上的生长素作用机制研究日益深入,尤其是生长素信号转导途径的研究已经成为当前的热点。

1.生长素的作用机理生长素, 如IAA作用于细胞核上, 作为基因的脱阻抑剂, 首先是被阻抑的基因活化。

随之, 在已活化的基因控制下, 通过调节酶蛋白的种类和数量来表现其继发的生理作用[ 2 ]。

生长素的生物试验表明,用生长素处理时,细胞壁变软,因而增加了其可塑性。

可塑性是指细胞壁不可逆转的伸展张力。

生长试验证明,在生长素的影响下,细胞壁可塑性的变化与生长素所促进的生长增加幅度是很相似的。

因此可以认为,生长的增加确实是通过细胞壁可塑性的变化而实现的。

这些生长试验,必须以活的器官或组织为材料,并在呼吸作用能够顺利进行的条件才能完成。

这就表明,生长素诱导生长是在原生质内进行的。

试验证明,在生长素的影响下,原生质的粘度下降、流动性增加、呼吸作用增强,对水和溶质的透性也提高,从而导致更多的营养物质和水分进入细胞,为细胞增大体积提供了必要的物质条件。

1.1 酸生长理论PMRay[ 3 ]将燕麦胚芽鞘切段放入一定浓度的 IAA溶液中, 发现 10~15min 后切段开始迅速伸长, 同时介质的pH值下降, 细胞壁的可塑性增加。

将切段放入含IAA的pH值为4的缓冲溶液中, 切段也表现出伸长;如将切段转入含IAA 的pH值为7的缓冲溶液中, 则切段的伸长停止; 若再转入含IAA的pH值为4的缓冲溶液中, 则切段重新伸长。

将胚芽鞘切段放入不含IAA的pH值为3.2~3.5的缓冲溶液中, 则1min后可检测出切段的伸长, 且细胞壁的可塑性也增加; 如将切段转入pH值为7的缓冲溶液中, 则切段的伸长停止; 若再转入pH值为3.2~3.5的缓冲溶液中, 则切段重新表现出伸长[ 2 ]。

基于上述, Rayle和Cleland于1970年提出了生长素作用机理的酸生长理论, 认为: (1) 原生质膜上存在着非活化的质子泵 (H+-ATP酶 ),生长素作为泵的变构效应剂, 与泵蛋白结合后使其活化; (2) 活化了的质子泵消耗能量 (ATP) 将细胞内的 H+泵到细胞壁中,导致细胞壁基质溶液的pH值下降; (3) 在酸性条件下, H +一方面使细胞壁中对酸不稳定的键 (如氢键 )断裂, 另一方面 (也是主要的方面) 使细胞壁中的某些多糖水解酶 (如纤维素酶) 活化或增加, 从而使连接木葡聚糖与纤维素微纤丝之间的键断裂, 细胞壁松驰; (4) 细胞壁松驰后, 细胞的压力势下降, 导致细胞的水势下降, 细胞吸水, 体积增大而发生不可逆增长。

由于生长素与H +-ATP酶的结合和随之带来的 H+的主动分泌都需要一定的时间, 所以生长素所引起伸长的滞后期(10~15min) 比酸所引起伸长的滞后期 (1min) 长。

1.2基因活化学说植物细胞具有全能性, 但在一般情况下, 绝大部分基因是处于抑制状态的, 生长素的作用就是解除这种抑制, 使某些处于“休眠”状态的基因活化, 从而转录并翻译出新的蛋白质。

当IAA与质膜上的激素受体蛋白(可能就是质膜上的质子泵) 结合后, 激活细胞内的第2信使, 并将信息转导至细胞核内, 使处于抑制状态的基因解阻遏, 基因开始转录和翻译, 合成新的mRNA和蛋白质, 为细胞质和细胞壁的合成提供原料, 并由此产生一系列的生理生化反应[ 3 ]。

由于生长素所诱导的生长既有快速反应, 又有长期效应, 因此提出了生长素促进植物生长的作用方式的基因活化学说[ 2 ](图 1)。

2.生长素受体生长素所产生的各种生理作用是生长素与细胞中的生长素受体结合后实现的, 这也是生长素在细胞中作用的开始。

生长素受体是激素受体的一种。

所谓激素受体是指能与激素特异结合的、并能引发特殊生理生化反应的蛋白质。

作为生长素的受体, 必须具有以下特征[ 4 ]。

(1) 与生长素之间有很强的接合力; (2) 与生长素结合后被活化, 并引起相应的一系列生理生化反应。

据此说明许多能与生长素紧密结合的物质并非均是受体, 只可称其为某激素的结合蛋白。

学术界还有一种观点认为, 生长素的活化作用不是直接的, 它作为“第一信使”在细胞中某一专一的部位激活别的分子, 后者被认为是腺苷酸环化酶。

被激活的腺苷酸环化酶作用AIP导致了5-环式腺苷酸磷酸 (CAMP) 的形成。

CAMP作为“第2信使”激活蛋白质激酶或别的无活性的前体,于是诱发许多生理效应[ 2 ]。

3.生长素的激活(感知)、活化、信号转导和基因表达(转录、翻译、合成)3.1生长素的激活(感知)在20世纪80年代,用生物化学方法发现与生长素结合的蛋白质1(ABP1)与生长素结合的活性高,时候选受体。

后来,对抗生长素或生长素转运抑制剂的拟南芥突变体的基因筛选确定数个遗传位点参与生长素信号转导,如运转抑制剂反应TIR1,最近确定T1R1为生长素受体。

F-box蛋白T1R1是SCF复合体为E3泛素连接酶的重要组成部分,亦为蛋白质降解泛素蛋白酶体途径的一部分。

T1R1的底物Aus/IAA转录阻遏蛋白生长素依赖方式与T1R1结合。

结合后,阻遏物被降解。

对以上相互作用进行晶体学分析表明,IAA结合到同一个T1R1孔穴的基部,使Aus/IAA蛋白停靠在IAA的顶部,这占据了T1R1孔穴的其他部分。

为了验证T1R1是感知生长素的主要受体,对合成的IAA类似物,2,4D和1-NAA进行了实验。

实验也表明T1R1也与这些合成生长素结合。

此外,许多生长素反应由转录介导,因此与T1R1受体家族相关。

然而,在快速的生长素响应中,如在细胞扩展中生长素诱导的离子流,一种信号传导途径,它可能是由与生长素结合的膜蛋白1(ABP1)与相关的蛋白进行转导。

ABP1可能与植物自有的影响ABP1作用的生长素协调细胞的分化和拓展。

3.2生长素的活化许多实验证明,激素的受体是蛋白质。

至于激素的的位置,有两种不同的看法。

一种认为,激素受体是在细胞质或细胞核内,它与激素结合后,调节核酸和蛋白质的合成,也调节酶的合成,最终引起一系列的生理生化反应,有促进作用。

里一种看法认为,激素受体是在质膜上,受体与激素结合后,引起膜的透性核电荷的改变,释放出一些酶来,从而引起生理生化的改变。

快速反应是质膜受体说法的重要证据。

试验证明,大豆下胚轴质膜对生长素的反应是迅速的,几分钟后就产生反应。

另外有人在洋葱鳞茎的质膜碎片制剂中加入2,4-D,它便与质膜结合的B-1,3-葡聚糖合成酶的活性增大10·30%,这就说明质膜是激素受体的所在地。

然而,近年来有把两种看法统一起来的趋势,也就是:当外加生长素后,质膜上的受体与生长素结合,后来受体把转录因子即促进RNA聚合酶活性提高的物质(可能是一种糖脂)释放出来,通过细胞质进入细胞膜,活化聚合酶,再将RNA 聚合酶释放到细胞质,影响基因组的转录和翻译,形成蛋白质,酶等,并进行生长活动。

3.2生长素的信号转导3.2.1 ABP1(生长素信号感应)近20年来,生长素受体的研究主要集中在分离、鉴定与生长素结合的蛋白,已经鉴定到一些生长素结合蛋白,其中研究最深入的事ABP1。

ABP1是最初在玉米胚芽鞘中分离到的一种22KD的糖蛋白,它和生长素的结合具有高度的特异性和亲和性。

作为受体的一个重要特性是当信号分子和受体结合后会引起相应的生理生化反应,免疫学和转基因研究为ABP1发挥受体功能提供了一些证据。

外源施加不能进入细胞内的ABP1抗体,会干扰生长素诱导的某些反应,如原生质体的超级化,细胞的扩大和分裂,气孔的关闭等,在表达ABP1的转基因烟草植物中,叶肉细胞增大,而反应抑制ABP1则能消除生长素诱导的细胞伸长和抑制细胞分裂。

在一些植物激素中,直接的遗传筛选时鉴定受体和其它信号转导祖坟的好方法,但这种方法并没有鉴定到生长素的受体。

最近反向遗传学的运用使这方面取得重要进展,Chen等在拟南芥中分离得到ABP1基因,其纯合突变体abpl 的表型为在胚胎发育的早期(球形胚时期)致死,这说明ABP1在植物的生长发育中发挥关键性作用。

因此要对ABP1在胚后期的功能进行研究,需进一步鉴定一些条件型突变体来进行相关研究。

3.2.2 G 蛋白和信号转导的第二信使(生长素信号在细胞质的传递)生长素被膜上的受体感知后,会激活G 蛋白,进而诱导生长素胞内信号的转导,已经鉴定到了多个第二信使,并已确定生长素在胞内的传导包括不依赖于磷酸酯酶A2的途径和依赖于磷酸酯酶A2的途径。

异三聚体G 蛋白定位于细胞膜的内侧,并与质膜紧密相连,一些证据表明,异三聚体G 蛋白参与生长素的信号转导。

当生长素在膜上被ABP1和跨膜蛋白构成的受体复合物感知后,会激活G 蛋白,被激活的G 蛋白进而诱导生长素的胞内信号转导。

G 蛋白的α亚基在几个信号转导中发挥不同作用,在脱落酸信号转导中起负向调节作用,而在生长素诱导的细胞分裂中和赤霉素信号转导中起正向调节作用。

由于G-α突变体研究中对生长素信号转导中的确切作用机理还不清楚,反向遗传学研究和拟南芥的基因组学的发展渴望在不久的将来在这一领域取得较大进展。

胞质中PH 的调节可能是生长素信号在细胞质中传导的第二信使,胞质中的PH 的调节主要通过膜上的离子通道或H+-APTase 质子泵的作用来实现。

因而,生长素信号转导途径的一个分枝就是不通过基因调节反应直接引起蛋白质的活化。

相关文档
最新文档